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PSEUDO-SPECTRUM FOR A CLASS OF
SEMI-CLASSICAL OPERATORS

Karel PRAVDA-STAROV

University of California, Berkeley

Abstract. We study in this paper a notion of pseudo-spectrum in the semi-classical
setting called injectivity pseudo-spectrum. The injectivity pseudo-spectrum is a sub-
set of points in the complex plane where there exist some quasi-modes with a precise
rate of decay. For that reason, these values can be considered as some ‘almost eigen-
values’ in the semi-classical limit. We are interested here in studying the absence of
injectivity pseudo-spectrum, which is characterized by a global a priori estimate. We
prove in this paper a sharp global subelliptic a priori estimate for a class of pseudo-
differential operators with respect to the regularity of their symbols. Our main result
extends the a priori estimate of Dencker, Sjostrand and Zworski (Theorem 1.4) in
[5] for a class of pseudo-differential operators with symbols of limited smoothness
violating the condition (P).

1. INTRODUCTION

1.1. Miscellaneous facts about pseudo-spectrum. In recent years, there has
been a lot of interest in studying the pseudo-spectrum of non-self-adjoint operators.
We first recall some classical and known facts about pseudo-spectrum. The study of
pseudo-spectrum has been initiated by noticing that for certain problems of science
and engineering involving non-self-adjoint operators, the predictions suggested by
spectral analysis do not match with the numerical simulations. To supplement the
lack of information given by the spectrum, some new subsets of the complex plane
called pseudo-spectra have been defined. The main idea is to study not only points
where the resolvent is not defined, i.e. the spectrum, but also where the resolvent is
large in norm.

We refer the reader to Trefethen’s article [11] * for the definition of the e-pseudo-
spectrum A (A) of a matrix or an operator A,

AcA) = {z € C, (=T - )7} 2 7.

By convention, we write ||(2I — A)7!|| = +o0 if z belongs to the spectrum of A.
The e-pseudo-spectrum of A is non-decreasing with . All these subsets contain the
spectrum of the operator. In an equivalent way, pseudo-spectra can be defined in
term of the spectra of perturbations. Indeed, for any matrix we have

A(A) ={z€C, z<€o0(A+ B) for some B with ||B|| < e}.

It follows that a number z belongs to the e-pseudo-spectrum of A if and only if it
belongs to the spectrum of some perturbed operator A+ B with ||B|| < e. From this
second description, we understand the interest in studying such subsets. Indeed, if we
want to compute numerically some eigenvalues, we start by discretizing the operator.
This discretization and inevitable round-off errors will generate some perturbations of
the initial operator. Eventually, algorithms for eigenvalues computing determine the
eigenvalues of a perturbation of the initial operator, i.e. a value in some e-pseudo-
spectrum and not necessarily a spectral value. In the self-adjoint case, the spectrum is

1The reader will find in this paper more details about interest, history and general properties of
pseudo-spectra.
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stable under small perturbations. In fact, this stability is a consequence of the spectral
theorem. The spectral theorem implies that A-(A) is exactly the set of points in C
at distance less than or equal to € from the spectrum of A. However this property
of stability is not true in the non-self-adjoint case in which the spectrum could be
very unstable under small perturbations. To illustrate this fact, we recall a suggestive
example pointed out by Davies in [3] and Zworski in [12].

Ezxample. Let us consider the rotated harmonic oscillator in one dimension
2

P, :_ﬁ + e 2% where — 7 < a < 7.
T

This operator P, is self-adjoint only for a = 0. Its spectrum is composed of the

Figure 1: Computation of e-pseudo-spectra for the rotated harmonic oscillator P,
with a = 0. The right column gives the corresponding values of log;, €.
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following eigenvalues (see Theorem 3.3 in [6]),
e'2(2n+1), neN.

We can try to compute numerically the spectrum and some e-pseudo-spectra for some
small values of the parameter e. Computations are performed on the discretization

(Pa¥s, W) r2(m)) ;< o

where N is an integer taken equal to 50 and (¥;)jen- stands for the basis of L?(R)
of Hermite functions. Numerical results illustrate the spectral stability in the self-
adjoint case. We also notice a strong instability in the non-self-adjoint case, which
leads to the computation of ‘false eigenvalues’ for high energies. In this last case, the
resolvent may be very large in norm far from the spectrum.

1.2. Definition of the pseudo-spectra and injectivity pseudo-spectra. Our
interest in this article is to study some notion of semi-classical pseudo-spectrum. In
order to justify the definition in the semi-classical setting, we start again with the last
example of the rotated harmonic oscillator. Following Zworski in [12], we rephrase
the problem of finding eigenvalues for operator P, by a change of scaling. Setting
y = h/?z where h is a positive parameter, one has

2 1 2
Paf/\:f—qLemef)\:—(7h2—+elay27h)\) -

da? h dy? (Pah) = 2)

SES



Figure 2: Computation of e-pseudo-spectra for the rotated harmonic oscillator P,
with o = 7. The right column gives the corresponding values of log;, €.
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where z = h\ and )

d .
P, (h) = —th—yQ + ety?.

Since we are interested in the behaviour of the resolvent for large values of A\, we can
work in the semi-classical limit, i.e. h — 0, with z fixed. We can now extend in a
natural way the definition of pseudo-spectrum in the semi-classical setting as follows

Definition 1.2.1. Let (Py)o<n<1 be a semi-classical family of operators on L?*(R™)
defined on a domain D, for all u > 0 the set
A (Pr) = {2 € C:VYC > 0,Vhg > 0,30 < h < ho, [[(P— 2)7Y > Ch™H},

is called the pseudo-spectrum of index p of the family (Pp)o<n<1 (we write by conven-
tion ||(Py, — 2) 7| = +oo if z belongs to the spectrum of Py,). The pseudo-spectrum of
infinite index is defined by

AX(P) = (1) A (Po).

n=0

With this definition, the points in the complement of A}(Fy) are the points of
the complex plane where we have the following control of the resolvent’s norm for h
sufficiently small

3C > 0,3ho > 0,Y 0 < h < hg, ||[(P,—2)7"|| < Ch™*.

We are interested in this paper by the study of slightly different sets from these pseudo-
spectra, which are made of points where we can find some quasi-modes with a precise
decay in the semi-classical limit. We call these sets the injectivity pseudo-spectra.

Definition 1.2.2. Let (Py)o<n<1 be a semi-classical family of operators on L?*(R™)
defined on a domain D, for all p > 0 the set

Ny (Pr) ={2€C:VC >0,Vhyg > 0,30 < h < hy,
Jue D, |ullpz=1, ||(Pn— 2)ullpz < Ch*},



is called the injectivity pseudo-spectrum of index p of the family (Pn)o<nh<1. The
injectivity pseudo-spectrum of infinite index is defined by

XS(Py) = [ X5 ().
n=>0

The injectivity pseudo-spectrum of index p is by definition the set of points in the
complex plane which are some ‘almost eigenvalues’ with a decay in O(h*) when h — 0.
We notice that the injectivity pseudo-spectra as the pseudo-spectra are non-increasing
with the index. The absence of injectivity pseudo-spectrum at a given point is easily
characterized by an a priori estimate on the operator. Indeed, there is no injectivity
pseudo-spectrum of index p at z if and only if we have

(1.2.1) 3C > 0,3hg > 0,V 0 < h < ho,Yu € D, |[(Py — 2)ul|zz > Ch*||u| e

We say that there is no loss of any power of h, respectively a loss of at most h* for the
points in the complement of the injectivity pseudo-spectrum of index 0, respectively
of index p when p is positive. We have the following inclusions

Vi >0, XE(Py) © A (Py),

but to obtain the equality, we need an additional property of surjectivity for the
operators, which is fulfilled for instance if we deal with Fredholm operators of index 0.
We can also notice that if P, — z is a closed operator with a dense domain and that
Z & N7(Py), the estimate (1.2.1) for the operator Pj; — Z implies the surjectivity
for the operator Pj, — z if h sufficiently small. Under these previous assumptions,
z € AJF(Pp) implies that 2 € X7 (Py).

In fact, if we suppose that P, — z is a closed operator, the absence of injectivity
pseudo-spectrum in z for the operator P} gives a control for the norm of the left
inverse (P, —z)~! : Ran(P, —z) — D since the estimate (1.2.1) induces that the range
Ran(Py, — 2) is closed in L?(R™). These above definitions differ from one given in [5]
for a semi-classical pseudo-differential operator. We prefer here to give a definition,
which depends on the properties of the operator rather than on its symbol in order to
study some geometrical conditions on the symbol giving the existence or the absence
of pseudo-spectrum or injectivity pseudo-spectrum.

1.3. Remark. The spectrum of a self-adjoint operator is purely real, this property
is also true for the injectivity pseudo-spectrum of a family of self-adjoint operators.

Proposition 1.3.1. Let (Py)o<n<1 be a semi-classical family of self-adjoint operators
on L2(R™) defined on a dense domain D then

(1.3.1) Vz € C,Vu € D, ||Pru— zu| g2 > |Im z|||ul| L2

Thus, there is no loss of any power of h in C\ R and in particular for all p > 0 the
injectivity pseudo-spectrum of index 11 of (Pr)o<n<1 is contained in R.

Proof. Let z be in C\ R, the estimate follows from the Cauchy-Schwarz inequality
|Im z|[|u||7> < Re (Pyu — zu, —isgn(Im 2)u) o < ||Pou— zul| p2|Jul| L2,

where sgn(x) denotes the sign of z. O

In fact, under the assumptions of the previous proposition we have for all p non
negative that A\J°(P,) = A} (Ph). Indeed, we have on one hand by (1.3.1) that

Vz € C\R, ||(P,—2)7Y < |Imz|7}
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since the spectrum of P, is real by self-adjointness. On the other hand, if z is in
A (Pr)¢ MR, a previous remark shows that z ¢ A°(P,) since we have in this case

2=Z &N (Py) = X7 (Ph).

1.4. Examples. The first example is the harmonic oscillator
d2
—h? e + 2.
The injectivity pseudo-spectrum of infinite index is in this case R} and one has in
the complement in C of R% the following estimates

d*u
00 2
Yh > 0,Vu € Cj (R), H h ) +x UHL2(]R) >hHUHL2(]R)a
oo d?u
Vz ¢ Ry,3C > 0,Yh > 0,Yu € C5°(R), H th 5 + 2%u — zu||L2(R)
For the example of the rotated harmonic oscillator
d2 (1o
Pa(h):*h F+€ SCQ
with 0 < a < 7, Davies has proved in [4] (Theorem 1) that
M (Pa(h)) € {z€C*: 0 < argz < a}.

