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Abstract

In this paper we introduce a stochastic integral with respect to the solution
X of the fractional heat equation on [0, 1], interpreted as a divergence operator.
This allows to use the techniques of the Malliavin calculus in order to establish an
Itô-type formula for the process X.
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1 Introduction

In the last past years, a great amount of effort has been devoted to a proper definition of
stochastic PDEs driven by a general noise. For instance, the case of stochastic heat and
wave equations in R

n driven by a Brownian motion in time, with some mild conditions
on its spatial covariance, has been considered e.g. in [4, 12, 9], leading to some optimal
results. More recently, the case of SPDEs driven by a fractional Brownian motion has
been analyzed in [3, 16] in the linear case, or in [7, 13] for the non-linear situation.

In this context, it seems natural to investigate the basic properties (Hölderianity, be-
havior of the density, invariant measures, numerical approximations, etc) of these objects.

∗Partially supported by the CONACyT grant 45684-F
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And indeed, in case of an equation driven by a Brownian motion, a lot of effort has been
made in this direction (let us cite [15, 9, 8] among others). On the other hand, results
concerning SPDEs driven by a fractional Brownian motion are rather scarce (see however
[11] for a result on SPDEs with irregular coefficients, and [14] for a study of the Hölder
regularity of solutions).

This article proposes then to go further into the study of processes defined by fractional
PDEs, and we will establish a Itô-type formula for a random function X on [0, T ] × [0, 1]
defined as the solution to the heat equation with an additive fractional noise. More
specifically, we will consider X as the solution to the following equation:

∂tX(t, x) = ∆X(t, x) +B(dt, dx), (t, x) ∈ [0, T ] × [0, 1], (1)

with Dirichlet boundary conditions and null initial condition. In equation (1), the driving
noise B will be considered as a fractional Brownian motion in time, with Hurst parameter
H > 1/2, and as a white noise in space (notice that some more general correlations in
space could have been considered, as well as the case 1/3 < H < 1/2, but we have
restrained ourselves to this simple situation for sake of conciseness).

Then, for X solution to (1), t ∈ [0, T ], x ∈ [0, 1] and a C2
b -function f : R → R, we will

prove that f(X(t, x)) can be decomposed into:

f(X(t, x)) = f(0) +

∫ t

0

∫ 1

0

(

M∗
t,xf

′(X)
)

(s, y)W (ds, dy) +
1

2

∫ t

0

f ′′(X(s, x))Kx(ds), (2)

where in the last formula, M∗
t,x is an operator based on the heat kernel Gt on [0, 1] and the

covariance function of B, W is a space-time white noise, and Kx is the function defined
on [0, T ] by:

Kx(s) = H(2H − 1)

∫ s

0

∫ s

0

G2s−v1−v2
(x, x)|v1 − v2|2H−2dv1dv2.

Notice also that, in (2), the stochastic integral has to be interpreted in the Skorohod sense
(see Theorem 3.13 for a precise statement).

As mentioned above, once the existence and uniqueness of the solution to (1) is es-
tablished, it certainly seems to be a natural question to ask whether an Itô-type formula
is available for the process we have produced. Furthermore, this kind of result can also
yield a better understanding of some properties of the process itself, such as the distri-
bution of hitting times, as shown in [5]. It is also worth mentioning at this point that
formula (2) will be obtained thanks to some Gaussian tools inspired by the case of the
fractional Brownian motion itself. This is due to the fact that X can be represented by
the convolution

X(t, x) =

∫ t

0

∫ 1

0

Mt,s(x, y)W (ds, dy) (3)

of a certain kernel M on [0, T ] × [0, 1], defined at (19), with respect to W . This kind of
property has already been exploited in [6] for the case of the heat equation driven by a
space-time white noise, but let us stress here two differences with respect to this latter
reference:
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1. On the one hand, an important step of our computations will be to obtain the
representation (3) itself (see Corollary 3.3) and to give some reasonable bounds on
the kernel M and its derivatives.

2. On the other hand, the little gain in regularity we have in the current situation with
respect to [6] will allow us to obtain a formula for t 7→ f(X(t, x)), while in the latter
reference, we had to restrict ourselves to a change of variable formula for

t 7→
∫ 1

0

f(X(t, x))ψ(x) dx,

for a continuous function ψ.

Let us say now a few words about the method we have used in order to get our
result: as mentioned above, the first step in our approach consists in establishing the
representation (3). This representation, together with the properties of the kernel M ,
suggest that the differential of X should be of the form

X(dt, x) =

[
∫ t

0

∫ 1

0

∂tMt,s(x, y)W (ds, dy)

]

dt. (4)

This formula is of course ill-defined, since (s, y) 7→ ∂tMt,s(x, y) is not a L2-function on
[0, t] × [0, 1], but it holds true for a regularization Mε of M . We will then obtain easily
an Itô type formula for the process Xε corresponding to Mε, where the differential (4)
appears. Therefore, the main step in our calculations will be to study the limit of the
regularized Itô formula when ε → 0. Notice that this approach is quite different (and
from our point of view more intuitive) from the one adopted in [1, 6], where the quantity
E[f(X(t, x))In(ϕ)] was evaluated for an arbitrary multiple integral In(ϕ) with respect to
W .

Our paper is divided as follows: at Section 2, we will describe precisely the noise and
the equation under consideration, and we will give some basic properties of the process X.
Section 3 is devoted to the derivation of our Itô-type formula: at Section 3.1 we obtain the
representation (3) for X, the regularized formula is given at Section 3.2, and eventually
the limiting procedure is carried out at Sections 3.3 and 3.4. In the sequel of the paper,
c will designate a positive constant whose exact value can change from line to line.

2 Preliminary definitions

In this section we introduce the framework that will be used in this paper: we will define
precisely the noise which will be considered, then give a brief review of some Malliavin
calculus tools, and eventually introduce the fractional heat equation.

