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This paper presents an a posteriori error estimator for mixed-mode stress intensity factors in plane linear elasticity. A surface integral over an arbitrary crown is used for the separate calculation of the combined mode's stress intensity factors. The error in the quantity of interest is based on goaloriented error measures and estimated through an error in the constitutive relation.

INTRODUCTION

The development of a finite element discretized model starting from a continuous mechanical model leads to a partial loss of the information contained in the continuous model and, thus, to the introduction of discretization errors. Methods have been developed over many years to evaluate the global quality of finite element analyses [START_REF] Babuska | A posteriori estimates for the finite element method[END_REF][START_REF] Ladevèze | Méthode de calcul par encadrement des fréquences propres de structures élastiques[END_REF][START_REF] Zienkiewicz | A simple error estimator and adaptive procedure for practical engineering analysis[END_REF]. For linear problems, all of these methods provide a global energy-based estimate of the discretization error. Most of the time, such global information is insufficient for dimensioning purposes in mechanical design. In many common situations, the dimensioning criteria involve local quantities (stresses, displacements, intensity factors. . .). The development of error estimators for such quantities was initiated in the 80's [START_REF] Babuska | The post-processing approach of the finite element method part ii: The calculation of the stress intensity factor[END_REF][START_REF] Kelly | Procedures for residual equilibration and local error estimation in the finite element method[END_REF]. Recently, numerous works have been published which provide error estimates and bounds for several quantities of interest [START_REF] Rannacher | A feedback approach to error control in finite element methods: application to linear elasticity[END_REF][START_REF] Rannacher | A posteriori error control and mesh adaptation for f.e. models in elasticity and elastoplasticity[END_REF][START_REF] Peraire | Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement[END_REF][START_REF] Prudhomme | On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors[END_REF][START_REF] Ladevèze | Local error estimators for finite element analysis[END_REF][START_REF] Ohnimus | Local error estimates of fem for displacements and stresses in linear elasticity by solving local neumann problems[END_REF][START_REF] Prudhomme | Practical methods for a posteriori error estimation in engineering applications[END_REF]. In these papers, the quantities of interest depend linearly on the solution of the problem and the calculation of the error estimate for the quantity of interest requires the approximate resolution of an auxiliary problem.

Within the framework of the fracture mechanic, the stress intensity factors, the energy release rate G and the J -integral are some of the well known quantity of interest. Few work are devoted to the study of the quality of these quantities. An estimation of the quality of the stress intensity factors was proposed in [START_REF] Strouboulis | A posteriori estimation and adaptative control of the error in the quantity of interest. part 1: A posteriori estimation of the error in the von mises stress and the stress intensity factor[END_REF]. The approach was based on the partition of the error into two parts called local and pollution error and by constructing separate estimates for each component. However, this approach does not lead to lower or upper bounds of the stress intensity factors. The quality of the J -integral was studied in [START_REF] Heintz | On adaptive strategies and error control in fractures mechanics[END_REF][START_REF] Heintz | On adaptive strategies and error control in fracture mechanics[END_REF][START_REF] Ruter | Goal-oriented a posteriori error in linear elastic fracture mechanics[END_REF] by applying the techniques suggested in [START_REF] Rannacher | A feedback approach to error control in finite element methods: application to linear elasticity[END_REF][START_REF] Rannacher | A posteriori error control and mesh adaptation for f.e. models in elasticity and elastoplasticity[END_REF]. However, as the J -integral is a quadratic functional of the displacement, the proposed estimators are based on a linearisation of the J -integral. Recently in [START_REF] Xuan | Computing upper and lower bounds for the J -integral in two-dimensional linear elasticity[END_REF] it was proposed lower and higher bounds of this quantity by introducing rigorous bounds of the quadratic part.