In fact, the injectivity pseudo-spectrum of infinite index is exactly

> Cllull 2(ry-

{zeC":0 < argz < a}.
Indeed for all 1 > 0, A5¢(Py(h)) is contained in the numerical range
Y(Py)={z€C*:0<argz <a}U{0}.
We can prove the a priori estimates (see [10])
j 5+ e ntul g > ”%hnunm(m,
and for all z in C* such that arg(z) € {0, a}, there exist some positive constants C,
and hg such that

Vh > 0,Yu € C°(R), || — h?

d?u
V0 < h < hg,Vu € C;°(R), H h?— + e"“z?u — zuHL2 > CzhgﬂuﬂLz(R)

d2

2. STATEMENT OF THE MAIN RESULT

(®)

2.1. The estimate. In the following statement, we give an a priori estimate, which
characterizes the absence of injectivity pseudo-spectrum in 0 for the semi-classical
operator,

hDy + iq(t, z, h&)",

where the function ¢ is a real-valued function such that
(2.1.1) q(t,z,€) € C2ATH R, x R? x RY,R).

The notation Cg“ stands for the space of C* functions, which are bounded as well as
their derivatives of order lower than or equal to k, [m] stands for the integer part of m
and q(t,x, h€)™ denotes the Weyl quantization of the symbol ¢(t, z, h§). We assume
that for all X = (z,¢£) € R?",

(2.1.2) q(t,X)>0and s >t=q(s,X) > 0.

This hypothesis means that for all X € R?", the function t — ¢(¢, X) can only change
sign from negative values to positive ones. We also assume that for all X € R?", the
function t — ¢(¢, X) only vanishes in a fixed compact set [—A, A], A > 0, exactly N



times, N € N*, and that these roots are some Lipschitz functions with respect to the
variable X. More precisely, we assume that

2.1.3 JA >0 inf t,X) >0

(2.1.3) >0, oA e lq(t, X)|

and
N

(214) 3N eN*Vte [-AALVX € R, q(t, X) =e(t,X) [] (t— o;(X
j=1

where e is a positive function on R?"*! such that

2.1.5 My=  inf £X)>0

( ) 0 |t\gAlg<eR2" e( )

and o, j = 1,..., N, are some real-valued Lipschitz functions on R?" such that

(2.1.6) o[ gemy < A, G =1,..., N,

Theorem 2.1.1. Under these assumptions, there exist some constants C' > 0 and

0 < ho <1 such that for all v € C§°(Ry x RY) and 0 < h < ho,
(217) ||thu + iq(t, x, hf)wuHL2(Rn+1) > ChNLJrl HUHLZ(R”+1)'

Thus, there is no injectivity pseudo-spectrum of infinite index in 0. More precisely,
there is a loss of at most hN/(N+1) i 0.

2.2. Remarks. We can first notice that under the assumptions of Theorem 2.1.1,
there is also no injectivity pseudo-spectrum of infinite index in z for all z in R,
and that the loss in these points is also of at most AN/(N+1) This fact is a direct
consequence of Theorem 2.1.1 and of the following identity

Th(hDy +iq(t, z, h&)” — 2)T; " = hDy + iq(t, z, h€)",
where T}, is the unitary operator on L*(R"*!) defined by
Thu(t,z) = e_%z’fu(t,x).

Let us now make some comments about the class of pseudo-differential operators we
study. The interest of studying such a class is that given a pseudo-differential operator
with a principal symbol satisfying the principal-type condition

r(y,n) = 0= dr(y,n) #0,

we can by multiplication to left and right with some elliptic Fourier integral operators
obtain a pseudo-differential operator with a principal symbol, which is microlocally of
the type hD; +iq(t, z, h§)™. To interpret the assumptions of Theorem 2.1.1 in a more
general setting, we can notice that the assumption (2.1.2) means that the principal
symbol satisfies the condition (¥) (see Definition 26.4.6 in [7]). If we make more
assumptions of smoothness on the function e, the assumption (2.1.4) implies in terms
of iterated Poisson brackets that for all (t,z,7,£) € R?*"*2_ there exists an integer

0 <1 < N such that

Hé{ep Imp(t5 Z,T, 5) 7& Oa
if p(t, o, 7,&) = 7+ iq(t,x,€). This means that every point in p(R?"*2) are of finite
type with an order bounded above by the fixed integer N. The assumption (2.1.3) of
ellipticity outside of the set [— A, A] x R?" allows us to obtain a global subelliptic a pri-
ori estimate without conditions on the supports’ size for the functions u in C§°(R"*1).
Dencker, Sjostrand and Zworski have proved in Theorem 1.4 in [5] an absence’s result



of pseudo-spectrum of infinite index for a general class of pseudo-differential oper-
ators. Under the assumptions of Theorem 1.4 in [5], they reduce their study by a
symplectic change of variables to the study of the local model hD; + iq(¢, z, h§)™ and
prove for this model the a priori estimate (5.9) in [5]. This a priori estimate (5.9)
is sufficient to obtain the resolvent’s estimate (1.11) in Theorem 1.4 because the as-
sumptions of this theorem 1.4 for getting the a priori estimate (5.9) are also fulfilled
for the formal adjoint hD; —iq(t, 2, h€)"™, which shows the surjectivity of the operator
hD; +iq(t, z, h&)™ if the domains are suitably chosen and h sufficiently small. In this
case, there is no pseudo-spectrum and no injectivity pseudo-spectrum of infinite index
in 0. The loss is of at most AN/ (N1 In the case studied by Dencker, Sjostrand and
Zworski, the condition (P) is fulfilled (see Definition 26.5.1 in [7]). More precisely,
in this case the function ¢ does not change sign on R***1. Our result shows that if
we are only interested in obtaining the a priori estimate characterizing the absence of
injectivity pseudo-spectrum with a loss of at most A"/(V+1)  we can obtain a similar a
priori estimate as (5.9) for a particular class of pseudo-differential operators violating
the condition (P) since we only assume in Theorem 2.1.1 that the condition (W) is
fulfilled.

Another main difference between our result and the result of Dencker, Sjostrand
and Zworski is that we consider here some symbols with limited smoothness. Although
our result does not deal with the general subelliptic case (see Proposition 27.6.1 in [7])
in a setting of limited smoothness - indeed, we make a strong assumption of Lipschitz
regularity for the roots a; in (2.1.4) - we feel that our sharp estimate of the regularity
needed for symbols to obtain result of subellipticity is worth noticing and also that it
is interesting to have a proof of subelliptic a priori estimates for a class of operators
violating the condition (P), which is quite simple in comparison with the proof of
the general case given by Hérmander in [7] (Proposition 27.6.1), even if this class is
particular and that our result does not deal with the general subelliptic case.

2.3. The structure of the proof. The first step in the proof of Theorem 2.1.1
is to change the quantization and to prove a similar a priori estimate in another
quantization. As pointed out before, our assumption on the symbol’s sign is essential.
To take advantage of this assumption, we use the Wick quantization, which has the
main property of being a positive quantization. The next section recalls some results
in the Wick quantization, in particular its link with the Weyl quantization. To prove
the a priori estimate in the Wick quantization, we need first to use a phase space
cut-off to study separately different regions depending on the size of the function g,

(2.3.1) W a3 = A (HYV %, u) e+ A (HY 0, ) 1,

where Hy + Hy = 1, supp Hy C {q; > o} and supp Hay C {q; < 2¢0}, g9 > 0. The
estimate of the first term in the right-hand-side of the previous equality is easier than
the second one. We only use for this first term an expansion of a L?-norm square and
some results of symbolic calculus in the Wick quantization to take advantage of the
size of the function ¢; in Lemma 4.2.1. For the second term, the proof’s core of its
estimate is the following L?-norm splitting

W (HY %y, u) o = hw%/ Ho|Wul?dtdX

R2n+1

= p / Ho|Wul?dtdX + h¥ / Ho|Wul?dtdX
{lal<h/ (4D}

{la|>hN/(N+1)}



where Wu stands for the wave packets transform of u defined in the next section; and
we estimate the two terms of the right-hand-side of the following inequality

(2.3.2) RV (HViI%y ). < hw%l/ Ho|Wul2dtdX
{la<hN/@+D}

+/ Hy|q||Wul?dtdX,
R2n+1

in Lemma 4.2.2 and Lemma 4.2.6. To estimate the second term of the right-hand-side
of (2.3.2), we use some techniques developed by Lerner in [8].

3. PRELIMINARIES

3.1. Notations and a few facts about the Weyl quantization. We give in this
paragraph the notations and normalizations used in this paper. The scalar product
on L(R") is denoted by

(u, v) 2 mn) = /n u(z)v(x)dx,

|| stands for the Euclidean norm and D, = 0, /(2iw). The definition of the Fourier
transform chosen here is, for w in the Schwartz space S(R"),

€)= [ o),

where z.£ denotes the canonical scalar product on R™ of z and £. For a classical
Hamiltonian a(z, ) defined on R? x RY, the Weyl quantization defines the operator
a" by the following formula

(@ )@) = [ e o L ¢uly)dyds.

In the statement of Theorem 2.1.1, the variable ¢ is seen as a parameter in the symbol
of the operator ¢(t, z, h)™, i.e.

q(t,x, he)Pu(t,z) = /

]R‘Z n

2@ ¢q (1, T2Y g u(t, y)dyde.
A nice feature of the Weyl quantization is the fact that real Hamiltonians get quantized
by (formally) self-adjoint operators. The composition formula in the Weyl quantiza-
tion, a®b® = (afb)®, is given by

(3.1.1) (afib)(X) = 22" /R e Himo (XY X=2) (Y\b(Z)dY dZ,

where o (-, -) stands for the symplectic form on R™ x R™ defined for all X = (z, &) and
Y =(y,n) by o(X,Y) =&y —n.x.

3.2. Wick calculus. The purpose of this second paragraph is to recall the definition
and some basic properties of the Wick quantization following [9]. We also prove
here some results of symbolic calculus we need in the proof of Theorem 2.1.1. The
main reason to introduce this new quantization is its property of positivity, i.e. that
non-negative Hamiltonians define non-negative operators

q> 0= ¢Vick > g

This property of positivity is not satisfied in the case of the Weyl quantization (see
[9] for an example of non-negative Hamiltonian defining an operator, which is not
non-negative). This property is essential in our approach and permits us to use some



sign’s hypothesis made on the symbol of studied pseudo-differential operator.
Setting for =,y and n in R™,

(py,n(m) — 2n/4e—7r(z—y)2eQiﬂ'(m—y).n’

2

where 2 = 27 + ... + 22, the following lemma introduces the wave packets transform.

Lemma 3.2.1. Let u € S(R™), we define

Wuly,n) = (U ¢yn)r2@n) =2"/4/ u(z)e @Y AR E ) gy (y ) € R

n

The mapping u — Wu is continuous from S(R™) to S(R?*™) and isometric from
L?(R™) to L*(R?"). Moreover, we have the reconstruction formula

Vu € S(R"),Vx € R", u(z) = Wu(y, n)py.n(x)dydn.
RZn

See Lemma 2.1 in [9] for a proof.
Let Y = (y,n) € R?", we denote by Yy the operator defined in the Weyl quanti-
zation by the symbol
(3.2.1) Py (X) = 2ne2mIX =Y,
This operator is a rank-one orthogonal projection. Indeed, a direct computation gives

(3.2.2) (Zyu)(z) = WuY)ey () = (u, py) r2zm) @y (2).