2.1 Noise under consideration

Throughout the article, we will consider a complete probability space (Ω,F , P ) on which
we define a noise that will be a fractional Brownian motion with Hurst parameter H > 1/2
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in time, and a Brownian motion in space. More specifically, we define a zero mean
Gaussian field B = {B(s, x) : s ∈ [0, T ], x ∈ [0, 1]} of the form

B(t, x) =

∫ t

0

∫ x

0

KH(t, s)W (ds, dy). (5)

HereW is a two-parameter Wiener process andKH is the kernel of the fractional Brownian
motion (fBm) with Hurst parameter H ∈ (1

2
, 1). Namely, for 0 ≤ s ≤ t ≤ T , we have

KH(t, s) = CHs
1

2
−H

∫ t

s

(u− s)H− 3

2uH− 1

2du,

where CH is a constant whose exact value is not important for our aim. Observe that the
standard theory of martingale measures introduced in [17] easily yields the existence of
the integral (5).

Note that it is natural to interpret the left-hand side of (5) as the stochastic integral

B(1[0,t]×[0,x]) :=

∫ t

0

∫ x

0

B(ds, dy). (6)

The domain of this Wiener integral is then extended as follows: let H be the Hilbert space
defined as the completion of the step functions with respect to the inner product

〈1[0,s], 1[0,t]〉H = 〈KH(t, ·), KH(s, ·)〉L2([0,T ])

= H(2H − 1)

∫ t

0

∫ s

0

|u− r|2H−2dudr. (7)

Thus, by Alòs and Nualart [2], the kernel KH allows to construct an isometry K∗
H,T from

H×L2([0, 1]) (denoted by HT for short) into L2([0, T ]×[0, 1]) such that, for 0 ≤ s < t ≤ T ,

(

K∗
H,T 1[0,t]×[0,x]

)

(s, y) = KH(t, s)1[0,x](y)

= 1[0,x](y)

∫ T

s

1[0,t](r)∂rKH(r, s)dr.

Therefore the Wiener integral (6) can be extended into an isometry ϕ 7→ B(ϕ) from HT

into a subspace of L2(Ω) so that, for any ϕ ∈ HT ,

B(ϕ) =

∫ T

0

∫ 1

0

(K∗
H,Tϕ)(s, y)W (ds, dy). (8)

Then, for two elements ϕ and ψ of HT , the covariance between B(ϕ) and B(ψ) is given
by

E [B(ϕ)B(ψ)] = H(2H − 1)

∫ T

0

∫ T

0

∫ 1

0

ϕ(s, y)|s− r|2H−2ψ(r, y) dsdrdy. (9)

Notice that an element of HT could possibly not be a function. Hence, as the in
fBm case, we will deal with the Banach space |HT | of all the measurable functions ϕ :
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[0, T ] × [0, 1] → R such that

||ϕ|||HT | = H(2H − 1)

∫ T

0

∫ T

0

∫ 1

0

|ϕ(r, y)||u− r|2H−2|ϕ(u, y)|dydudr

=

∫ 1

0

∫ T

0

(
∫ T

s

|ϕ(r, y)|∂rKH(r, s)dr

)2

dsdy <∞.

It is then easy to see that L2([0, T ] × [0, 1]) ⊂ |HT | ⊂ HT .

2.2 Malliavin calculus tools

The goal of this section is to recall the basic definitions of the Malliavin calculus which
will allow us to define the divergence operator with respect to W . For a more detailed
presentation, we recommend Nualart [10].

Let S be the family of all smooth functionals of the form

F = f(W (s1, y1), . . . ,W (sn, yn)), with (si, yi) ∈ [0, T ] × [0, 1],

where f ∈ C∞
b (Rn) (i.e., f and all its partial derivatives are bounded). The derivative of

this kind of smooth functional is the L2([0, T ] × [0, 1])-valued random variable

DF =

n
∑

i=1

∂f

∂xi
(W (s1, y1), . . . ,W (sn, yn))1[0,si]×[0,yi].

It is then well-known that D is a closeable operator from L2(Ω) into L2(Ω × [0, T ] ×
[0, 1]). Henceforth, to simplify the notation, we also denote its closed extension by D.
Consequently D has an adjoint δ, which is also a closed operator, characterized via the
duality relation

E (Fδ(u)) = E
(

〈DF, u〉L2([0,T ]×[0,1])

)

,

with F ∈ S and u ∈ Dom(δ) ⊂ L2(Ω× [0, T ]× [0, 1]). The operator δ has been considered
as a stochastic integral because it is an extension of the Itô integral with respect to W
that allows us to integrate anticipating processes (see, for instance, [10]). According to
this fact, we will sometimes use the notational convention

δ(u) =

∫ T

0

∫ 1

0

us,yW (ds, dy).

Notice that the operator δ (or Skorohod integral) has the following property: Suppose
that F is a random variable in Dom(D) and that u is Skorohod integrable (i.e., u ∈
Dom(δ)), such that E(F 2

∫ T

0

∫ 1

0
(u(s, y))2dyds) <∞. Then

∫ T

0

∫ 1

0

Fu(s, y)W (ds, dy) = F

∫ T

0

∫ 1

0

u(s, y)W (ds, dy)−
∫ T

0

∫ 1

0

(Ds,yF )u(s, y)dyds,

(10)
in the sense that (Fu) ∈ Dom(δ) if and only if the right-hand side is in L2(Ω).
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2.3 Heat equation

This paper is concerned with the solution X to the following stochastic heat equation on
[0, 1], with Dirichlet boundary conditions and null initial condition:

{

∂tX(t, x) = ∆X(t, x) +B(dt, dx), (t, x) ∈ [0, T ] × [0, 1]

X(0, x) = 0, X(t, 0) = X(t, 1) = 0.
(11)

It is well-known (see [16]) that equation (11) has a unique solution, which is given explicitly
by

X(t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)B(ds, dy), (12)

where

Gt(x, y) =
1√
4πt

∞
∑

n=−∞

[

exp

(

−(y − x− 2n)2

4t

)

− exp

(

−(y + x− 2n)2

4t

)]

(13)

stands for the Dirichlet heat kernel on [0, 1] with Dirichlet boundary conditions. Let us
recall here some elementary but useful identities for the heat kernel G:

Lemma 2.1. The following relations hold true for the heat kernel G given by (13):

∫ 1

0

Gt(x, y)dy = 1, Gt(x, y) ≤
c1
t1/2

exp

(

−c2(x− y)2

t

)

,

and

|∂tGt(x, y)| ≤
c3
t3/2

exp

(

−c4(x− y)2

t

)

,

for some positive constants c1, c2, c3 and c4. Furthermore, G can be decomposed into

Gt(x, y) = G1,t(x, y) +Rt(x, y), (14)

where

G1,t(x, y) =
1√
4πt

[

exp

(

−(y − x)2

4t

)

− exp

(

−(y + x)2

4t

)

− exp

(

−(y + x− 2)2

4t

)]

,

and Rt(x, y) is a smooth bounded function on [0, T ] × [0, 1]2.