In this work, we propose an error estimator for mixed-mode stress intensity factors in plane linear elasticity. Contrary to the J -integral, the stress intensity factors have the advantage of being linear functions of displacement, and it is possible to directly apply the techniques developed in [START_REF] Rannacher | A feedback approach to error control in finite element methods: application to linear elasticity[END_REF][START_REF] Rannacher | A posteriori error control and mesh adaptation for f.e. models in elasticity and elastoplasticity[END_REF][START_REF] Peraire | Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement[END_REF][START_REF] Prudhomme | On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors[END_REF][START_REF] Ladevèze | Local error estimators for finite element analysis[END_REF][START_REF] Ohnimus | Local error estimates of fem for displacements and stresses in linear elasticity by solving local neumann problems[END_REF][START_REF] Prudhomme | Practical methods for a posteriori error estimation in engineering applications[END_REF] to estimate their quality. The simplest way to calculate the stress intensity factors as linear functions of the solution of the problem is through the Crack Opening Displacement Method [START_REF] Sih | The bending of plates of dissimilar materials with crack[END_REF]. This method is easy to use and it enables one to obtain the stress intensity factors for a mixed-mode fracture problem with a very simple post-processing. However, this formula itself involves an approximation of the exact stress intensity factors; its accuracy depends on the choice of the points on the side on the crack, and reliable results require a refined finite element mesh. In order to obtain an exact representation formula for the calculation of the stress intensity factors K I and K II , we used the contour integral proposed by Stern et al. [19]. This contour integral is recast as a linear functional of the displacement involving only area integration.

The paper is organized as follows: in Section 2, we briefly recall the basics of constitutive relation error estimators in linear elasticity. Section 3 introduces the local version of the error estimator for quantities of interest which depends linearly on the solution of the problem. In Section 4, we define the output functional which must be estimated. Finally, numerical examples which illustrate the good behaviour of the error estimator are proposed in Section 5.

THE ERROR IN CONSTITUTIVE RELATION

The problem to be solved

Let us consider a 2D elastic structure defined in a domain bounded by * (Figure 1). The external actions on the structure are represented by a prescribed displacement u d over a subset * 1 of the boundary, a surface force density F d defined over * 2 = * -* 1 , and a body force density f d defined in . The Hooke's operator of the material is denoted K. Thus, the problem can be formulated as: Find a displacement field u and a stress field defined in which verify:

• the kinematic constraints: • the equilibrium equations:

u ∈ U and u| * 1 = u d (1) 
∈ S and ∀u * ∈ U 0 - : (u * ) d + f d .u * d + * 2 F d .u * d = 0 (2) 
• the constitutive relation:

= K (u) (3) 
U is the space in which the displacement field is being sought, S = L 2 [ ] 3 the space of the stresses, U 0 the space of the fields in U which are zero on * 1 , and (u) denotes the linearized deformation associated with the displacement:

[ (u)] ij = 1 2 (u i,j + u j,i ) (4) 
The Galerkin finite element method provides an approximation u h to u in a finite element space U h ∈ U. The finite-dimension space U h is associated with a finite element mesh of characteristic size h. Let P h denote a partition of into N elements E k . This partition is assumed to verify ¯ = k Ēk (the mesh cover the whole domain) with E i ∩ E j = ∅ for any i different from j . The discretized problem is:

Find a kinematically admissible finite element displacement field u h such that:

∀u * h ∈ U h0 -K (u h ) : (u * h ) d + f d .u * h d + * 2 F d .u * h d = 0 (5) 
where

U h0 = {u h ∈ U h ; u h | * 1 = 0}
The corresponding stress field is calculated using the constitutive relation:

h = K (u h ) (6) 
The discretization error e h is the difference between the finite element displacement and the actual solution of the problem.

e h = u -u h (7)
Traditionally, the energy norm is used as the measure of the error:

e h = K (u -u h ) : (u -u h ) d 1/2 = ( -h ) : K -1 ( -h ) d 1/2 (8) 
The contribution of an element E of the finite element mesh to the global error is

e hE = E K (u -u h ) : (u -u h ) dE 1/2 = E ( -h ) : K -1 ( -h ) dE 1/2 (9) 
with the relation:

e 2 h = E∈P h e 2 hE

Definition of the error in constitutive relation

The approach based on the error in constitutive relation relies on a partition of the equations of the problem to be solved into two groups. In linear elasticity, the first group consists of the kinematic constraints (1) and the equilibrium equations (2); the constitutive relation (3) constitutes the second group. Let us consider an approximate solution to the problem, denoted ( û, ˆ ), which verifies the first group of equations:

The fields ( û, ˆ ) are said to be admissible if:

• the field û verifies (1),

• the field ˆ verifies (2).