Definition 3.2.1. Let a € L>°(R?"), the Wick quantization of a is defined as

aWickz/ a(Y)SydY.
R2n

Remark. More generally if a belongs to S’'(R?"), the operator aVi¢ can be defined
for all w and v in S(R™) by

Wick

<a U,V >s/(R),S(RM) =< a(Y), (Ey’u, 'U)LZ(Rn) >s/(R2n),S(R2n),

where the notation < -,- >/ s denotes the duality bracket between the spaces &’ and
S.

Proposition 3.2.1. Let a € L>°(R?"), then
aWiCk _ W*GHVV, 1WiCk — idL?(Rn),

where W is the isometric mapping from L?(R™) to L?(R*") defined in Lemma 3.2.1
and a* denotes the operator of multiplication by a in L?(R*™). Moreover, one has

1a™i¥]| £ (z2ny) < llallpe@en) and a > 0= a"V'* > 0.
See Proposition 3.2 in [9] for a proof.

Remark. We can notice that the previous proposition implies that real Hamiltonians
get quantized in the Wick quantization by formally self-adjoint operators.
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Definition 3.2.2. Let k € N and | € R, the symbol class Sp(A, A=1dX?) denotes
the set of C* functions a defined on R*™ x [1, +oo[ such that

VO<j<k, v,(a)= sup |A‘l+%a(j)(X, M(Ty, ..., T))| < +0
XER2n A>1
Tp€ER2M | Tp|=1

and the symbol class S(A!,dX?) denotes the set of C> functions a such that
VieN, (@)= sup A9 (X, A)(TY,..., T})| < 4oo0.

XER2™ A>1
Tp€ER2M, | Tp|=1

Proposition 3.2.2. Let a € L>®(R*"),b € So(A, A~*dX?), be some real-valued func-
tions then

k
+ 51,

R R 1 1 Wic
Wick Wick !/
pWick — [ b— —d'b + —{a,b }
a a 47Ta + 42-7_‘_{0’5 }

. . 1 Wick
Re(ankalck) — [ab _ 4—a’.b’} + 52,
7r
with ||Sjl| cc2@ny) < dnllal|pey1,2(b), § = 1,2, where the derivatives of a are taken
in the distribution sense, {a,b} stands for the Poisson bracket of a and b. Here
~1,2(b) denotes the semi-norm of b defined in Definition 3.2.2, dy, is a positive constant
depending only on the dimension n and the distribution Ox,a Ox,b is defined as

axja 8XLb = an (a 8le) —a Gf(jyxlb S S/(R2n).

See Proposition 3.4, its proof and the remark following this proposition in [9] for a
proof.

Lemma 3.2.2. Ifa € S;(A',A='dX?), then the Weyl symbol a of a"Vick, aWick = v
is equal to the function a x T' where T'(X) = 2”672“|X‘2, and verifies

ae S(A,dX?) and Vxa € S(A72,dX?).

Proof. From Definition 3.2.1 and (3.2.1), one has a"Vi¢k = g% with
(3.2.3) a(X) = / a(Y)2re 2 XYy = (a «T)(X).
R2n

Since for all o € N?7,
9% = ax 9T, |0l < all 1~ 0°T|1 and 9°T|p: < +oo,
we first get that @ € S(A!, dX?) because from Definition 3.2.2, one has
lallz= < mo(a)AL

Then, since from Definition 3.2.2, Vxa € SO(AI_%,A_ldX2), we deduce from the
identity, 0% (Vxa) = Vxa x 0°T, using the same estimate as before that

Vxa e S(A~7,dX?). 0

Lemma 3.2.3. Ifa € S(A",dX?) and b € S(A"2,dX?) then the symbol

1
do
R(X) = /0 /R e YD (v (Z)aY dZ o

belongs to S(Al+ dX?).



11

Proof. Setting for 6 €]0, 1],

dYdzZ
g2n

Ro(a,b)(X) = / YN D ()i 2)

we deduce from the theorem 18.5.4 in [7] that the bilinear map (a,b) — Ry(a,b) from
S(AL,dX?)x S(Al2,dX?) to S(Al+2 dX?) is weakly continuous. Let us assume that
a and b belong to the Schwartz space S(R?"). Using a change of variables, we obtain
that

Ry(a,b)(X) = / e 4T VD) (VY + X)b(VOZ + X)dY dZ.
R4n
Since an explicit computation gives

1 (1 n | Dy [*+2 " |DZ|4n+2)ef4i7ra(Y,Z) _ —dino(Y,2)
14+ |Y|4n+2 + |Z|4n+2 94n+2 94n+2 -

)

we obtain that

|DY|4n+2 |DZ|4n+2 —4iTo
Rg(a,b)(X):/R4 (1+ T e ){e 4 <y,z>}

a(VOY + X)b(vV0Z + X)
1 + |Y|4n+2 + |Z|4n+2

dYdZz

and we can make some integrations by parts to obtain that

Ry(a,b)(X) =

/ 6741-m<y,z>(1+IDyl“”+2 |DZ|4”+2)[a(\/§Y+X)b(\/§Z+X)
R4n

24n+2 24n+2 1+ |Y|4n+2 + |Z|4n+2 dydz.

It follows that we can write

e—4i7r<7(Y,Z)
R b)(X) =
B(Ga )( ) /]R4" 1+ |Y|4n+2 ¥ |Z|4n+2

< L 2V e a(VaY + X)070(VEZ + X)dvdz,

a,BEN2T
[1B]<4n+2

|

where f,, 5 are some C°(R*") functions. Since a € S(A!',dX?), b € S(A2,dX?) and

/ dydzZ -
00
pin 1+ [Y[in+2 1| Z]Ant2 ’

we can differentiate with respect to X the integral of the previous identity and we
obtain after these differentiations that for all v € N?", X € R?", A > 1 and 0 €]0, 1],

oo
an 1 + |Y |47b+2 -+ | |4n 2 a;tElNPZH o, I
|al,[B]<4n+2

|0% Ro(a, b)(X)| < (4n + 2>4”(/R

x sup  A,4la)  sup A, ,(0) AT
J<dn+2+[y| J<An+2+4|v|
Using the weakly continuity of the map (a,b) — Rg(a,b), we deduce from these
estimates that the symbol Ry(a,b) belongs uniformly to the class S(Al+2 dX?) with
respect to 6 €]0,1] if a € S(Ah,dX?) and b € S(A2,dX?). It follows that R €
S(Ahtz gXx2). O
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Lemma 3.2.4. If a € S1(A,A71dX?) and b € S1(1,A"*dX?) then there exists a
positive constant C' such that for all A > 1,
a0V 12y < C,

Wick and bWick'

aWVick pWick] denotes the commutator of the operators a

where |

Proof. We get from Lemma 3.2.2 that

(3.2.4) [aVick pWick] — [g¥ p¥] = a¥b¥ — b¥a® = (atb — bia)®,
where @ € S(A,dX?) and b € S(1,dX?) are some symbols verifying
(3.2.5) Vxa € S(A?,dX?) and Vxbe S(A™7,dX?).

The composition formula (3.1.1) and some results of calculus in the Weyl quantization
(see the formula following (5) in [1]) show that in the normalization chosen here, one
has
(3.2.6) (afh)(X) = 22"/ e Wime (XY X=2)5(y\b(Z2)dY dZ = a(X)b(X) + Ry (X),

R4‘n,
where

! tim (XY, X~ Z 7 dg
(3.27) Ry(X)= 22"/ / e 7 o XY XD ins(Dy, Dy) [a(y)b(Z)]deZﬁ.

0 R4n

We deduce from the lemma 3.2.3, (3.2.5) and (3.2.7) that R; € S(1,dX?). In the
same way, one has
(3.2.8) bia = ab + R,

where Ry is a symbol in the class S(1,dX?). It follows from (3.2.4), (3.2.6) and (3.2.8)
that
[aWick pWick] — R with R = R; — Ry € S(1,dX?),

which by using the Calderén-Vaillancourt theorem proves the lemma 3.2.4. [J

Lemma 3.2.5. If a € Sy(1,A7*dX?) and b € So(A,A=1dX?) are some real-valued
functions then there exists a positive constant C such that for all A > 1,

||aWickaickaWick o (a2b)WiCkH£(L2) < C.

Proof. We can apply Proposition 3.2.2 to obtain that

Wick
} + 51,

(3.2.9) qWVickpWick _ [ab - ﬁa’.b' + ﬁ{a, b}
where [S1|z(z2) < dnyo,0(a)y1,2(b) and dy, is a positive constant depending only on
the dimension n. Let us denote

1
4r
Since a € S2(1,A71dX?) and b € So(A, A~1dX?), we get that ¢ € S1(1,A"1dX?). Tt
follows from Proposition 3.2.1, (3.2.9) and the use of the triangular inequality that

1
3.2.10 = 'Y+ —{a,b}.
(32.10) c= - ¥+ —{a,b)

HCWiCkaWiCk + SlaWiCkHﬁ(LZ) S HCWiCkHﬁ(Lz) ”aWiCk”L(LQ) + HS1 Hﬁ(Lz) ”aWiCk”L(LQ)
< llellz~llallze~ + dnyo,0(a)y1,2(b)[lal| L
(3.2.11) < (70,0(¢) + dny0,0(a)11,2(0)) Y0,0(a) < +00.



13
Since A~'ab € S>(1,A7'dX?) and Aa € S2(A,A"'dX?), another use of Proposi-
tion 3.2.2 gives

(ab)WiCkaWiCk _ (A—lab)Wick(Aa)Wick
(3.2.12) = la% - —(ab {ab a}} + S,
where ||Sa| £(22) < dny0,0(A™ ab)y1 2(Aa) < 4o0. Accordmg to our assumptions, the
symbol
—(ab)' + o {aba)
1 (ab)a’ + —{ab,a},
belongs to the class S1(1, A=1dX?) and it follows from Proposition 3.2.1 that

(3.2.13)  ||[—(4m) " (ab) .a' + (dim) " {ab, a}]V'¥|| (12
<70,0(— (4m) " (ab) .a’ + (4im) " {ab, a}).
Since we have from (3.2.9), (3.2.10) and (3.2.12),
o WickpWick Wick _ 2y Wick _ () Wick Wick | Wick  Wick | g (Wick _ (,2p)Wick

1 r 1 Wick Wick  Wick Wick
= —E(ab) .Q +m{ab,a}} + S+ cV'%a + S1a™es,

we deduce from (3.2.11), (3.2.12), (3.2.13) and the use of the triangular inequality
that there exists a positive constant C' such that for all A > 1,

||aWickaickaWick o (a2b)WiCkH£(L2) S C. 0

Lemma 3.2.6. If a € Sop,/244(A, A™1dX?) where [n/2] stands for the integer part
of n/2 then there exists a positive constant C' such that for all A > 1,

HaWick _ awHC(LZ) S C.