Let us recall now some basic properties of the process X defined by (11) and (12),
starting with its integrability.

Lemma 2.2. The process defined on [0, T ] × [0, 1] by (12) satisfies

sup
t∈[0,T ],x∈[0,1]

E
[

|X(t, x)|2
]

<∞.
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Proof. We have, according to (9) and Lemma 2.1, that

E
[

|X(t, x)|2
]

= cH

∫

[0,t]2

dsdu

|s− u|2−2H

∫ 1

0

Gt−s(x, y)Gt−u(x, y)dy

≤ c

∫

[0,t]2

dsdu

(t− s)1/2|s− u|2−2H

∫ 1

0

Gt−u(x, y)dy

= c

∫

[0,t]2

dsdu

(t− s)1/2|s− u|2−2H
,

and the last integral is finite by elementary arguments.

One can go further in the study of X, and show the following regularity result (see
also [14]):

Proposition 2.3. Let X be the solution to (11). Then, for t1, t2 ∈ [0, T ] and x ∈ [0, 1],
we have

E
[

|X(t2, x) −X(t1, x)|2
]

≤ c|t2 − t1|2γ ,

for any γ < H−1/4. In particular, for any T > 0 and x ∈ [0, 1], the function t ∈ [0, T ] 7→
X(t, x) is γ-Hölder continuous for any γ < H − 1/4.

Proof. Assume t1 < t2. We then have

X(t2, x) −X(t1, x) = A(t1, t2, x) +B(t1, t2, x),

with

A(t1, t2, x) =

∫ t1

0

∫ 1

0

[Gt2−s(x, y) −Gt1−s(x, y)]B(ds, dy)

and

B(t1, t2, x) =

∫ t2

t1

∫ 1

0

Gt2−s(x, y)B(ds, dy).

Hence

E
[

|X(t2, x) −X(t1, x)|2
]

≤ 2
(

E
[

A2(t1, t2, x)
]

+ E
[

B2(t1, t2, x)
])

. (15)

We first note that (9) and Lemma 2.1 imply

E
[

B2(t1, t2, x)
]

= cH

∫ t2

t1

∫ t2

t1

duds|s− u|2H−2

∫ 1

0

Gt2−s(x, y)Gt2−u(x, y)dy

≤ c

∫ t2

t1

ds(t2 − s)−1/2

∫ t2

t1

|s− u|2H−2du

≤ c(t2 − t1)
2H− 1

2 . (16)

Now we will concentrate on the estimate on E[A2(t1, t2, x)]. By (9), we have

E
[

A2(t1, t2, x)
]

= cH

∫ t1

0

∫ t1

0

duds

|s− u|2−2H
Cx(s, u), (17)
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with Cx(s, u) defined by

Cx(s, u) =

∫ 1

0

[Gt2−s(x, y) −Gt1−s(x, y)] [Gt2−u(x, y) −Gt1−u(x, y)] dy.

Thus, invoking Lemma 2.1, we obtain that, for a given α < 1/2,

Cx(s, u) ≤ c
(t2 − t1)

2α

(t1 − u)3α/2(t1 − s)3α/2
Dx(s, u),

where

Dx(s, u) =

∫ 1

0

|Gt2−s(x, y) −Gt1−s(x, y)|1−α|Gt2−u(x, y) −Gt1−u(x, y)|1−αdy.

It is then easily seen that Dx(s, u) can be bounded by a sum of terms of the form

Fx(s, u) =

∫ 1

0

G1−α
σ−s(x, y)G

1−α
τ−u(x, y)dy,

with σ, τ ∈ {t1, t2}. This latter expression can be bounded in the following way:

Fx(s, u) ≤
(
∫ 1

0

G
2(1−α)
σ−s (x, y)dy

)1/2(∫ 1

0

G
2(1−α)
τ−u (x, y)dy

)1/2

≤ c

(t1 − s)1/4−α/2(t1 − u)1/4−α/2
.

We have thus obtained that

E
[

A2(t1, t2, x)
]

≤ c(t2 − t1)
2α

∫ t1

0

∫ t1

0

duds

|s− u|2−2H(t1 − s)1/4+α(t1 − u)1/4+α
.

Now thanks the change of variable v = u−s
t1−s

, the latter integral is finite whenever α <
H − 1/4, which, together with (15) and (16), ends the proof.

3 Itô’s formula for the heat equation

Let us turn to the main aim of this paper, namely the Itô-type formula for the process X
introduced in (12). The strategy of our computations can be briefly outlined as follows:
first we will try to represent X as a convolution of a certain kernel M with respect to W ,
with reasonable bounds on M . Then we will be able to establish our Itô’s formula for
a smoothed version of X, involving a regularized kernel Mε for ε > 0, by applying the
usual Itô formula. Our main task will then be to study the limit of the quantities we will
obtain as ε → 0.

3.1 Differential of X

Before getting a suitable expression for the differential of X, let us see how to represent
this process as a convolution with respect to W .

8



3.1.1 Representation of X

The expressions (7) and (8) lead to the following result (see [2]).

Lemma 3.1. Let ϕ be a function in |HT |. Then

∫ t

0

∫ 1

0

ϕ(s, y)B(ds, dy) =

∫ t

0

∫ 1

0

[K∗
H,T 1[0,t]ϕ](u, y)W (du, dy),

with

[K∗
H,T 1[0,t]ϕ](u, y) = 1[0,t](u)

∫ t

u

ϕ(r, y)∂rKH(r, u)dr.

Remark 3.2. This result could also have been obtained by some heuristic arguments.
Indeed, a formal way to write (5) is to say that, for t > 0 and y ∈ [0, 1], the differential
B(t, dy) is defined as

B(t, dy) =

∫ t

0

KH(t, s)W (ds, dy).

Thus, if we differentiate formally this expression in time, since KH(t, t) = 0, we obtain

∂tB(t, dy) =

[
∫ t

0

∂tKH(t, s)W (ds, dy)

]

dt.