If ( û, ˆ ) verifies the constitutive relation (3) in , then ( û, ˆ ) = (u, ). If, however, ( û, ˆ ) does not verify the constitutive relation, the quality of this admissible solution is measured by the residual, denoted ê( û, ˆ ), with respect to the verification of the constitutive relation:

ê( û, ˆ ) = ˆ -K ( û) (10) 
The associated constitutive relation error for all the elements E of the finite element mesh is

ê2 ( û, ˆ ) 2 = E∈P h êE ( û, ˆ ) 2 ( 11 
)
where êE is the contribution of element E of the mesh to the error:

êE ( û, ˆ ) 2 = E ( ˆ -K ( û)) : K -1 ( ˆ -K ( û)) dE (12) 
Then, the relative error ˆ is defined by

ˆ ( û, ˆ ) 2 = ê( û, ˆ ) 2 ˆ * K -1 ˆ * d (13) 
with

ˆ * = 1 2 ( ˆ + K ( û))
The pair (u h , h ) is not an admissible solution. In order to develop an error estimator based on the concept of error in the constitutive relation, we construct an admissible pair ( ûh , ˆ h ) from the finite element solution and from the data.

• Since the finite element displacement field verifies the kinematic constraints, one takes:

ûh = u h in (14) 
• However, the stress field h does not verify the equilibrium equations ( 2). Techniques to reconstruct equilibrated stress fields from h and the data have been under development for several years and are described in References [START_REF] Ladevèze | Error estimation and mesh optimization for classical finite elements[END_REF][START_REF] Ladevèze | New advances on a posteriori error on constitutive relation in f.e. analysis[END_REF][START_REF] Florentin | Evaluation of the local quality of stresses in 3d finite element analysis[END_REF].

Relation to the discretization error

The error in the constitutive relation can be related to the discretization error through the Prager-Synge theorem [START_REF] Prager | Approximation in elasticity based on the concept of functions space[END_REF]:

ê2 h = ( ˆ h -) : K -1 ( ˆ h -) d + ( -h ) : K -1 ( -h ) d ( 15 
)
This theorem leads to the following inequalities:

e h = ( -h ) : K -1 ( -h ) d 1/2 êh (16) 
and

( ˆ h -) : K -1 ( ˆ h -) d 1/2 êh (17) 

GOAL-ORIENTED ERROR ESTIMATION

Instead of estimating the numerical error in terms of the energy norm, it would be preferable to express this error in terms of physically meaningful quantities of interest. In this section, we briefly recall the techniques developed in the literature for the case where the quantity of interest is a linear functional L of the displacement. In this case, the objective of the calculation is to assess the quality of I h = L(u h ) by estimating |I -I h |, where I = L(u). We refer the reader to References [START_REF] Prudhomme | On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors[END_REF][START_REF] Ladevèze | Local error estimators for finite element analysis[END_REF][START_REF] Ohnimus | Local error estimates of fem for displacements and stresses in linear elasticity by solving local neumann problems[END_REF][START_REF] Prudhomme | Practical methods for a posteriori error estimation in engineering applications[END_REF][START_REF] Strouboulis | A posteriori estimation and adaptative control of the error in the quantity of interest. part 1: A posteriori estimation of the error in the von mises stress and the stress intensity factor[END_REF] for a detailed description of this approach. Because of the linearity assumption, one obtains:

I -I h = L(u) -L(u h ) = L(u -u h ) = L(e h )
Thus, the estimation of |I -I h | is equivalent to the estimation of |L(e h )|.