Proof. As in (3.2.3), one has a"Vik = @* where
(3.2.14) a(xX) = / a(Y)2re 2" XY gy,
R2n

Using a change of variables and a Taylor formula at the second order, we obtain from
(3.2.14) that

(3.2.15) d(X):/ a(Y+X)2"e—2”|Y‘2dY:a(X)+/ a(X).Y 2ne 2P gy
R27n R

2n

/ / a"(X +0Y)Y22 e VI gy ag.
]RZn

Since

/ Ve 27YI*qy =0,
]RQn,

it follows from (3.2.15) that

(3.2.16) aVick _gw — g% — ¥ = Rv,

where

(3.2.17) / / a’ (X + 0Y)Y22re 1Y gy ag.
R2n



14
Since a € Sop,214+4(A, A71dX?) and
/ |Y|2672“|Y‘2dY < 400,
R2n

we deduce from (3.2.17) that R € Sap,/9)42(1, A"'dX?) and we can apply the L?
estimate for Weyl quantization of Boulkhemair (Theorem 1.2 in [2]) to obtain the
existence of a positive constant C' such that for all A > 1,

R 22y < C.
In view of (3.2.16), this ends the proof of Lemma 3.2.6. O
3.3. Another preliminary lemma.

Lemma 3.3.1. If F € CY(R,C), « is a real-valued Lipschitz function and G = F o«
then one has

(3.3.1) G (z) = F'(a(z))d (z),

for a.e. x in R if G', resp. o, stands for the derivative of G, resp. «, in the
distribution sense.

Proof. To prove this lemma, it is sufficient to show that for all R > 0, the identity
(3.3.1) is fulfilled a.e. on]—R, R[. Let us consider R > 0. Since o/ is a L>°(R) function
because « is a Lipschitz function, we can find a sequence of C°(R, R) functions (uy, )nen
such that for all n € N,

(332) ||un||Loc([_R,R]) < Ha/HLoc([_R,R]) and lim un(:c) = O/(:L'),

n—-+o0o

for a.e. z in [—R, R]. We define for all n € N,

(3.3.3) an(z) = a(0) + /OI un(t)dt, x € R,

and we obtain from (3.3.2) that «,, is a C*(R,R) function, which verifies for all n € N,
(3.3.4) el s (- m) < o lloe (- p) and | lim af(z) = o (2),

for a.e. z in [~ R, R]. Since we can easily check that the derivative in the distribution

sense of the function .
/ o/ (t)dt,
0

is equal to o/, we deduce from the continuity of the function « that for all x € R,

(3.3.5) a(z) = a(0) +/ o (t)dt.
0
Using now (3.3.2), (3.3.3) and (3.3.5), we obtain from the Lebesgue convergence the-
orem that for all z € [-R, R],
(3.3.6) lim a,(z) = a(z).

n—-+o0o

If pis a C5°(]— R, R[, C) function and < -,- >p/ p denotes the duality bracket between
the distribution space D’ and the space of test functions D, one has

<G o>pp=—<G,¢ >pp=— / F(a(z))¢' (z)dx
R

(3.3.7) =— lim F (o (2))¢ (z)d,

n—-+o0o R
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where the last equality is a consequence of the Lebesgue convergence theorem since
on one hand, the continuity of F' and (3.3.6) prove that for all z € R,

i F(0(x))¢/(2) = F(a(2)¢ (2).
because supp ¢ C] — R, R[ and that on the other hand, one has for all n € N,
(3.3.8) |F(an(2))¢'(x)] < sup |F| |¢'(x)] € LY,

[7M7M]

n

because it follows from (3.3.2), (3.3.3) and the use of the triangular inequality that

(3.3.9) lanllLo (= r,R) < [@(0)] + Rl[un||zoe(—r.R)) < M,
if M := |a(0)| + R ||| Lo ®). We can now deduce from an integration by parts and
(3.3.7) that

<G o >p p= nEIJIrloo F’(an(z))a;(x)w(z)dz = / F’(a(z))a’(x)g&(z)dz,
R R

where the last equality is still a consequence of the Lebesgue convergence theorem
since on one hand, one has from (3.3.4) and (3.3.6),

(3.3.10) nEI_Pm F' (o () oy (z)p(z) = F' (o)) o (z) (),

for a.e. x in R because F' € C°(R,C) and supp ¢ C] — R, R[; and that on the other
hand, one has from (3.3.4),

|F' (n () e, ()0 ()| < S [F'| || Lo (- m )y ()] € LY,

where M is the constant defined in (3.3.9). This proves that G’ = (F' o a)a’ a.e. on
[ R, R] and ends the proof of Lemma 3.3.1. O

4. PROOF OF THEOREM 2.1.1

4.1. A preliminary reduction. To prove Theorem 2.1.1, it is sufficient to prove the
following estimate : there exist some constants C' > 0 and Ag > 1 such that for all
u € C§°(R™1) and A > Ao,

(4.1.1) IDyu + iAg(t, A2 X)Viky| 2 gniny > CAF |ful| p2 gt
where the variable ¢ is seen as a parameter in the Wick quantization of the symbol

q(t,A=2X) (see Definition 3.2.1),

q(t,A—%X)Wickz/ q(t, A2 X)SxdX.
R27

Indeed, let us assume that the estimate (4.1.1) holds and set
(4.1.2) Q(t, X, A) = Aq(t, A2 X).

We deduce from (2.1.1) and (4.1.2) that the function Q(¢, -) belongs to the symbol class
Sg[n/2]+4(A, A~1dX?) uniformly with respect to the parameter ¢ in R (see Definition
3.2.2),

(4.1.3) Qe Sg[n/2]+4(A,A71dX2).

It follows from Lemma 3.2.6 that there exists a positive constant ¢y such that for all
A>1,

(4.1.4) 1QVI — Q™| £(z2) < co.
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We deduce from (4.1.1), (4.1.2), (4.1.4) and the use of the triangular inequality that
for all u € C§°(R™1) and A > A,

D +iQ ul| p2grsny > [ Dyu+iQY ' ull 2nry — [|QV' N u — Q" ul| L2 (n1)

1
(CAN+1 — CO)HUHLZ(Rn“)-

Y]

This estimate induces that there exists Ag > Ag such that for all u € C§°(R"!) and
A > AOa

c
2
By setting hp = i&al and h = A~!, we get from (4.1.5) that in the semi-classical
setting, one has for all u € C§°(R"™!) and 0 < h < hy,

(4.1.5) | Dvu+ iAq(t, A2 X) ul| p2gan 1) > = AT ]| g2y,

o
(4.1.6) |hDyu + iq(t, b= X )"ul| p2(nsty > EhNLHHuHLz(RnH).

To obtain an analogous estimate for the operator hD; + iq(t,x, h§)™, we use the
following symplectic linear mapping

xXn(@,€) = (W%, h712¢), (2,6) € R*".
Using the symplectic invariance of the Weyl quantization, it follows that
(4.1.7) hDy +iq(t, k' %z, h1/2€)" = Ut (hDy + ig(t, x, h€)" ) Uy,
where Uy, is the unitary operator of L2(R"*1), Upuv(t,z) = h~Tuv(t,h~'/?2). Eventu-
ally, we deduce from (4.1.6) and (4.1.7) that for all u € C§°(R"*!) and 0 < h < ho,
. w C ~
IhDew + iq(t, 2, h€)*ul| L2n+1y 2 5 AN ||ull p2ny,
which proves the estimate of Theorem 2.1.1.

4.2. Proof of the estimate (4.1.1). To prove the estimate (4.1.1), we need to use
a phase space cut-off to study separately different regions depending on the size of
the function Q}. Let us consider x a C*°(R,[0,1]) function such that

(4.2.1) X=0on]—o00,1], x =1 on [2, 400,
and let us define the following C*°(R, [0, 1]) functions
(4.2.2) x1=x2and yo =1 — x?,

which verify
(423) x1+x2=1onR, x; =0o0n]—o00,1], x1 =1 on [2,+00[ and
X2 =1on]|—o00,1], x2 =0 on [2,+00].

Since the functions «;, j = 1,...,N, appearing in (2.1.4) are supposed to be Lips-
chitzian, we can choose a positive constant €y such that

(4.2.4) AN sup [|o]|7 o zny €0 < 1,
j=1,..,N
where a;- stands for the gradient in the distribution sense of the function «; and

|| oo (2n), the L>-norm of its Euclidean norm. We define the following symbols

(4.2.5) hi(t, X, A) = x(Q4(t, X, Neg "A™Y), Hi(t, X,A) = x1(Q}(t, X, A)eg "A™)
and Ho(t, X, A) = x2(Q}(t, X, A)eg "A™1).

It follows from (2.1.1), (4.1.2) and (4.2.3) that

(4.2.6) Hi+ Hy =1 and hy, Hy, Hy € Sop 943(1, A71dX?),
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uniformly with respect to the parameter ¢ € R, and we deduce from (4.2.3) and (4.2.5)
that

(4.2.7) supp Hy C {(t, X) € R* 1. Q}(t, X, A) > eoA} and
supp Ho C {(t, X) € R*""1 . Q)(t, X, A) < 2g9A}.

Step 1. The following lemma gives an estimate of the first term of the right-hand-side
of (2.3.1).

Lemma 4.2.1. There exists a positive constant c1 such that for all u € C§°(R™ 1)
and A > 1,

(4.2.8) ClA(H}NiCkU, U)L2(]Rn+l) < ||Dtu + ’L'QWiCkUH%Q(RnJA) + Hu|‘%2(Rn+l)-

Proof of Lemma 4.2.1. By expanding the following L2-norm, we obtain that

1Dy + QYIS 3 = [ Dh 2, -+ 2Re( DY o, iQWHRY ) .
HIQWIERY IRy, > 2Re(Dihy u, iQW ¥ hV %) 2
(4:29) A A

since D; and iQWiK are respectively formally self-adjoint and anti-self-adjoint oper-
ators because @ is a real-valued function (see the remark following the proposition
3.2.1). Since according to (2.1.1) and (4.1.2), Q} € Sap,9143(A, A™1dX?), it follows
from Lemma 3.2.5 and (4.2.6) that there exists a positive constant ¢z such that for
all A > 1,

(4.2.10) 1Ry QYRR — (MQ)™Y N 222y < ca.