Since ∂tKH(t, s) is not a L2-function, the last equality has to be interpreted in the following
way: if ϕ is a deterministic function, then

∫ t

0

∫ 1

0

ϕ(s, y)B(ds, dy) =

∫ t

0

∫ 1

0

ϕ(s, y)

[
∫ s

0

∂sKH(s, u)W (du, dy)

]

ds

=

∫ t

0

∫ 1

0

W (du, dy)

[
∫ t

u

ϕ(s, y)∂sK(s, u)ds

]

,

which recovers the result of Lemma 3.1.

We can now easily get the announced representation for X:

Corollary 3.3. The solution X to (11) can be written as

X(t, x) =

∫ t

0

∫ 1

0

Mt,s(x, y)W (ds, dy), (18)

with

Mt,s(x, y) =

∫ t

s

Gt−u(x, y)∂uKH(u, s)du. (19)

Proof. The result is an immediate consequence of the proof of Proposition 2.3 and Lemma
3.1.

9



3.1.2 Some bounds on M

The kernel M will be algebraically useful in order to obtain our Itô’s formula, and we will
proceed to show now that it behaves similarly to the heat kernel G. To do so, let us first
state the following technical lemma:

Lemma 3.4. Let f be defined on 0 < r < t ≤ T by

f(r, t) =

∫ t

r

(t− u)−1/2(u− r)−α exp

(

− κx2

t− u

)

du,

for a constant κ > 0, x ∈ [0, 2] and α ∈ (0, 1). Then, there exist some constants
c1, c2, c3, c4 > 0 such that

f(r, t) ≤ c1(t− r)−(α−1/2) exp

(

− c2x
2

t− r

)

(20)

and

∂tf(r, t) ≤ c3(t− r)−(α+1/2) exp

(

− c4x
2

t− r

)

. (21)

Proof. Recall that, in the remainder of the paper, κ stands for a positive constant which
can change from line to line. Notice also that (20) is easy to see due to

f(r, t) ≤ exp

(

− κx2

t− r

)
∫ t

r

(t− u)−1/2(u− r)−αdr.

Now we will concentrate on (21): let us perform the change of variable v = u−r
t−r

. This
yields

f(r, t) = (t− r)−(α−1/2)

∫ 1

0

(1 − v)−1/2v−α exp

(

− κx2

(1 − v)(t− r)

)

dv,

and thus
∂tf(r, t) = g1(r, t) + g2(r, t),

with

g1(r, t) = κx2(t− r)−(α+3/2)

∫ 1

0

(1 − v)−3/2v−α exp

(

− κx2

(1 − v)(t− r)

)

dv

and

g2(r, t) =

(

1

2
− α

)

(t− r)−(α+1/2)

∫ 1

0

(1 − v)−1/2v−α exp

(

− κx2

(1 − v)(t− r)

)

dv.

Therefore, thanks to the fact that u 7→ ue−u is a bounded function on R+, we have

g1(r, t) ≤ c(t− r)−(α+1/2)

∫ 1

0

(1 − v)−1/2v−α exp

(

− κx2

2(1 − v)(t− r)

)

dv

≤ c(t− r)−(α+1/2) exp

(

− κx2

2(t− r)

)
∫ 1

0

(1 − v)−1/2v−αdv,

10



which is an estimate of the form (20). Finally, it is easy to see that

g2(r, t) ≤ c(t− r)−(α+1/2) exp

(

− κx2

2(t− r)

)
∫ 1

0

(1 − v)−1/2v−αdv,

which completes the proof.

We are now ready to prove our bounds on M :

Proposition 3.5. Let M be the kernel defined at (19). Then, for some strictly positive
constants c5, c6, c7, c8 > 0, we have

Mt,s(x, y)

≤ c5(t− s)−(1−H)

(

t

s

)H−1/2 [

exp

(

−c6(x− y)2

t− s

)

+ exp

(

−c6(x+ y − 2)2

t− s

)]

and

|∂tMt,s(x, y)|

≤ c7(t− s)−(2−H)

(

t

s

)H−1/2 [

exp

(

−c8(x− y)2

t− s

)

+ exp

(

−c8(x+ y − 2)2

t− s

)]

.

Proof. First of all, we will use the decomposition (14), which allows to write

Mt,s(x, y) =

∫ t

s

G1,t−u(x, y)∂uKH(u, s)du+

∫ t

s

Rt−u(x, y)∂uKH(u, s)du.

Now the result is an immediate consequence of Lemma 3.4 applied to α < 3
2
−H , the only

difference being the presence of the term (u/s)H−1/2, which can be bounded by (t/s)H−1/2

each time it appears. This yields the desired result.

3.1.3 Differential of X

With the representation (18) in hand, we can now follow the heuristic steps in Remark
3.2 in order to get a reasonable definition of the differential of X in time. That is, we can
write formally that

X(dt, x) =

[
∫ t

0

∫ 1

0

∂tMt,s(x, y)W (ds, dy)

]

dt,

which means that if ϕ : [0, T ] × [0, 1] → R is a smooth enough function, we have

∫ T

0

ϕ(t, x)X(dt, x) =

∫ T

0

ϕ(t, x)

[
∫ t

0

∫ 1

0

∂tMt,s(x, y)W (ds, dy)

]

dt

=

∫ T

0

∫ 1

0

W (ds, dy)

[
∫ T

s

ϕ(t, x)∂tMt,s(x, y)dt

]

.

11



Note that this expression may not be convenient because it does not take advantage of
the continuity of ϕ. But, by Proposition 3.5, we can write

∫ T

s

ϕ(t, x)∂tMt,s(x, y)dt =

∫ T

s

(ϕ(t, x) − ϕ(s, x))∂tMt,s(x, y)dt+ ϕ(s, x)MT,s(x, y).

Here again, we can formalize these heuristic considerations into the following:

Definition 3.6. Let ϕ : Ω × [0, T ] × [0, 1] → R be a measurable process. We say that ϕ
is integrable with respect to X if the mapping

(s, y) 7→ [M∗
T,xϕ](s, y) :=

∫ T

s

(ϕ(t, x) − ϕ(s, x)) ∂tMt,s(x, y)dt+ ϕ(s, x)MT,s(x, y) (22)

belongs to Dom(δ), for almost all x ∈ [0, 1]. In this case we set

∫ T

0

ϕ(t, x)X(dt, x) =

∫ T

0

∫ 1

0

[M∗
T,xϕ](s, y)W (ds, dy).