Definition of the auxiliary problem

Let us consider the following auxiliary problem: Find z ∈ U 0 and aux = K (z) such that:

∀ u * ∈ U 0 K (u * ) : (z) d = L(u * ) ( 18 
)
Replacing u * by e h , one obtains

L(e h ) = K (e h ) : (z) d (19) 
The function z indicates how the discretization error affects the quantity L(e h ). If z could be exactly computed, one could determine L(u) directly from the input data, as from ( 2) and ( 18) one would have:

L(u) = K (u) : (z) d = f d .z d + * 2 F d .z d
Unfortunately, the problem for the function z is as complicated to solve as the reference problem for the solution u. Thus we have to compute an approximate value for z.

Relation [START_REF] Stern | A contour integral computation of mixed-mode stress intensity factors[END_REF] is the starting point of the goal-oriented error estimators developed in References [START_REF] Kelly | Procedures for residual equilibration and local error estimation in the finite element method[END_REF][START_REF] Rannacher | A feedback approach to error control in finite element methods: application to linear elasticity[END_REF][START_REF] Peraire | Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement[END_REF][START_REF] Prudhomme | On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors[END_REF][START_REF] Ohnimus | Local error estimates of fem for displacements and stresses in linear elasticity by solving local neumann problems[END_REF][START_REF] Strouboulis | A posteriori estimation and adaptative control of the error in the quantity of interest. part 1: A posteriori estimation of the error in the von mises stress and the stress intensity factor[END_REF]. The approaches proposed in these papers differ on three points:

• the technique developed to approximate z, • the technique used to obtain lower and upper bounds of |L(e h )|,

• the error estimator used to calculate the bounds.

Approximate solution of the auxiliary problem

Let z h be the finite element approximation of z defined in the finite element space U h0 :

∀ u * h ∈ U h0 K (u * h ) : (z h ) d = L(u * h ) (20) 
Because of the orthogonality property, one has:

K (e h ) : (u * h ) d = 0 ∀ u * h ∈ U h0 ( 21 
)
Replacing u * h by z h :

K (e h ) : (z h ) d = 0 ( 22 
)
By combining ( 19) and ( 22), one obtains

I -I h = L(e h ) = K (e h ) : (z -z h ) d = ( aux -aux h ) : (e h ) d (23) 
Let ˆ aux h be an equilibrated stress associated with aux h through the techniques developed in Reference [START_REF] Ladevèze | Error estimation and mesh optimization for classical finite elements[END_REF]. The following property is verified:

( aux -ˆ aux h ) : (u * ) d = 0 ∀ u * ∈ U 0 ( 24 
)
In particular, replacing u * by e h :

( aux -ˆ aux h ) : (e h ) d = 0 ( 25 
)
and combining ( 25) and ( 23):

I -I h = L(e h ) = ( ˆ aux h -aux h ) : (e h ) d = ( ˆ aux h -aux h ) : K -1 ( -h ) d = E∈P h E ( ˆ aux h -aux h ) : K -1 ( -h ) dE (26)

Upper-bound property

Let êaux h be the constitutive relation error measured on the auxiliary problem:

( êaux h ) 2 = E∈P h ( êaux hE ) 2 (27) 
with

( êaux hE ) 2 = êE (z h , ˆ aux h ) 2 = E ( ˆ aux h -aux h ) : K -1 ( ˆ aux h -aux h ) dE (28) 
Applying the Cauchy-Schwartz inequality to relation (26), one obtains the following upper bounds:

|I -I h | = êaux h e h cos êaux h e h ( 29 
)
where is the unknown angle between zz h and uu h , and

|I -I h | E∈P h
êaux hE e hE (30)

Goal-oriented error estimator

By using the Prager-Synge theorem [START_REF] Ruter | Goal-oriented a posteriori error in linear elastic fracture mechanics[END_REF], relation (29) leads to

|I -I h | êaux h êh (31) 
However, this upper bound is too large to be of practical use when the angle becomes near /2. To overcome this problem, following the approach defined in References [START_REF] Ladevèze | Local error estimators for finite element analysis[END_REF][START_REF] Florentin | Evaluation of the local quality of stresses in 3d finite element analysis[END_REF][START_REF] Florentin | Etude de la qualité locale de différentes versions de l'estimateur d'erreur en relation de comportement[END_REF], we estimate this bound using the error in constitutive relation developed in Reference [START_REF] Ladevèze | Local error estimators for finite element analysis[END_REF]. The local error estimator is defined by