Using that h}Vik is a formally self-adjoint operator because h; is real-valued function,
we deduce from the Cauchy-Schwarz inequality and (4.2.10) that

1

(4211) ([D)57 iQWiCk]h\lA/iCkU, h'\lNiCku)Lz — % ((Q;)WiCkh‘lNiCku, h\lNicku) L
1 ic ic ic 1 ic C2
= g(h\fv VR ), > %((thi)W “u ), — %Hul\%z-

Since from (4.2.2) and (4.2.5), h? = Hy, we obtain from Proposition 3.2.1 and (4.2.7)
that

((h%Q;)WiCkuv u) L2(Rn+1) = (W*(h%Q;)W’u, U) L2(Rn+1)

— (h%Q;Wu,Wu)Lz(Rznﬂ):/ Hy(t, X, N)Q}(t, X, A)|®(t, X)|*dtdX

R2n+1

Y

EOA/ Hiy(t, X, N)|®(t, X)|?dtdX

R2n+1

and
/ Hi(t, X, N)|®(t, X)PdtdX = (HiWu, Wu)p2(gent)
R2n+1

= (W*leu,U)Lz(Rn+1) = (H;NiCku,u)L2(Rn+1),

if ®(¢,X) = W(u(t,))(X) where W stands for the wave packets transform in the
variable . We deduce from (4.2.9), (4.2.11) and the two last formulas that

(4.2.12) eoA(HYV'%u, u) 2 < 27]|(Dy 4 iQY' ™)y ul|3 2 + cal|ul|F .
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Using now the proposition 3.2.1 and the triangular inequality, we obtain that
(D + Q™) hyVu|| 24
< 2|V (Dy + QY M) T2 + 2[[[De + i Q™K VK u 2
< 2|V NN 2 2y 1 Do+ iQ ™ w22 + 4[| [ Dy, VNl 2
+4) [V, bV u| 2
< 2| P (|7 [ Dew + Q™ u| 22 + 4[[[De, YN 72
(4.2.13) + 40 [QWH, 1 K 22,

where [P, Q)] stands for the commutator of P and Q. Using again Proposition 3.2.1,
we get that

1
g
Then, we deduce from Lemma 3.2.4, (4.1.3) and (4.2.6) that there exists a positive
constant cz such that for all A > 1,

: . 1
(4.2.14) I[Ds, Y Mull 2 = - [1(@ha) ¥ ull 2 < o [|0ihall s flu] 2-

(4.2.15) QY |l £ (r2) < es.
Since from (2.1.1), (4.1.2), (4.2.1) and (4.2.5),
(4.2.16) 0 < hy <1 and d¢hy € Sopn a)42(1, A71dX?),

uniformly with respect to the parameter ¢ in R, it follows from (4.2.13), (4.2.14) and
(4.2.15) that there exists a positive constant ¢4 such that for all u € C§°(R"*!) and
A>1,

(4.2.17) call (Dy + Q™M) ul| 1o < [[Dyu+iQ™  ul|Z + [[ul| 7.

Then, we get (4.2.8) from (4.2.12) and (4.2.17). This ends the proof of Lemma 4.2.1.
O

Step 2. In this second step, we estimate the second term of the right-hand-side of
(2.3.2). This part of the proof uses some techniques developed by Lerner in [8].

Lemma 4.2.2. There exists a positive constant cs such that for all u € C§°(R™ 1)
and A > 1,

(4.2.18) 05/ Hy(t, X, N)|Q(t, X, N)||®(t, X)|*dtdX
R2n+1

< 1D +iQ™ ¥ ull 2 [l 22 + [[ulZ,

if ®(t, X) = W (u(t,))(X).

Proof of Lemma 4.2.2. For X € R>® and A > 1, we define

(4.2.19) 0(X,A) =inf{t e R: Q(t,X,A) > 0},
if the set {t e R: Q(¢, X, A) > 0} is not empty, otherwise we set
(4.2.20) (X, A) = +o0.

According to (4.1.2), the assumption (2.1.2) of Theorem 2.1.1 implies that for all
X eR?™ and A > 1,

(4.2.21) Q(t,X,A)>0and s >t= Q(s,X,A) >0.
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It follows from (4.2.19), (4.2.20) and (4.2.21) that for all (¢, X) € R?"*! and A > 1,
one has

(4.2.22) QUt, X, Asgn(t — (X, A) = |Q(t, X, A)],
where the function sgn is defined by

(4.2.23)  sgn(z) = % z € R*, sgn(0) = 0, sgn(—o0) = —1 and sgn(+o0) = 1.

We can now introduce the following multiplier
(4.2.24) S(t, X, A) =sgn(t — 0(X,A))Ha(t, X, A), (t,X)€eR™, A>1.
For u in C§°(R™*1), we obtain by the Cauchy-Schwarz inequality
(4.2.25) | Re(Dyu + iQ Wiy, iSWViky) 1o | < || Dyu 4 iQVi M u|| 12 | SV u| 12
< ||Deu + Q™ ul| 2 uf| 2,

because it follows from Proposition 3.2.1, (4.2.2), (4.2.5), (4.2.23) and (4.2.24) that
for all t € R,

(4.2.26) 1S™IR(E, 2 @ny) < I1S(E )| Lo mzny < 1.
Since S is a real-valued function, SWi°k is a self-adjoint operator and we have
(4.2.27)  Re(QWi%u, SViky) 2 = Re(SWiIkQWiky, u) 2

_ (Re(SWickQWick)u,u)

Since from (4.1.3) and (4.2.26), S € L and Q € S, j2j+4(A, A71dX?), we can apply
the proposition 3.2.2 to obtain using (4.2.26) and (4.2.27) that for all u € C§°(R"*1)
and A > 1,

L2’

(4.2.28)  Re(Dyu+ iQ V' %u, iSVi%u) 12 gn+1y = Re(Dyu, iS™%u) p2(gn+1)
. 1 ik, —
+ ((SQ)WleU, U)L2(]R"+1) — E < [QIX (t, )SS( (ﬁ, )]W Cku, u >S/(Rn+l),s(Rn+l)

+ /]R (R(t>u(ta ')a u(tv '))Lz(Rn)dtv
where for all t € R,
RO cr2®ny) < dnllS(E ) Lo r2ny71,2(Q) < dny1,2(Q)

and

0] Q) "
(4.2.29) Q.S = a_x'(S a—X) — 8 Trace(Q% ) € S'(R2+1).
Let us now estimate the four terms of the right-hand-side of the last equality. Using
the Cauchy-Schwarz inequality and the previous estimate, we get for the last one that

for all u € C°(R™*!) and A > 1,

(4.2.30)

[ ROU 000 eyt < 2@l
For the first term, we obtain from Proposition 3.2.1 that

(4.2.31)  Re(Dyu, SV u) po(gn+1y = Re(Dyu, iW*S Wu) p2ma+1)
= Re(D:Wu,iS WU)L2(R2TL+1) = Re(D:®,iS (I))L2(R2n+1),
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if ®(t,X) = W(u(t,-))(X). A direct computation using (4.2.24) and an integration
by parts gives

1
(4.2.32) Re(Dy®,iS @) p2pen+1) = > H(0(X,A), X,A)|®(0(X,A), X) > dX
RQn
1
+ - O Ha(t, X, N)sgn(t — 0(X, A))|®(t, X)PdtdX.
T JR2n+1

Since from (2.1.1), (4.1.2), (4.2.3) and (4.2.5), one has for all (¢, X) € R**! and
A>1,
|0:Ha (1, X, A)sgn(t — (X, A))| = g5 g (£, A2 X)| x5 (Q4(t, X, A)eg "A™Y)|
<ep gl lIxallne < 400,

we first obtain that there exists a positive constant cg such that for all u € C§°(R"+1)
and A > 1,

1
(4.2.33) }E /]R2n+1 O Hs(t, X, A)sgn(t - 0(X, A))|<I>(t,X)|2dth

< 6| @172 (rant1y = collWullFa(gensry = collullFzgnsay,
because according to Proposition 3.2.1, W is an isometric mapping from L?(R”) to
L?(R3?) and we deduce from (4.2.31), (4.2.32) and (4.2.33) that
(4.2.34)  Re(Dsu,iSVi%y) . >
1

> Hy(0(X,A), X, A)|®(0(X,A), X)[2dX — cg||ul3e.
RZn

For the second term, we deduce from Proposition 3.2.1 that

(4.2.35)  ((SQ)V'*u,u) W*SQ Wu,u)p2gn+1y

L2(Rn+1) = (

= (SQ Wu, W) pazanin) = / Ha(t, X, N)|Q(t, X, M)||®(¢, X)[dtdX,

R2n+1
if ®(t,X) =W (u(t,-))(X), because according to (4.2.22) and (4.2.24),
SQ = HQ sgn(t — H(X, A))Q = H2|Q|

For the third term, we first deduce using the triangular inequality, (4.1.3) and (4.2.26)
that

(4.2.36) IS Trace(Q’)'(X)HLoo(R%H) < 2ny1 2(Q).

Using the Cauchy-Schwarz inequality, the proposition 3.2.1 and (4.2.36), we get that
for all u € C§°(R™*1) and A > 1,

| < [S Trace(Q% x )|V u, @ >s.s | = |([S Trace(Q% x )]V u, u) 2|
< IS Trace(Q% x )™ ¥ ul L2 lufl = < [I[S Trace(Q%x )™l c(r2)llull2
(4237) < IS Trace(@% )= [ull3e < 2071.2(Q)JullZ.
In the following, we need to study the distribution
0 0

2 (s _Q),

0X 0X
to estimate the term

(4.2.38) < [aiX(S g—?{,)}wmku,ﬂ > 51 (Rn+1),S(RAH1) -
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Let xo : R — [0,1] be a C*° function such that
(4.2.39) Xo =1 on [—1,1] and supp xo C [-2,2].

Setting

2 (xol4)5 92 ana 7y = 2 (wo(l s 22,

where wyg = 1 — xo, one has

(4.2.40) T0 =

with 79 € &'(R*"1) and 7, € S’ (R?"F1).

(4.2.41)

e Estimate of < 73" %u,u >g/. 5. We deduce from (4.2.40) and the remark following

the definition 3.2.1 that

< TSNICkU u > S/ (Rn+1),S(RH1)
0 0Q
= / 8X (X0(|QX| ) aX)v (Eyu(t, ')7u(ta '))L2(Rn) >$/(]R§,"),S(]R§,") dt
L 9Q 0
@242 = = [ €IS G5t [(Sxu(t)ou(t ) sagan] ded.

To evaluate (4.2.42), we need to use the following lemma.

Lemma 4.2.3. There exists a constant D,, depending only on the dimension such
that for all a in L>=°(R?™) and for all j =1, ...,2n,

‘ /Rzn (Y)a{; (Zy)dY

See (6.10) in [8] for a proof of this lemma.