Remark 3.7. Just like in the case of the fractional Brownian motion [1] or of the heat

equation driven by the space-time white noise [6], one can show that
∫ T

0
ϕ(t, x)X(dt, x)

can be interpreted as a divergence operator for the Wiener space defined by X.

Remark 3.8. It is easy to see that Proposition 3.5 implies that ϕ : [0, T ] → R is integrable
with respect to X if it is β-Hölder continuous in time with β > 1 −H.

3.2 Regularized version of Itô’s formula

The representation (18) of X also allows us to define a natural regularized version Xε of
X, depending on a parameter ε > 0, such that t 7→ Xε(t, x) will be a semi-martingale.
Indeed, set, for ε > 0,

Mε
t,s(x, y) =

∫ t

s

Gt−u+ε(x, y)∂uKH(u+ ε, s)du,

and

Xε(t, x) =

∫ t

0

∫ 1

0

Mε
t,s(x, y)W (ds, dy). (23)

We will also need a regularized operator Mε,∗
t,x (see (22)), defined naturally by

[

Mε,∗
t,xϕ

]

(s, y) =

∫ t

s

(ϕ(r, x) − ϕ(s, x))∂rM
ε
r,s(x, y)dr + ϕ(s, x)Mε

t,s(x, y).

Our strategy in order to get an Itô type formula for X will then be the following:

1. Apply the usual Itô formula to the semi-martingale t 7→ Xε(t, x).

2. Rearrange terms in order to get an expression in terms of the operator Mε,∗
t,x .

12



3. Study the limit of the different terms obtained through Steps 1 and 2, as ε → 0.

The current section will be devoted to the elaboration of Steps 1 and 2.

Lemma 3.9. Let ε > 0. Then, the process t 7→ Xε(t, x) has bounded variations on [0, T ],
for all x ∈ [0, 1].

Proof. The Fubini theorem for W and the semigroup property of G imply

Xε(t, x) =

∫ t

0

∫ 1

0

Gt−u+ ε

2
(x, z)

(
∫ u

0

∫ 1

0

Gε/2(z, y)∂uKH(u+ ε, s)W (ds, dy)

)

dzdu,

and notice that this integral is well-defined due to Kolmogorov’s continuity theorem.
Therefore, since t 7→ Gt−u+ε/2(x, z) is also a C1-function on [u, T ], we obtain that Xε is
differentiable with respect to t ∈ [0, T ], and

∂tX
ε(t, x)

=

∫ t

0

∫ 1

0

∂tGt−u+ ε

2
(x, z)

(
∫ u

0

∫ 1

0

Gε/2(z, y)∂uKH(u+ ε, s)W (ds, dy)

)

dzdu

+

∫ 1

0

Gε/2(x, z)

(
∫ t

0

∫ 1

0

Gε/2(z, y)∂tKH(t+ ε, s)W (ds, dy)

)

dz,

which is a continuous process on [0, T ]× [0, 1], invoking Kolmogorov’s continuity theorem
again in a standard manner.

An immediate consequence of the previous lemma is the following:

Corollary 3.10. Let t ∈ [0, T ], x ∈ [0, 1] and ε > 0. Then,

∂tX
ε(t, x) =

∫ t

0

∫ 1

0

(
∫ t

s

∂tGt−u+ε(x, y)∂uKH(u+ ε, s)du

)

W (ds, dy)

+

∫ t

0

∫ 1

0

Gε(x, y)∂tKH(t+ ε, s)W (ds, dy)

=

∫ t

0

∫ 1

0

∂tM
ε
t,s(x, y)W (ds, dy).

Proof. The result follows from Fubini’s theorem for W and from the semigroup property
of G.

Now we are ready to establish our regularized Itô’s formula in order to carry out Steps
1 and 2 of this section.

Proposition 3.11. Let f be a regular function in C2
b (R), ε > 0, and Xε the process

defined by (23). Then, for t ∈ [0, T ] and x ∈ [0, 1], Mε,∗
t,x f

′(Xε) belongs to Dom(δ) and

f(Xε(t, x)) = f(0) + A1,ε(t, x) + A2,ε(t, x),

13



where

A1,ε(t, x) =

∫ t

0

∫ 1

0

(

Mε,∗
t,x f

′(Xε)
)

(s, y)W (ds, dy)

is defined as a Skorohod integral, and

A2,ε(t, x) =

∫ t

0

f
′′

(Xε(s, x))Kε,x(ds),

with

Kε,x(s) =

∫ s

0

dv2

∫ v2

0

dv1G2(s+ε)−v1−v2
(x, x)

{

H(2H − 1)|v1 − v2|2H−2

−∂2
v1,v2

(
∫ v1+ε

v1

KH(v1 + ε, u)KH(v2 + ε, u)du

)

−∂v2
(KH(v1 + ε, v1)KH(v2 + ε, v1))

}

. (24)

Proof. By Corollary 3.10, we are able to apply the classical change of variable formula to
obtain

f(Xε(t, x)) = f(0) +

∫ t

0

f ′(Xε(s, x))

[
∫ s

0

∫ 1

0

∂sM
ε
s,u(x, y)W (du, dy)

]

ds. (25)

Moreover, the derivative of f ′(Xε(s, x)) in the Malliavin calculus sense is given by

Dv,z[f
′(Xε(s, x))] = Mε

s,v(x, z)f
′′(Xε(s, x))1{v≤s}.