êloc = E∈P h êaux hE êhE (32) 
where êhE = êE (u h , ˆ h ) (Equation ( 12)), and êaux hE is defined by Equation (28). The lower and upper bounds of the local quantity are estimated as Îh,up = I h + êloc and Îh,lo = I h -êloc (33)

APPLICATION TO THE ESTIMATION OF THE ERROR IN THE STRESS INTENSITY FACTORS

Let us consider a two-dimensional cracked structure with no body forces (Figure 1). The faces 1 and 2 of the crack are traction-free and on the remainder of the boundary either the displacements or the tractions are prescribed.

The analytical expressions of the displacement near the crack's tip are known in polar coordinates:

u r = 1 4 r 2 1/2 (2 -1) cos 2 -cos 3 2 K I -(2 -1) sin 2 -3 sin 3 2 K II + r 1/2 (r) u = 1 4 r 2 1/2 -(2 + 1) sin 2 + sin 3 2 K I -(2 + 1) cos 2 -3 cos 3 2 K II + r 1/2 (r) (34)
with lim r→0 (r) = 0. In this expression, K I and K II and the open-mode and shear-mode stress intensity factors, respectively; is the shear modulus and a parameter which is equal to (3 -)/(1 + ) for plane stress and to 3 -4 for plane strain; denotes the Poisson's ratio.

Expression of the output quantities of interest K I and K II

Maxwell-Betti's reciprocal work theorem for the plane elastic state leads to a path-independent contour integral, which was introduced in Reference [START_REF] Stern | A contour integral computation of mixed-mode stress intensity factors[END_REF]:

* [u. ˜ n -ũ. n] ds = 0 ( 35 
)
where * = C 1 ∪ 2 ∪ C ∪ 1 and ( ũ, ˜ ) is an arbitrary solution of the elastic problem defined near the crack's tip:

div ˜ = 0 in 1 ˜ n = 0 on 1 ∪ 2 ˜ = K (u) in 1 ( 36 
)
where C designates a circular boundary of radius r centred at the crack's tip and C 1 the remainder of the boundary, as shown in Figure 2. Equation ( 35) can be written in the form:

-

C [u. ˜ n -ũ. n] ds = C 1 [u. ˜ n -ũ. n] ds (37) 
Let us designates by I the contour integral on C .

I ( ũ, ˜ ) = - C [u. ˜ n -ũ. n] ds (38) 
Equation (37) shows that the contour integral I ( ũ, ˜ ) is independent on the radius r . The idea now is to evaluate these integrals for arbitraly small r and a suitable choice for the pair ( ũ, ˜ ). Stern et al. [START_REF] Stern | A contour integral computation of mixed-mode stress intensity factors[END_REF] proposed two solutions of Equation (36) defined by ( 39) and (40) such that the products r 1/2 ũ• and r 3/2 ˜ • are finite on C (where • = I, II).

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ũI r = u 0 (2 + 1) cos 3 2 -3 cos 2 ũI = u 0 -(2 -1) sin 3 2 + 3 sin 2 
˜ I r = 0 7 cos 3 2 -3 cos 2 
˜ I = 0 cos 3 2 + 3 cos 2 
˜ I r = 0 3 cos 3 2 + 3 cos 2 (39) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ũII r = u 0 (2 + 1) sin 3 2 -sin 2 ũII = u 0 (2 -1) cos 3 2 -cos 2 
˜ II r = 0 7 sin 3 2 -sin 2 
˜ II = 0 sin 3 2 + sin 2 ˜ II r = -0 cos 3 2 + cos 2 ( 40 
)
where

u 0 = 1/2(2 r) 1/2 (1 + ) and 0 = -/2(2 r 3 ) 1/2 (1 + ).
The evaluation of the I ( ũ• , ˜ • ) integral is performed on the inner circular boundary C :