< DnllaHLoc(]RQn).
L(L2(R"))

Since from (4.2.39), supp xo C [—2, 2], we notice from (4.2.26) that one has
(4.2.43) Ixo(IQ% ) 1Q'x | llz= < V2lIxo0l| Lo

Then, using successively the triangular inequality, the Cauchy-Schwarz inequality,
Lemma 4.2.3 and (4.2.43), we deduce that there exists a positive constant ¢z such
that for all u € C§°(R?*"*1) and A > 1,

9Q 9
/RMI xo(IQx[*)S a_?( o [(Sxult, ), ult, ) paen)] dth‘

= ([ [ wliextep)se.) G, >ai<zx>dx}u,u)
Z\([L (IR () S (k)

ZH /R xo(IQ (1) S ) 5;2( )8—<zx>dxuw)||u||%2<Rn+1>
j=1

(4.2.44) < cr|ul|?e.

Eventually, we deduce from (4.2.42) and (4.2.44) that for all u € C§°(R"*!) and
A>1,

(4.2.45) | < TSNiCk’u,ﬂ >S/(Rn+l),s(Rn+l) | < C7||u||%2(Rn+l).

L2(Rn+1)

(EX)dX} U, U

)LQ(R"+1)

IN
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e Estimate of < 7\Vi%u,u >g/ 5. Let us set

(4.2.46) S(t, X,A) =sgn(t — (X, A)).

We get from (4.2.24) that S = H,S, and we deduce from (4.2.40) and the fact that S
is a zero order distribution that

_9 vy 99\ g s oy 0Q 08

= o (w0lIQx ) Ha 52) S + un(|Qx ) Ha 5= 52
Since from (4.2.39) and (4.2.40), the support of the function wy is contained in [—2, 2]

and 0 < wg < 1, we get using the triangular inequality, (4.1.3) and (4.2.6) that for all
(t,X) e Rl and A > 1,

(4.2.47) m

) )
| (w1 Hy 52| < 2 (1Q ) H Qe (@l Q%)
OHy 0
+ Q) Hy Trace(@% )| + [wo(1@ ) T2 92
< 4|wpl| Loy0,0(H2)71,2(Q) + 2n||wo || Lo=v0,0(H2)71,2(Q)
(4.2.48) + JJwol| Lov0,1 (H2)m1,1(Q) < 400.

It follows from (4.2.46) and (4.2.48) that there exists a positive constant csg such that
forall A > 1,
9Q

(4.249) Ha%(woﬂQ/XF)Hz 8_X)S"L°°(R2n,+1) = s

We deduce using the Cauchy-Schwarz inequality, Proposition 3.2.1 and (4.2.49) that
for all u € C§°(R*" 1) and A > 1,

< [a%-(wo(lQ’x *)H, Z_Q)g} WiCkuaﬂ > 51(R+1), S (Rn+1)
=[5 (mt@sim 52)8] ™ v,
< [ (wot@xPrtz 52 )3] ™ o ooy
< HaiX.(wOQQ’X 21, g—i)S}WiCkHLM||u||%2<Rn+1>
@250) < || (wolQxP) e g2 )] [l < cslul g

To study the second term in the right-hand-side of (4.2.47), we first prove the following
lemma.

Lemma 4.2.4. One has the following inclusions
supp Sy C {(t, X) e R*"*: Q(t, X, A) = 0}
and

0Q 0S8
(4.2.51) supp (w0(|Q’X|2)H2 a_?('a_x) c

K ={(tX) e R*™": Q(t,X,A) = 0,|Q%(t, X, A)| > 1 and Qj(t, X, A) < 250A}.
Moreover, the distribution §(Q)wo(|Q'x|?) is well defined on R*" ™! and one has

wol| Q2 2295

2 5y ax =~ 20(@IQx Pwo(|Qx ") Ho.
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Proof of lemma, 4.2.4. Since from (4.2.22) and (4.2.46), S = 1on {Q > 0} and § = —1
on {Q < 0}, the support of S% is included in {(t,X) € R**! : Q(t, X,A) = 0}.
Moreover, since from (4.2.39) and (4.2.40), supp wo C] — 00, —1] U [1, +o0[, and from
(4.2.7),
supp Ho C {(t,X) € R*"" . Q) (t, X, A) < 2g9A},
we deduce that the support of the distribution
0Q 95
/2 H, =/~ =

w2y 9225
verifies the inclusion (4.2.51). Since from (2.1.3), (2.1.4), (2.1.5), (2.1.6) and (4.1.2),
one has

{(t,X) e R*"T . Q(t, X,\) =0} = U {(y(A"2X),X) : X € R*"},

it follows that for all A > 1 the Lebesgue measure in R?"*! of the set
{(t, X) e R*"*: Q(t, X, A) = 0},
is zero and we get from (4.2.22) and (4.2.46) that S is equal to the L function Q/|Q|

and

ey, 0Q 08 Ly 0Q 0 (Q
(4.2.52) wollQ ) Hy S 25 = Q) Hy 9 (@) .

We denote by §(Q) the pullback of §y the Dirac measure at 0 in D'(R) by Q. This
distribution 6(Q) = Q*do is well defined on

(4.2.53) Q={(tX)ecR*™ ! |Q(t X,A)| > 0}

and one has on (2,

0 ( Q ) 9 (Q*sgn) = @Q*(asgn) = 2@5(69)7

ox \|Q|) ~ ox X X
which induces from (4.2.52) that
0Q 9S8
(4.2.54) wo(|Q'x|*) Ha IXIX 26(Q)|Q'x [*wo (|Q'x|*) Ha,
on Q. Since from (4.2.39), (4.2.40) and (4.2.53),
(4.2.55) supp wo(|Qx[*) € ©,

we deduce that the distribution 26(Q)|Q’ |*wo(|Q’x|?)Hz is well defined on R?"+1
and that the identity (4.2.54) is fulfilled on R?>"*1. O

We deduce now from the remark following the definition 3.2.1 and Lemma 4.2.4 that

9Q 9S8 Wick
< |:w0(|Q/X|2)H2 a—Xa—X:| U, U >Sl(Rn+1)1$(Rn+l)
0Q 88
= <wo(|Q%|*)H: X X (Exu(t, ), ult, '))LQ(RTL) >5r(R2n+1), S(R2nH1)

(42.56) = <26(Q)|Qx|Pwo(|Qx|*)Ha, |®|* >g/(r2n+1) smen+1)
because (Sxu(t, ), u(t, '))L2(Rn) = |®(t, X)|? according to Lemma 3.2.1 and (3.2.2) if
®(t, X) =W (u(t,-))(X). To estimate (4.2.56), we need to prove the following lemma.
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Lemma 4.2.5. For all A >1 and (t,X) € {Q =0 and |Q'yx| > 1/2}, we have
1 _1
5 < |QlX(taXa A)' <A ) SupNHa;'HL“’(]R”L)Q;(t’XvA)'

J=15

Proof of Lemma 4.2.5. Let (to, Xo) € R?"*! such that
1
(4257) Q(tQ,Xo,A) =0 and |Q/X(tQ,X0,A)| > 5

It follows from (2.1.3), (2.1.4), (2.1.5) and (4.1.2) that there exists jo € {1,..., N}
such that

(4.2.58) to = vy (A2 Xo).

Since from (2.1.4), (2.1.6) and (4.1.2), one has for all j € {1,..., N}, X € R?>" and
A>1,

(4.2.59) Q(a;(A"2X),X,A) =0,

we obtain from Lemma 3.3.1 that

(4.2.60)  Q)(a;(AT2X), X, A)a (A" X)A™% + Q' (a; (A2 X), X, A) =0,

for a.e. X in R?", which induces that

(4.2.61) |Q' (a;(A"2X), X,A)| < A3 _jupN||a;||Lm(R2n)\Q;(aj(A*%X),X, A,

.....

for a.e. X in R?™. Then, we first notice that the continuity of the functions in the
previous estimate proves that in fact this estimate is fulfilled for all X € R?". We
obtain from (4.2.57), (4.2.58) and (4.2.61) that

1 _1
3 < 1@ (o, Xo. A)| < A72 SiupN||a}||Lw(R2n>|Qi(toaXo,A)|-
J=1,..,
To end the proof of this lemma, it is sufficient to check that Q}(to, Xo,A) > 0. This
is the case because if Q}(to, Xo,A) < 0, we would deduce from (4.1.2) and (4.2.57)
that the function
1

t—q(t,A72Xy),
would change sign from positive values to negative ones at the first order in ¢y, which
is not possible in view of the assumption (2.1.2). O

Since from (4.2.2), (4.2.5), (4.2.39) and (4.2.40),
(4.2.62) 0<Hy; <1, 0<wy<1and supp wyg C] — o0, —1]U[1, +o0],
we deduce from Lemma 4.2.5 that
0 < <26(Q)1Qx[Pwo(|Qx[*) Ha, | >s1,s
<2070 sup |of7~ < (@)@ wo(|QK M) Ha, |9 >s0.

j=1,....N
(4.2.63) <deo sup [el|70 < 8(Q)Qtwo(|Qx|*)Ha, @] >s s,
i=1,...,
because according to (4.2.7), Q}Hs < 2eqAHs. Let (tg, Xo) € R?"*! and A > 1 such
that

(4264) Q(t07X05 A) =0 and |Ql)((t07X05 A)| >

N | —

The result of the lemma 4.2.5 implies that
(4.2.65) Q;(to, Xo, A) > 0.
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Since from (4.1.3), Q € C2n/2A+4(R27 1) we can apply the implicit function theorem
to get O a C?"/2+* function defined on an open neighbourhood Vj of Xg such that
for all X € Vj,

(4.2.66) Q(OA(X), X, A) = 0 with tg = O5(Xo).

Using a Taylor formula at the first order, we deduce from (4.2.66) that for all (¢, X) €
R x Vo,

Q(t, X, A) = Q(t, X,A) — Q(Ax(X), X, A)

(4.2.67) = (/0 Qy((1 — 8)0a(X) + st, X, A)ds> (t—0a(X)).
Setting
(4.2.68) g(t, X, A) = /1 Qi ((1— $)OA(X) + st, X, A)ds,

0

we deduce from (4.2.64), (4.2.65) and (4.2.66) that there exists an open neighbourhood
Qg of the set {Q =0 and |Q’y| > 1/2} such that

(4.2.69) Qo C {|Q| > 0},

(4.2.70) g€ C*M/AT3(Qq), g > 0 on Qg and Q(t, X, A) = g(t, X, A)(t — 05(X)),

on Q. It follows from (4.2.22) and (4.2.70) that for all (¢, X) € Qg and A > 1,
Oa(X) = 0(X,A) and Q(t, X, A) = g(t, X, A) (t — 0(X, A)).

This induces that the function (t, X) + t — (X, A) is C2[*/2+4 on Qg and that

(4.2.71) H(Q(t,X,A)) = H(t—0(X,A)),

on g, where H stands for the Heaviside function. By differentiating (4.2.71) with
respect to t, we obtain according to (4.2.69) that on o,

(4.2.72) Q) 5(Q) =5(t —0(X,A)).