Since the last quantity is bounded by cεv
1

2
−H for ε > 0, then invoking formula (10) for

the Skorohod integral, we get

f ′(Xε(s, x))

∫ s

0

∫ 1

0

∂sM
ε
s,u(x, y)W (du, dy)

=

∫ s

0

∫ 1

0

f ′(Xε(s, x))∂sM
ε
s,u(x, y)W (du, dy)

+ f ′′(Xε(s, x))

∫ s

0

∫ 1

0

(

∂sM
ε
s,u(x, y)

)

Mε
s,u(x, y)dudy. (26)

Denote for the moment the quantity
∫ s

0

∫ 1

0

(

∂sM
ε
s,u(x, y)

)

Mε
s,u(x, y)dudy by hx(s). Then,

combining (25) and (26), proceeding as the beginning of Section 3.1.3, and applying
Fubini’s theorem for the Skorohod integral, we have

f(Xε(t, x)) = f(0) + A1,ε(t, x) +

∫ t

0

f ′′(Xε(s, x))hx(s)ds. (27)

We can find now a simpler expression for hx(s). Indeed, since Mε
s,s(x, y) = 0, it is easily

checked that

hx(s) =
1

2
∂s

[
∫ s

0

∫ 1

0

(

Mε
s,u(x, y)

)2
dudy

]

. (28)
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Furthermore, the semigroup property for G yields
∫ s

0

∫ 1

0

(

Mε
s,u(x, y)

)2
dudy

=

∫ s

0

du

∫ s

u

dv1

∫ s

u

dv2

∫ 1

0

dy Gs+ε−v1
(x, y)Gs+ε−v2

(x, y)∂v1
KH(v1 + ε, u)

· ∂v2
KH(v2 + ε, u),

and this last expression is equal to

2

∫ s

0

du

∫ s

u

dv1

∫ s

v1

dv2G2(s+ε)−v1−v2
(x, x) (∂v1

KH(v1 + ε, u)) ∂v2
KH(v2 + ε, u)

= 2

∫ s

0

dv2

∫ v2

0

dv1G2(s+ε)−v1−v2
(x, x)

(
∫ v1

0

(∂v1
KH(v1 + ε, u))∂v2

KH(v2 + ε, u)du

)

.

(29)

But
∫ v1

0

(∂v1
KH(v1 + ε, u)) ∂v2

KH(v2 + ε, u)du

= ∂v2
∂v1

[
∫ v1

0

KH(v1 + ε, u)KH(v2 + ε, u)du

]

−∂v2
[KH(v1 + ε, v1)KH(v2 + ε, v1)]

= H(2H − 1)|v1 − v2|2H−2 − ∂v2
∂v1

[
∫ v1+ε

v1

KH(v1 + ε, u)KH(v2 + ε, u)du

]

−∂v2
[KH(v1 + ε, v1)KH(v2 + ε, v1)] . (30)

By putting together (29) and (30), we have thus obtained that

1

2

∫ s

0

∫ 1

0

(

Mε
s,u(x, y)

)2
dudy = Kε,x(s),

where Kε,x(s) is defined at (24). By plugging this equality into (27) and (28), the proof
is now complete.

3.3 Itô’s formula

We are now ready to perform the limiting procedure which will allow to go from Proposi-
tion 3.11 to the announced Itô formula. To this end we will need the following technical
result, which states that the modulus of continuity of t 7→ Xε(t, x) can be bounded from
below by any ν < H − 1/4, independently of ε.

Proposition 3.12. Let Xε be given by (23). Then for t1, t2 ∈ [0, T ] and x ∈ [0, 1], there
is a positive constant c (independent of ε) such that

E
(

|Xε(t2, x) −Xε(t1, x)|2
)

≤ c|t2 − t1|2ν ,

for any ν < H − 1
4
.
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Proof. Suppose that t1 < t2. Then

E
(

|Xε(t2, x) −Xε(t1, x)|2
)

≤ 2

∫ t1

0

∫ 1

0

(

Mε
t2,s(x, y) −Mε

t1,s(x, y)
)2
dyds

+2

∫ t2

t1

∫ 1

0

(

Mε
t2,s(x, y)

)2
dyds. (31)

Now using the fact that ∂uKH(u, s) > 0, we have

∫ t2

t1

∫ 1

0

(

Mε
t2,s(x, y)

)2
dyds

=

∫ t2

t1

∫ 1

0

(
∫ t2+ε

s+ε

Gt2+2ε−u(x, y)∂uKH(u, s)du

)2

dyds

≤
∫ t2+ε

0

∫ 1

0

(
∫ t2+ε

s

1[t1+ε,t2+ε](u)Gt2+2ε−u(x, y)∂uKH(u, s)du

)2

dyds

= H(2H − 1)

∫ t2+ε

t1+ε

∫ t2+ε

t1+ε

∫ 1

0

|u− v|2H−2Gt2+2ε−u(x, y)Gt2+2ε−v(x, y)dydudv

≤ c(t2 − t1)
2H− 1

2 , (32)

where the last inequality follows as in (16).
On the other hand, it is not difficult to see that

∫ t1

0

∫ 1

0

(

Mε
t2,s(x, y) −Mε

t1,s(x, y)
)2
dyds

≤ 2

∫ t1

0

∫ 1

0

(
∫ t1+ε

s+ε

[Gt2+2ε−u(x, y) −Gt1+2ε−u(x, y)] ∂uKH(u, s)du

)2

dyds

+2

∫ t1

0

∫ 1

0

(
∫ t2+ε

t1+ε

Gt2+2ε−u(x, y)∂uKH(u, s)du

)2

dyds

= B1 +B2. (33)

Observe now that we can proceed as in (32) to obtain

B2 ≤ c(t2 − t1)
2H− 1

2 , (34)

and it is also readily checked that

B1 ≤ 2

∫ t1+2ε

0

∫ 1

0

(
∫ t1+2ε

s

|Gt2+2ε−u(x, y) −Gt1+2ε−u(x, y)|∂uKH(u, s)du

)2

dyds

= 2H(2H − 1)

∫ t1+2ε

0

∫ t1+2ε

0

∫ 1

0

|u− v|2H−2|Gt2+2ε−u(x, y) −Gt1+2ε−u(x, y)|

·|Gt2+2ε−v(x, y) −Gt1+2ε−v(x, y)|dydudv.

Finally, the proof follows combining (17), and (31)-(34).
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Let us state now the main result of this paper.

Theorem 3.13. Let X be the process defined by (12) and f ∈ C2
b (R). Then, for t ∈ [0, T ]

and x ∈ [0, 1], the process M∗
t,xf

′(X) belongs to Dom(δ) and

f(X(t, x)) = f(0) + A1(t, x) + A2(t, x),

where

A1(t, x) =

∫ t

0

∫ 1

0

(

M∗
t,xf

′(X)
)

(s, y)W (ds, dy)

and

A2(t, x) =
1

2

∫ t

0

f ′′(X(s, x))Kx(ds),

with

Kx(s) = H(2H − 1)

∫ s

0

∫ s

0

G2s−v1−v2
(x, x)|v1 − v2|2H−2dv1dv2.