I ( ũ• , ˜ • ) = + - ( ˜ • r u r + ˜ • r u -r ũ• r -r ũ• )r d (41)
Introducing Equations ( 39) and (40) and the classical expressions of u r , u , r , , r (Equation (34)) into Equation (41), one obtains:

I ( ũI , ˜ I ) = K I + (r ) and I ( ũII , ˜ II ) = K II + (r ) ( 42 
)
where the last term (r ) goes to zero. Relation (37) leads to the formula:

K I = C 1 [u. ˜ I n -ũI . n] ds K II = C 1 [u. ˜ II n -ũII . n] ds (43) 
This path-independent integral cannot be used directly as the loading of an auxiliary problem because of the presence of the term C ũ. n ds = C ũ.(K (u))n ds which cannot written as a loading term. However, it can be transformed into a surface integral over an arbitrary crown 2 by introducing an arbitrary scalar field , continuously derivable over the crown 2 , such that (M) = 1 on C 1 and (M) = 0 on C 2 . For the sake of simplicity, let us assume that C 1 and C 2 are circles centred at the crack's tip with radii R 1 and R 2 , as shown in Figure 3. The function being used is

(r, ) = R 2 -r R 2 -R 1 ( 44 
)
K • = C 1 [u. ˜ • n -ũ• . n] ds (45) 
where • = I, II. Applying the divergence theorem, Equation (45) becomes:

K • = 2 (K ( ũ• ) -˜ • ) : (u) d - 2 ˜ • grad().u d (46) 
Thus, the stress intensity factors are expressed in the form of a linear output functional of the displacements u. The approximate values K I,h and K II,h are obtained from the finite element solution by replacing the exact displacement field u by the finite element displacement field u h in relation (46):

K •,h = 2 (K ( ũ• ) -˜ • ) : (u h ) d - 2 ˜ • grad().u h d (47) 
The error on these two linear functionals can be computed by using the techniques described in Section 3. The loading of the auxiliary problems are

a prestress (K ( ũ• ) -˜ • ) applied in 2 a body force ˜ • grad() in 2 (48)
The computation of the stress intensity factors and the estimation procedure for the error in the stress intensity factors can be summarized as 

KII,lo = K II,h -ˆ II,loc (50) 

NUMERICAL EXAMPLES

Three examples will be presented. The first problem is that of a single edge crack in a plate subjected to a uniform tension state (Figure 4). The second problem is that of a cantilever beam subjected to end shear, with the same geometry as the first problem, but involving a combination of Modes I and II (Figure 5). The third example is that of a rectangular plate with an inclined crack, as shown in Figure 6. The geometric parameters are w = 7, a/w = 1 2 , L/w = 16 7 for Problems 1 and 2, and w = 7, a/w = results were obtained using six-node triangular elements. The coarsest meshes are shown in Figures 789. In each case, we studied the evolution of the stress intensity factors as a function of the number of degrees of freedom. For each example, the reference stress intensity factors were obtained on a very refined mesh with more than 100 000 elements, which we call the 'truth' mesh; these are denoted K I,ref and K II,ref .

For the first problem, only the open-mode stress intensity factor K I was studied since the shear-mode stress intensity factor equals zero. K I,ref calculated on the truth mesh was 9.335. The relative difference between this value and that given in Reference [START_REF] Murakami | Stress Intensity Factors Handbook[END_REF], K I = 9.37, is very small (0.37%), which assesses the good quality of the extraction technique. The values obtained for the stress intensity factors as functions of the number of the degree of freedom of the mesh being used are given in Table I.