Since from (4.2.39) and (4.2.40), supp wo(|Q%[?) C {|Q%| > 1}, we deduce from
(4.2.62), (4.2.69) and (4.2.72) that

< 0(Q)Quwo(|Qx ) Ha, |®[* >s1.s
<Ot — 0(X, A)wo(|Qx [*) Ha, |P|* >s1.s

= /R2 wo (|Q'x (0(X,A), X, A)|*)Ha (0(X,A), X, A)|®(0(X, A), X)[PdX
(4.2.73) < / Hy(0(X,A), X,A)|®(0(X,A), X)[?dX.
R2n
We obtain from (4.2.56), (4.2.63) and (4.2.73) that

0Q 057

80X 09X

<4gy sup |\a;|\%w/ Hy(0(X,A), X,A)|@(0(X,A), X)[PdX.
y— N R2n

Jj=1,...,

(4.2.74) ’ < [w0(|QIX|2)H2 U, U >51.8 ‘
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Using the triangular inequality, it follows from (4.2.4), (4.2.41), (4.2.45), (4.2.47),
(4.2.50) and (4.2.74) that

[ <[ax(sax)] wases)

oX '\" ax
<4dgp sup ||043—H%w/ Hy(0(X,A), X, A)|@(0(X,A), X)|?dX
j=1,....N R2n
+ col|ul 72

1
(1275) < | H(0(X,A), X, A)[B(0(X, A), X)[PAX + collull3s,
]R‘Z‘n,

where cg = ¢7 + ¢s. Using again the triangular inequality, we obtain from (4.2.28)
and (4.2.35) that

(4.2.76)
Re(Dyu, iSWVi%ky) - + ((SQ)WiCku, u)L2 < |Re(Dyu + iQWicky, 1SWicky) .|

1 .
+ E| < (QIX'SS(>W1Ckuvﬂ >s',8 | + ’ /]R (R(t)u(ta ')a ’U,(t, ))L2(R")dt‘

Using always the triangular inequality, we deduce from (4.2.29), (4.2.37) and (4.2.75)
that

1 ) 1
(4.2.77) | < (Qx-Sx)™u, T >s05 | < - (2nm1,2(Q) + o) [ull 72
1
+ — Hy(0(X,A), X,A)|@(0(X,A), X)[PdX.
4N R2n
Finally, we obtain with (4.2.25), (4.2.30), (4.2.34), (4.2.35), (4.2.76) and (4.2.77) that
1

o [ H2(00X,0), X, A)[@(0(X, A), X)X — colul 72
T R2n
+ / Ha(t, X, )|Q(t, X, A)][®(t, X)PdtdX
R2n+1
n
2T
1 1
+ ECQHUH%Z + m /]Rzn HQ(G(XvA)aXa A)|(I)(9(X7A)5X)|2dX7

< Do+ Q™ ull 2llull 2 + (5= + dn ) 11,2 (@)l

which induces, since from (2.1.4), N € N*, that there exists a positive constant c1g
such that for all u € C§°(R™*!) and A > 1,

/ Hy(t, X, M)|Q(t, X, A)||(t, X)PdtdX < || DyutiQ"ull r2|ull L2+eroull 7.
R2n+1
This ends the proof of Lemma 4.2.2. [J

Step 3. In this third step, we estimate the first term of the right-hand-side of (2.3.2).

Lemma 4.2.6. There exist some positive constants c11 and Ag > 1 such that for all
u € C§(R™1) and A > A,

(4.2.78) Aﬁ/ Ho(t, X, N)|®(t, X)|2dtdX < cq1||Dyw + iQV'u 12 ||u)| 12
{lQl<A1/ (N1}

1
enlulfs+en [ Halt, X )@ X A)[00 X)PdedX + AT [ul,
R2n+1

if ®(t, X) = W (u(t,))(X).
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Proof of Lemma 4.2.6. For A > 1, let us consider the set

(4.2.79) Ex = {(t,X) € R¥" 1 |Q(t, X, A)| < A™FT}.
If (t,X) € Ej, it follows from (4.1.2) that
(4.2.80) lg(t, A"2X)| < A~ 74T,

Since from (2.1.4), N € N*, we deduce from (2.1.3) and (4.2.80) that there exists a
constant Ag > 1 such that for all A > Ay,

(4.2.81) Ep C [-A, A] x R*™,

Then, using (2.1.4), (2.1.5), (4.2.80) and (4.2.81), we obtain that if (¢, X) € Ex and
A > A07

N
Mo [T It = o (A"2X)| < e(t, A3 X) H|tfo¢] AT X)| < AmN

which implies that there exists jo € {1,..., N} such that

(4.2.82) M |t — 0y (A3 X)| < A=%5.

Let us consider x3 a C§°(R, [0,1]) function such that

(4.2.83) supp xs C [-2,2] and x3 =1 on [-1,1].

We deduce from (4.2.82) and (4.2.83) that for all (¢, X) € Ep and A > Ay,

N
1<) xs (M AN (t— oy (AT2 X)),
which implies according to (4.2.79) that

(4.2.84) AW / Hy(t, X, N)|®(t, X)|2dtdX
{lQI<A1/ (1)}

1

N1 (t _ aj(AféX))) |q)(t7X)|2dth.

N
Z/ AN Hy (8, X, A)xs (M A
= R2n+1

Let jo € {1, ..., N}, we define the following multiplier

¢ . )
(4.2.85)  m(t,X,A) = Ho(t, X, A)/ AN g (MET AN (s — ajy (A2 X)) ) ds.
Using a change of variables, we first notice from (4.2.62), (4.2.83) and (4.2.85) that
for all (£, X) € R*"*1 and A > 1,

1
MN ANTT (t—aj, (A~ 2 X))

_1
Im(t, X, A)| < My ~ / x3(u)du
(4.2.86) < MO_% / x3(uw)du < 400,
R
ie.
(4287) Hm||Loo(R2n+l) < MO_W||X3HL1(]R) < +00.

One has from (4.2.85) that

(4.2.88) Oym(t, X, \) = Hy(t, X, N) A~
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where
t

(4.2.89)  A(t,X,A) = 8, Ho(t, X, A)/ ANy (M AN (s — ajy (A3 X)) ds.

— 00

Since from (4.1.2) and (4.2.5), a direct computation gives
|0:Ha(t, X, A)| = |X/2 (Q:f(t’ X, A)EO_IA_l) :&It(t X A)Eo_lA_ll

= |X/2(Q2(t,X, A)EalA_ )qtt(t A_EX)EO 1| <ey 1HXzHL“’(]R)Hqtt||L°°(1R2"+1)7

we deduce using the same change of variables as in (4.2.86) from (2.1.1) and (4.2.3)
that there exists a positive constant c¢is such that for all A > 1,

_a
(42.90) (Al mentry < g5 My Vllxall Ly 1Xa ]| Lo () 12t | Los (R2n1y < e

We also need to make some estimates on the gradient of the multiplier m(¢, X, A)
with respect to X. We get from (4.2.85) that

(4.2.91) m' (t, X, A) = B(t, X, A\) + C(t, X, A),

where
¢ 1 1 1
(4.2.92) B(t,X,\) = VxHs(t, X, A)/ AN g (M AN (s — ajy (A2 X)) ds

— 00

and

(4.2.93) C(t, X, A) = —Hy(t, X, A)o/}, (A2 X)

According to (4.2.83), we can compute the integral in (4.2.93) to obtain that

(4.2.94) CO(t, X,A) = —Ha(t, X, A)o; (A2 X)AFF 2

L 1

x s (M AR

(t — Qjy (Ai%X)))v
because

d L 1 1 R F o
%{X3(MONAN+1(57QJU(A 2X))):| :MONAN+1X{3>(MONAN+1(S*O&jO(A QX)))

Using (4.1.3), (4.2.6), (4.2.92) and the same change of variables as in (4.2.86), we get
that for all A > 1,

| B.Qx | Lo (r2n+1) < Y0,1(H2)A™2 My ™ |3 01 (m) A2 71,1(Q)
_ 1
(4.2.95) < 0.1 (H2)m1(@)My ¥ [Ixsll L) < +oo.

To estimate the term [|C.Q'x || o (r2n+1), We start by using the Taylor formula at the
first order to write that

(4.2.96) Q'x(t, X, A):Q'X(ajo(A—% ), X, A)

/ Q. ozjo(AféX)+st,X,A)ds)(tfajU(AféX)).
Since from (2.1.1) and (4.1.2),
(4.2.97) Q) € Sapnyo43(A, ATTAX?),

uniformly with respect to the parameter ¢ in R, we deduce using the triangular in-
equality and (4.2.96) that for all (¢, X) € R?"*1 and A > 1,

(4.298) Q' (1, X, M)] < Q' (o (A™2X), X, A) | + 71,1 (Q)AZ [ — iy (A2 X)),
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Then, we obtain using (4.2.94), (4.2.98) and the triangular inequality that for all
(t,X) e Rl and A > 1,

(4.2.99) |C(t, X, A).Qx (£, X, A)| < D(t, X,A) + F(t, X, A),
where
(4.2.100)  D(t, X, A) = A¥FT 5|, || oo (ran) Ha (¢, X, A)
X xa (MY AN (1 = 0y (A2 X)) Q@ (a0 (A2 X), X, A)|

and
(4.2.101)  F(t, X, A) = AT || || oo (o) Ha(t, X, A)

x X3 (MY AN (t — ajy (A2 X)) ) 1,1 (Q)|t — aj (A2 X).
Since from (4.2.83),

AN — ajo (A% X) | ys (MY AN (t — ajy (A" X))
_ 1
< lzxa(@)|| Lo @My ¥ < +oo,

we deduce from (4.2.62) and (4.2.101) that there exists a positive constant ¢13 such
that for all A > 1,

_ 1
(4.2.102) [ o man1) < [0, | oo mam |23 (@) Lo () Mo ¥ 71,1(Q%) < cas.