As mentioned before, in order to prove this theorem, we use the regularized Itô formula
of Proposition 3.11, and we only need to study the convergence of the terms A1,ε and
A2,ε appearing there. However, this analysis implies long and tedious calculations. This
is why we have chosen to split the proof of our theorem into a series of lemmas which will
be given in the next section.

3.4 Proof of the main result

The purpose of this section is to present some technical results whose combination provides
us the proof of our Itô’s formula given at Theorem 3.13. We begin with the convergence
A2,ε → A2, for which we provide first a series of lemmas.

Lemma 3.14. Let Lε
1 be the function defined on [0, T ] by

Lε
1(s) =

∫ s

0

dv2

∫ v2

0

dv1G2(s+ε)−v1−v2
(x, x)KH(v1 + ε, v1)∂v2

KH(v2 + ε, v1).

Then s 7→ ∂sL
ε
1(s) converges to 0 in L1([0, T ]), as ε ↓ 0.

Proof. Note that by (14) we only need to study the convergence of ∂sL
ε
11(s), where

Lε
11(s) =

∫ s

0

dv2

∫ v2

0

dv1
KH(v1 + ε, v1)

√

2(s+ ε) − v1 − v2

∂v2
KH(v2 + ε, v1). (35)

Indeed, this term will show us the technique and the difficulties for the remaining terms.
We will now proceed to a series of change of variables in order to get rid of the

parameter s in the boundaries of the integrals defining Lε
11: using first the change of

variable z = v2−v1

s−v1

, and then θ = v1/s, we can write

Lε
11(s) = cHs

3−2H

∫ 1

0

(
∫ sθ+ε

sθ

(u− sθ)H− 3

2uH− 1

2du

)

(1 − θ)

θ2H−1

·
∫ 1

0

(ε+ sθ + zs(1 − θ))H− 1

2

√

2ε+ s(1 − θ)(2 − z)
(zs(1 − θ) + ε)H− 3

2dzdθ.
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Hence, the change of variable v = u− sθ leads to

Lε
11(s) = cHs

3−2H

∫ 1

0

(
∫ ε

0

vH− 3

2 (v + sθ)H− 1

2dv

)

(1 − θ)

θ2H−1

·
∫ 1

0

(ε+ sθ + zs(1 − θ))H− 1

2

√

2ε+ s(1 − θ)(2 − z)
(zs(1 − θ) + ε)H− 3

2dzdθ.

Therefore, by differentiating this expression in s, we end up with a sum of the type

∂sL
ε
11(s) =

5
∑

j=1

Lε
11j(s),

where

Lε
111(s) = cHs

2−2H

∫ 1

0

(
∫ ε

0

vH− 3

2 (v + sθ)H− 1

2dv

)

(1 − θ)

θ2H−1

·
∫ 1

0

(ε+ sθ + zs(1 − θ))H− 1

2

√

2ε+ s(1 − θ)(2 − z)
(zs(1 − θ) + ε)H− 3

2dzdθ,

and where the terms Lε
112, . . . , L

ε
115, whose exact calculation is left to the reader for sake

of conciseness, are similar to Lε
111.

Finally, we have

Lε
111(s) ≤ cHs

−H

(
∫ ε

0

vH− 3

2dv

)(
∫ 1

0

(1 − θ)H−1

θ2H−1
dθ

)
∫ 1

0

zH− 3

2dz ≤ cHε
H−1/2s−H ,

and it is easily checked that this last term converges to 0 in L1([0, T ]). Furthermore, it
can also be proved that |Lε

11j(s)| ≤ cLε
111(s) for 2 ≤ j ≤ 5, which ends the proof.

Lemma 3.15. Let Lε
2 be the function defined on [0, T ] by

Lε
2(s) =

∫ s

0

dv2

∫ v2

0

dv1G2(s+ε)−v1−v2
(x, x)∂v1

(
∫ v1+ε

v1

KH(v1 + ε, u)∂v2
KH(v2 + ε, u)du

)

.

Then s 7→ ∂sL
ε
2(s) converges to 0 in L1([0, T ]), as ε ↓ 0.

Proof. As in the proof of Lemma 3.14 we only show the convergence of ∂sL
ε
21(s), where

Lε
21(s) =

∫ s

0

dv2

∫ v2

0

dv1
1

√

2(s+ ε) − v1 − v2

∂v1
L̂(v1, v2),

with

L̂(v1, v2) =

∫ v1+ε

v1

KH(v1 + ε, u)∂v2
KH(v2 + ε, u)du.
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Towards this end, we will proceed again to a series of changes of variables in order to
eliminate the parameter s from the boundaries of the integrals: notice first that the
definition of KH , and the change of variables θ = u−v1

r−v1

and z = r − v1 yield

L̂(v1, v2) = cH(v2 + ε)H− 1

2

∫ ε

0

(v1 + z)H− 1

2

∫ 1

0

(v1 + θz)1−2H zH− 1

2

(1 − θ)
3

2
−H

· (v2 + ε− v1 − θz)H− 3

2dθdz.

Thus

∂v1
L̂(v1, v2) = (v2 + ε)H− 1

2

[

cH

∫ ε

0

(v1 + z)H− 3

2

∫ 1

0

(v1 + θz)1−2H zH− 1

2

(1 − θ)
3

2
−H

· (v2 + ε− v1 − θz)H− 3

2dθdz

− cH

∫ ε

0

(v1 + z)H− 1

2

∫ 1

0

(v1 + θz)−2H zH− 1

2

(1 − θ)
3

2
−H

(v2 + ε− v1 − θz)H− 3

2dθdz

+ cH

∫ ε

0

(v1 + z)H− 1

2

∫ 1

0

(v1 + θz)1−2H zH− 1

2

(1 − θ)
3

2
−H

(v2 + ε− v1 − θz)H− 5

2dθdz

]

. (36)

Hence, it is easily seen that Lε
21 is a sum of terms of the form

Qα,β,ν(s) =

∫ s

0

dv2

∫ v2

0

dv1
(v2 + ε)H− 1

2

√

2(s+ ε) − v1 − v2

∫ ε

0

(v1 + z)α

·
∫ 1

0

(v1 + θz)β zH− 1

2

(1 − θ)
3

2
−H

(v2 + ε− v1 − θz)νdθdz

= s2

∫ 1

0

dη

∫ 1

0

du
η(sη + ε)H− 1

2

√

2(s+ ε) − usη − sη

∫ ε

0

(usη + z)α

·
∫ 1

0

(usη + θz)β zH− 1

2

(1 − θ)
3

2
−H

(sη + ε− sηu+ θz)νdθdz,

by applying the changes of variable u = v1/v2, and η = v2/s. Differentiating this last
relation, we are now able to compute ∂sL

ε
21(s), and see that this function goes to 0 as

ε ↓ 0 in L1([0, T ]), similarly to what we did in the proof of Lemma 3.14.