In the second problem, both open-and shear-mode stress intensity factors are present. The stress intensity factors K I,ref and K II,ref obtained on the truth mesh were 33.93 and 4.530, respectively. The stress intensity factors given in Reference [START_REF] Stern | A contour integral computation of mixed-mode stress intensity factors[END_REF] for the open mode and in Reference [START_REF] Murakami | Stress Intensity Factors Handbook[END_REF] for the shear mode are 34.0 and 4.49. The relative differences are 0.21% for the open mode and 0.89% for the shear mode. The stress intensity factors and estimated errors calculated for each mesh are given in Table II for the open mode and in Table III for the shear mode. In the third problem, the reference stress intensity factors obtained with the truth mesh were K I,ref = 6.338 and K II,ref = 1.860. The relative difference between these and the values given in Reference [START_REF] Murakami | Stress Intensity Factors Handbook[END_REF], K I = 6.63 and K II = 1.91, is sufficiently small (4.4% for the open mode and 2.6% for the shear mode). The stress intensity factors and the estimated error are given in Table IV for the open mode and in Table V for the shear mode.

We also calculated the effectivity indexes defined as • = •,loc /|K •,h -K •,ref | with • = I, II. The evolutions of these effectivity indexes are shown in Figure 10 for the open mode and in Figure 11 for the mode.

CONCLUSION

We presented an error estimator for stress intensity factors in elastic fracture mechanic. The calculation of the open-and shear-mode stress intensity factors requires the resolution of a single finite element problem with three different loading cases. The results of these calculations are used to calculate the error estimator. Numerical experiments showed that the proposed error estimator leads to usable lower and upper bounds of the quantities of interest.
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  1. Solve the initial problem to obtain a finite element solution u h , h . 2. Use formula (47) to calculate K I,h and K II,h . 3. Calculate the error estimator êh for the initial problem and the elementary contributions êhE . 4. Solve two auxiliary problems on the initial mesh with the loading defined by Equation (48). 5. Calculate the error estimators êaux,I

	h for the two auxiliary problems.	, êaux,II h	and the elementary contributions êaux,II hE , êaux,II hE
	6. Calculate the error estimators for K I and K II
		ˆ I,loc =	E	êhE	êaux,I hE
					(49)
	ˆ II,loc =	E	êhE	êaux,II hE
	7. Calculate the estimated bounds:			
		KI,up = K I,h + ˆ I,loc
		KI,lo = K I,h -ˆ I,loc
		KII,up = K II,h + ˆ II,loc

Table I .

 I Problem 1: calculated stress intensity factors and their bounds.

	Number of DOFs	674	1454	5706	22 604
	K I,h	8.813	9.040	9.177	9.244
	I,loc KI,up	2.322 11.136	1.718 10.758	0.621 9.798	0.435 9.679
	KI,lo	6.491	7.322	8.556	8.809
	K I,ref	9.335	9.335	9.335	9.335

Table II .

 II Problem 2: open-mode stress intensity factors and their bounds.

	Number of DOFs	774	1742	6826	27 026
	K I,h	32.04	32.86	33.36	33.61
	II,loc KI,up	8.482 40.53	6.275 39.13	3.168 36.53	1.579 35.19
	KI,lo	23.56	26.58	30.19	32.03
	K I,ref	33.93	33.93	33.93	33.93

Table III .

 III Problem 2: shear-mode stress intensity factors and their bounds.

	Number of DOFs	774	1742	6826	27 026
	K II,h	4.363	4.475	4.490	4.499
	I,loc KII,up	2.358 6.721	1.658 6.133	0.7860 5.276	0.3786 4.878
	KII,lo	2.004	2.818	3.704	4.120
	K II,ref	4.530	4.530	4.530	4.530

Table IV .

 IV Problem 3: open-mode stress intensity factors and their bounds.

	Number of DOFs	1790	4472	7834	22 274
	K I,h	6.160	6.263	6.287	6.314
	I,loc KI,up	0.667 6.827	0.366 6.630	0.417 6.704	0.245 6.559
	KI,lo	5.492	5.897	5.870	6.069
	K I,ref	6.338	6.338	6.338	6.338

Table V .

 V Problem 3: shear-mode stress intensity factors and their bounds.

	10 3				
	Number of DOFs	1790	4472	7834	22 274
	K II,h	1.905	1.883	1.882	1.868
	II,loc KII,up	0.153 2.058	0.091 1.974	0.089 1.971	0.058 1.926
	KII,lo	1.753	1.792	1.793	1.811
	K II,ref	1.860	1.860	1.860	1.860
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