To get an upper bound on the L*-norm of D, we first notice from (4.2.60) that we
have

(42.103)  Q}(az,(A™2X), X, A)aj (A2 X)A™% + Q' (s, (A72X), X, A) =0,
for a.e. X in R?". Tt follows from (4.2.6), (4.2.100) and (4.2.103) that for all A > 1,

(4.2.104) ||DHL°°(]R2"'+1) < ATHT -1 ||Oé;-0 ||%00(R2n)

1

x || Ha (t, X, M) s (MZT AT (£ — oy (A3 X))) Q) (o (A2 X), X, A) |

Lo (R2n+1)
Since from (2.1.1) and (4.1.2),
Q;’t S SQ[n/Q]-‘,—Q(AvAildXQ)a
uniformly with respect to the parameter ¢ in R, we can use that
Q:& (ajo (A_%X)a X, A) = Q;(ﬁ, X, A)
1
+ (/ Q;’t((lfs)tJrsajU(A’%X),X,A)ds) (ajo (A7 X) — 1),
0
to obtain that for all (¢, X) € R?"*! and A > 1,
1 _1
(4.2.105)  Qp(ao(AT2X), X, A) < Qi(t, X, A) +71,0(QU)Alt — ey (AT2X)].
Now, we get from (4.2.21) that for all X € R>® and A > 1,
(4.2.106) Q4 (o (A"2X), X, A) >0,

- <1 -
because, if there exist Xo € R*" and Ag > 1 such that Q}(a;j, (A * Xo), Xo, Ao) <0,
we will obtain from (4.2.59) that the function

t— Q(ta XOaAO)a
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changes sign from positive values to negative ones at the first order in ¢ = o, (]\8 3 Xo),
which is not allowed according to (4.2.21). It follows from (4.2.62), (4.2.83), (4.2.105)
and (4.2.106) that for all (¢, X) € R**! and A > 1,

| (t, X, A)xs (Mg" AN (t — arjy (A2 X)) Q) (s, (A2 X), X, A)|
= Hy(t, X, A)xs (M AT (& — 0y (A~ X)) Q) (0, (A FX), X, A)
< Ha(t, X, N)Qi(t, X, A)
(4.2.107) X (Mg" AT (¢ — iy (A X)) )y1.0(Q)AJE — 0y (A2 X)),

because 0 < Hy < 1 and 0 < x5 < 1. Since from (4.2.7) and (4.2.62), one has for all
(t,X) e Rl and A > 1,

H2(ta Xﬂ A)Q;(thv A) S 250AH2(ta Xa A) S 2€0A7
and that
1 1 1
X3 (Mg AT (£ — oy (A2 X)) [t — gy (A2 X)| < AFF My ¥ [[aya(@) | = )+

we deduce from (4.2.83), (4.2.104) and (4.2.107) that there exists a positive constant
c14 such that for all A > 1,

| Dl oo rent1y < AFFT o |7 00 (260 + AT M ,0(Q1) M, ||$X3( )L ()
(4.2.108) < 260AFT [l |2 + cia.
It follows from (4.2.99), (4.2.102) and (4.2.108) that for all A > 1,

(4.2.109) |C.Qi | 1) < 2e0llay I3 AT + 15 + cva.

Using the triangular inequality, we finally obtain from (4.2.4), (4.2.91), (4.2.95) and
(4.2.109) that there exists a positive constant ¢15 such that for all A > 1,

||mIX.QIX||Loo(R2n+1) S 250||O¢30H%0¢AN+1 +Cl5
1
4.2.110 < AN
( ) < on + c15.

We can now use our multiplier m"Wik to get that
(4.2.111)  2Re(Dsu + iQVi%ku, imWVi%y) 2 = 2Re(Dyu, im™Vi%u) 12
+ QRG(QWiCkU, 7,’,L\7Vicku)L2 _ ([Dt; ’imWiCk]u, ’LL)LZ + Q(Re(mWiCkQWiCk)’u, u) .

Wick Wick

because, since m is a real-valued function, the operators m and im are respec-
tively some self-adjoint and anti-self-adjoint operators. Using the Cauchy-Schwarz in-
equality, we first obtain from Proposition 3.2.1 and (4.2.87) that there exists a positive
constant c1g such that for all u € C§°(R™™1) and A > 1,

(4.2.112)  2|Re(Dsu + iQV % u, im™V'%*u) 12| < 2||Dyu + iQ V%[ 12 ||mVikul| 12
< 2[m o | Dew + Q™ ull ral|ull 2 < croll Dew + i@ Ful| 2 || 2.

Then, since from Proposition 3.2.1, one has
. ic 1 ic 1 *
([Dy,im" k]U,U)Lz = %((@m)w Ku,u) e = 2—(W (Orm)Wu, u) p2(mn+1y

(8tm Wu, W) 2pani1y = / om(t, X, N)|®(t, X)|?dtd X,
R2n+1
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if ®(t,X) =W (u(t,-))(X), we deduce from (4.2.88) that

: 1
(4.2.113)  ([Ds, im™V' |, u) 2 = 7 A(t, X, N)|®(t, X)|*dtdX
T JRrR2n+1
1 1 L 1 1
+o- AT Hy(t, X, A)xs (M" AV (t — oy (A2 X)) |D(¢, X)[dtdX.
T JRrR2n+1

Since from (4.2.90),

1 1
]—/ A(t,X,A)|cI>(t,X)|2dth’ < —HAHLm/ (L, X)[2dtdX
2T R2n+1 2 R2n+1

C12

C12
||Wu||%2(R2"+1) = gHUH%Z(RnH)a

on
because W is an isometric mapping from L?(R?) to L?(R%"), we obtain from (4.2.113)
that for all uw € C§°(R™ 1) and A > 1,

<

(4.2.114)  ([Ds, im™Vi ¥, u) g2 >
1

2 R2n+1

AT Hy (8, X, A (Mg A (100, (A=30))) (@1, ) Patd X — 52 ul ..

2

Now, according to (4.1.3) and (4.2.87), we can apply the proposition 3.2.2 to obtain
that

(4.2.115)  (Re(m™'* QY ™)y, u) , = ((mQ)V\“Cku,u)L2 - %((m’X.Q’X)WiCku,u)

L2 L2
+ /]R (R(t)u(t,), u(t, ~))L2(Rn)dt,

where for all £ € R,

(4.2.116) IR 2p2@ny) < duMy ¥ Ixsllr®)m,2(Q) < +oo.
We deduce from the Cauchy-Schwarz inequality, Proposition 3.2.1 and (4.2.110) that
| (my Q%) ™V u,w) | < [(my Q% )™V ul 2 [lull 2
< (- Q%) V' N 2 z2) 22
< Il Q' [l o< [lull7

1, 1
(4:2117) < (AT +eis) fulFo.

We also deduce from (4.2.116) that there exists a positive constant c;7 such that for
all w € Cg°(R™™1) and A > 1,

‘/R(R(t)u(t, Y, ult, '))Lz(Rn)dt‘
)

IN

/R IR ozt )2 ndt

(4.2.118 crrlull3 2.

N

Since from Proposition 3.2.1, (4.2.62), (4.2.85) and (4.2.86),
| ((mQ>WiCku7 'LL) L2 ‘ = ‘ (W* (mQ)W’M, U) L2 |

= |(mQ Wu, Wu) 2| = ‘/ mQ|<I)|2dth’
R2n+1

(42119) < / L Ha(t, X M)[QU X MMy ¥ [xal o 0(t, X)PdtdX.
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if ®(t,X) = W(u(t,"))(X), we deduce using the triangular inequality, (4.2.115),
(4.2.117), (4.2.118) and (4.2.119) that there exists a positive constant c1g such that
for all uw € C§°(R™1) and A > 1,

i i 1 =
(4.2120)  |(Re(m™V QWi M), u) | < crsllullF» + 87T—NAN+1 [[uf|72
+ 018/ Ha(t, X, N)|Q(t, X, N)||®(t, X)|?dtdX.
R2n+1
Then, using again the triangular inequality, it follows (4.2.111), (4.2.112), (4.2.114)

and (4.2.120) that there exists a positive constant c1g such that for all u € C§°(R™*1)
and A > 1,

1

2 R2n+1

1

AT Ha (1, X, A)xa (Mg AT (¢ = 5, (A~2))) (8, X) Paed X

. ic! 1 _1
< e1gll Do+ 1Q ¥l 2l 2+ eng e + o Al
(4.2.121)
+ e / Ha(t, X, A)|Q(t X, A)|[D(t, X)|2dtdX.
R2n+l

We finally deduce from (4.2.84) and (4.2.121) that there exists a positive constant cag
such that for all u € C§°(R™!) and A > A,

AN / Hy(t, X, N)|®(t, X)|2dtdX < cool|Dyu + iQWV'™u| p2||ul| L2
{lQI<AY/(N+1)}
1
bemlfulle + ATl 4 e [ Halt, X )IQU X M) [0 X) Pata.
R2n+1
which ends the proof of Lemma 4.2.6. O

Last step. Using the first three steps, we can now prove the estimate (4.1.1). We first
use the phase space cut-off (4.2.6) to obtain using Proposition 3.2.1 and Lemma 4.2.1
that for all u € C§°(R™™!) and A > 1,

(4.2.122) AN ||u)2s = AN (HVi%, 1) 12 + AN (HY N, 0) e
< T PATI | Dy + iQViH |2, + o PAT I ||u|2a 4+ AN (HZVi%y, u) 2

Using Proposition 3.2.1, we get that

(4.2.123) N+1 (H;NiCku, U)LZ(Rn+1) = AW (W*HoWu, U)L2(R"+1)

1
N

= A (Hy Wu, W) 2 gentn) = Aﬁ/ Hy(t, X, A)|®(t, X)|?dtd X,

R2n+1

if ®(t,X) =W (u(t,-))(X). We can now use the following L?-norm splitting

Aﬁ/ H2|<I>|2dth:ANl+1/ H2|¢|2dth+Aﬁ/ Hy|®2dtdX
R2n+1 {IQI<AY/ (1)} {lQI>A1/(v+1}

gAﬁ/ H2|<I>|2dth+/ Hy|Q||®|dtdX,
{|Q|<A1/(N+1)} R2n+1
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to deduce from Lemma 4.2.2, Lemma 4.2.6 and (4.2.123) that there exists a positive
constant cp; such that for all u € C§° (R”+1) and A > Ao,

(4.2.124) AN{H (HSNiCkU, ’LL)LZ S 021||Dtu + ’L'QWiCk’U,HLz ||u||L2 + 021||U||2L2
1
+ AT ul 3.
It follows from (4.2.122) and (4.2.124) that for all u € C§°(R"*!) and A > A,

1 .
(4.2.125) EAﬁ||u||i2 < 7 'AT N || Dy + iQWViKRy 2,

Wi SN
+ eanl| Dew + QW ul| 2 [l 2 + (7 TATFT + ean)[ul 7.

Since from (2.1.4), N € N*, we deduce from (4.2.125) that there exist some positive
constants cgp and Ay > 1 such that for all u € C§° (R"‘H) and A > Aq,

Coa A ¥ [ul22 <A™ || Dy +iQW R 20 + | Do + QW iNu| 12 |ul| 2,
i.e.
(4.2.126)  copA™T [[ul|22 < ANTT | Dy + iQWi%ul|2,
+ A% || Dy 4 iQWi %y 2| u| 2.
Since we have

. c 1 i
AT Dyw+iQ™ ¥ ul| 2 ull 2 < 2 AT ||ul| 2 + 5| Do+ Q™ ¥ul 7,
22

we deduce from (4.2.126) that there exists a positive constant ca3 such that for all
u € C§°(R™1) and A > Ay,

| Do+ QW ul3a > cas AT |lul3,

which in view of (4.1.2) proves the estimate (4.1.1) and ends the proof of the theo-
rem 2.1.1.
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