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A simple proof of a recurrence theorem for random walks in Z
2

Jean-Marc Derrien

October, 2006

Abstract In this note, we prove without using Fourier analysis that the symmetric square

integrable random walks in Z
2 are recurrent.

George Pòlya related in [3, pp. 582-583] an incident that enables him to formulate the
question of recurrence for random walks : during a stroll through the woods, he felt embar-
rassed because he met “certainly much too often” a student with his girlfriend.

Let x be an element of Z
2. A random walk in Z

2 starting at x is a sequence (Sn)n∈N of
random variables such that

S0 = x and Sn = x + X1 + X2 + · · · + Xn , n ∈ N ,

where (Xn)n∈N is a sequence of independent and identically distributed (i.i.d.), Z
2-valued

random variables. (Sn)n∈N is characterized in law by x and the law of X1.

In this note, we give an elementary proof of the following result.

Theorem If (S
(1)
n )n∈N and (S

(2)
n )n∈N are two square integrable, independent and identically

distributed random walks in Z
2, then

S(1)
n = S(2)

n infinitely often

with probability one.

This theorem is a straightforward consequence of the following proposition (first proved

in [2] in a more general context) applied to (Sn := S
(1)
n − S

(2)
n )n∈N.

Proposition If (Sn)n∈N is a symmetric, square integrable random walk starting at 0 in Z
2,

then

Sn = 0 infinitely often

with probability one.

Proof It is classical that, in order to prove this proposition, we have only to establish that

+∞
∑

n=0

P[Sn = 0] = +∞

(see, for instance, [1]).

One can write
Sn = X1 + X2 + · · ·+ Xn ,

where (Xk)k≥1 is a sequence of i.i.d., square integrable, Z
2-valued random variables with

X1 ≡ −X1 in distribution.
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Since the square integrable random walk (Sn)n∈N is symmetric, it is centered and we have

E(‖Sn‖
2
2) =

n
∑

k=1

E(‖Xk‖
2
2) +

∑

1≤k<l≤n

E(Xk) · E(Xl) = n E(‖X1‖
2
2)

(|| · ||2 denotes the euclidean norm).

The symmetry also gives

P[S2n = 0] =
∑

x∈Z2

P[S2n = 0 | Sn = x] P[Sn = x]

=
∑

x∈Z2

P[−Xn+1 − Xn+2 − · · · − X2n = x] P[Sn = x] =
∑

x∈Z2

P[Sn = x]2 .

Hence if we introduce

Bn :=
{

x ∈ Z
2 : ‖x‖2

2 < 2n E
(

‖X1‖
2
2

)}

,

we deduce from Cauchy-Schwarz’s and Markov’s inequalities that, if n is large enough,

P[S2n = 0] ≥
1

|Bn|

(

∑

x∈Bn

P[Sn = x]

)2

≥
C

n

(

1 − P[‖Sn‖
2
2 ≥ 2n E(‖X1‖

2
2)]
)2

≥
C

n

(

1 −
E (‖Sn‖

2
2)

2n E(‖X1‖2
2)

)2

=
C

4n
,

where C > 0 depends only on E(‖X1‖
2
2). The proposition follows.
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