Lemma 3.16. Let Lε
3 be the function defined on [0, T ] by

Lε
3(s) = H(2H − 1)

∫ s

0

dv2

∫ v2

0

dv1G2(s+ε)−v1−v2
(x, x)(v2 − v1)

2H−2.

Then ∂sL
ε
3(s) tends to 1

2
Kx(ds) in L1([0, T ]), as ε ↓ 0.

Proof. As in the proofs of Lemmas 3.14 and 3.15, we only need to use the change of
variables z = v1/v2 and θ = v2/s.
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Lemma 3.17. Let X and Xε be given in (18) and (23), respectively. Then Xε(·, x)
converges to X(·, x) in L2(Ω × [0, T ]) and, for t ∈ [0, T ], Xε(t, x) goes to X(t, x) in
L2(Ω), as ε ↓ 0.

Proof. The result is an immediate consequence of the definitions of the processes Xε(·, x)
and X(·, x), the fact that |Mε

t,s(x, y)| ≤ c(t−s)H−1s
1

2
−H and of the dominated convergence

theorem.

We are now ready to study the convergence of the term A2,ε:

Lemma 3.18. Let t ∈ [0, T ] and x ∈ [0, 1]. Then the random variable

Bε
2(t, x)

:= H(2H − 1)

∫ t

0

f ′′(Xε(s, x))∂s

(
∫ s

0

dv2

∫ v2

0

dv1G2(s+ε)−v1−v2
(x, x)(v2 − v1)

2H−2

)

ds

converges to A2(t, x) in L2(Ω) as ε ↓ 0.

Proof. Since f ′′ is a bounded function, then

E
(

|Bε
2(t, x) − A2(t, x)|2

)

≤ c

∫ t

0

E
(

(f ′′(X(s, x)) − f ′′(Xε(s, x)))2
)

|∂sKx(s)|ds

+ c

(
∫ t

0

|∂sKx(s) −H(H − 1

2
)∂s

∫ s

0

dv2

∫ v2

0

dv1G2(s+ε)−v1−v2
(x, x)(v2 − v1)

2H−2|ds
)2

.

Hence the result is a consequence of Lemmas 3.16 and 3.17, and the dominated conver-
gence theorem.

Now we study the convergence of A1,ε to A1 in L2(Ω).

Lemma 3.19. Let X and Xε be given in (18) and (23), respectively. Then, for t ∈ [0, T ]
and x ∈ [0, 1],

E

(
∫ t

0

∫ 1

0

[

(M∗
t,xf

′(X))(s, y)− (Mε,∗
t,x f

′(Xε))(s, y)
]2
dyds

)

→ 0

as ε ↓ 0.

Proof. We first note that

E

(
∫ t

0

∫ 1

0

[

(M∗
t,xf

′(X))(s, y)− (Mε,∗
t,x f

′(Xε))(s, y)
]2
dyds

)
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can be bounded from above by:

cE

(
∫ t

0

∫ 1

0

[
∫ t

s

(f ′(X(r, x)) − f ′(X(s, x))

− f ′(Xε(r, x)) + f ′(Xε(s, x)))∂rMr,s(x, y)dr

]2

dyds

)

+ cE

(

∫ t

0

∫ 1

0

[
∫ t

s

(f ′(Xε(r, x)) − f ′(Xε(s, x)))(∂rMr,s(x, y) − ∂rM
ε
r,s(x, y))dr

]2

dyds

)

+ cE

(
∫ t

0

∫ 1

0

[(f ′(X(s, x)) − f ′(Xε(s, x)))Mt,s(x, y)]
2
dyds

)

+ cE

(
∫ t

0

∫ 1

0

[

f ′(Xε(s, x))(Mt,s(x, y) −Mε
t,s(x, y))

]2
dyds

)

= c(B1 + . . .+B4). (37)

Next observe that

B2 ≤
∫ t

0

∫ 1

0

[
∫ t

s

E
(

(f ′(Xε(r, x)) − f ′(Xε(s, x)))2
)

|∂rMr,s(x, y) − ∂rM
ε
r,s(x, y)|dr

]

·
[
∫ t

s

|∂θMθ,s(x, y) − ∂θM
ε
θ,s(x, y)|dθ

]

dyds.

Now notice that Proposition 3.12 and the inequality

|∂rM
ε
r,s(x, y)|

≤ c

(

r + ε

s

)H− 1

2

(r − s+ ε)H−2

(

exp

(

−c1
(x− y)2

ε+ (r − s)

)

+ exp

(

−c1
(x+ y − 2)2

ε+ (r − s)

))

imply, for β small enough, that

E
(

(f ′(Xε(r, x)) − f ′(Xε(s, x)))2
)

|∂rMr,s(x, y) − ∂rM
ε
r,s(x, y)|

goes to 0 as ε ↓ 0 and that it is bounded by cs
1

2
−H(r − s)3H− 5

2
−β. Thus

B2 → 0 (38)

because of the dominated convergence theorem.
Since f ′ is a bounded function, then

B4 ≤ c

∫ t

0

∫ 1

0

(

Mt,s(x, y) −Mε
t,s(x, y)

)2
dyds,

which goes to 0 due to the definition of Mε and the dominated convergence theorem.
Hence, by (37), and (38), we only need to show that B1 + B3 → 0 as ε ↓ 0 to finish the
proof. This can been seen using Lemma 3.17 and proceeding as the beginning of this
proof.
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Lemma 3.20. Let X and Xε be given by (18) and (23), respectively. Then, for t ∈ [0, T ]
and x ∈ [0, 1], M∗

t,xf
′(X) belongs to Dom (δ). Moreover

δ
(

Mε,∗
t,x f

′(Xε)
)

→ δ
(

M∗
t,xf

′(X)
)

as ε ↓ 0 in L2(Ω).

Proof. The result follows from Lemmas 3.14-3.19, and from the fact that δ is a closed
operator.
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