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Abstract

A probabilistic model based on an initial distribution of sites is proposed to describe different aspects of the

formation, propagation and coalescence of crack networks in thermomechanical fatigue. The interaction between

cracks is modeled by considering shielding effects.

Résumé

La création de fissures, leur propagation et coalescence ultérieure dans un réseau sont traitées à l’aide d’un modèle

probabiliste. Les interactions entre fissures sont prises en compte par la description des effets d’écran.
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Version française abrégée

Le modèle proposé dans cette Note traite de manière unifiée de trois échelles de fissuration en fatigue [2].
L’échelle microscopique est liée au stade I de propagation. L’échelle mésoscopique correspond à la propa-
gation en stade II des fissures. Enfin, la coalescence des fissures se produit à l’échelle macroscopique. Le
stade II sera le plus important dans cette étude. La microstructure est modélisée par des sites sur lesquels
des fissures peuvent s’amorcer par l’intermédiaire d’un processus ponctuel de Poisson.

En fatigue à grand nombre de cycles, de toutes les microfissures, seule une fraction peut former des méso-
fissures. Un processus de germination continue est introduit. Une microfissure peut conduire à l’amorçage
d’une mésofissure à condition qu’elle ne soit pas écrantée par une autre mésofissure. Un domaine d’obs-
curcissement autour de mésofissures (i.e., une zone dans laquelle les contraintes sont inférieures au niveau
appliqué, ce qui empêche tout nouvel amorçage) est défini. Ainsi, de nouvelles mésofissures sont amorcées
s’il existe un site potentiel dans la zone considérée et, lorsque la condition d’amorçage est satisfaite, et si
cette fissure n’est pas écrantée par les mésofissures existantes [figure 1(a)]. L’élément fondamental pour
analyser l’amorçage est l’horizon [figure 1(b)]. Il s’agit de regarder dans le passé de l’histoire de charge-
ment. Une microfissure en S peut amorcer une mésofissure si aucune mésofissure ne se trouve dans son
horizon. L’incrément de densité de mésofissures λm est calculé à l’aide de la probabilité d’obscurcissement
Pobs. À partir de cette information, un modèle d’endommagement est écrit à l’échelle mésoscopique. Enfin,
la coalescence est alors être décrite à l’aide d’une condition de localisation de l’endommagement.

Various components in nuclear power plants are subjected to thermomechanical loadings during their
lifetime. Thermal striping was observed in the mixing zones of the auxiliary cooling system of nuclear
power plants [1]. This is not troublesome as long as a fracture analysis indicates that the cracks will
not grow notably during the remaining service life. Consequently, the evaluation of crack initiation, their
subsequent propagation and coalescence in structures subjected to thermomechanical loadings is very
important to determine investigation periods and maintenance programs. It is proposed to analyze the
three stages of cracking by using a unified probabilistic framework.

1. Initiation, propagation and coalescence in a crack network

The following model aims at bridging three scales [2]. First the microscale, which is related to stage
I of the fatigue process, depends upon the details of the microstructure. The cracks are considered as
microstructurally short (they will be referred to as microcracks). This scale ends when mesocracks are
initiated. The second scale corresponds to the propagation of mesocracks (i.e., stage II fatigue) that
form the network. The cracks are considered as physically small. Last, the third scale is concerned with
coalesced mesocracks that form a macrocrack (i.e., a long crack). Since stage II fatigue is predominant,
the cracking directions are assumed to be aligned along the principal stress directions di (here constant
during the whole load history). Each direction will be considered independently. The stress σ will denote
any of the in-plane local principal stresses σ1, σ2 since initiation is assumed to occur on the surface of
samples or structures.

The microstructure is modeled in terms of sites where cracks may initiate. The sites are approximated
by points of density λt (i.e., their average number per unit surface or length). For example, these points
have a random yield stress σy accounting for microplasticity in their vicinity. In the present setting, they
correspond to the distribution of local fatigue limits ∆σ∞ (= σy). A Poisson point process of intensity λt

is considered herein. A power law function is assumed and leads to a Poisson-Weibull model [3]
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λt(∆σ) = λ0

(
∆σ

∆σ0

)m

, (1)

where m is the Weibull modulus (i.e., it characterizes the scatter in local fatigue limits or similarly in
yield stress level), ∆σ the stress amplitude, and ∆σ0 the scale parameter relative to a reference density
λ0. The probability P of finding Nµ = ν microcracks within a uniformly loaded domain Ω is expressed in
terms of a Poisson distribution

P (Nµ = ν, Ω) =
[λt(∆σ)Z]

ν

ν!
exp [−λt(∆σ)Z] . (2)

The product λt(∆σ)Z corresponds to the average number of microcracks in a domain Ω of measure Z.
With a weakest link hypothesis, a two-parameter Weibull law [4] is retrieved [i.e., the failure probability
PF is given by PF = 1 − P (Nµ = 0, Ω) = 1 − exp {−λt(∆σ)Z}]. The Weibull parameters may therefore
be determined by analyzing endurance data for which the majority of the number of cycles is used in the
formation of a mesocrack.

In high cycle fatigue, among all these microcracks, there is only a fraction for which the mesoscopic
initiation condition is satisfied. Let λtI denote the corresponding density that depends upon the stress
amplitude ∆σ and the number of cycles N . For instance, a threshold ∆σu(N) accounting for continuous

mesoscopic initiation is considered

λtI(N ; ∆σ) = λt[〈∆σ − ∆σu(N)〉]. (3)

where 〈•〉 are the Macauley brackets. Equation (3) shows that the initiation process needs a minimum

number of cycles Nmin (i.e., such that ∆σ − ∆σu(Nmin) = 0) to initiate the first mesocrack. In Eqn. (3),
the principal variable is N and ∆σ appears as a parameter. Similarly, with a weakest link hypothesis, a
three-parameter Weibull law is retrieved as long as ∆σu > 0. To be consistent with the previous analysis,
it is assumed that ∆σu(N → +∞) → 0 so that high cycle fatigue (i.e., N < +∞) and endurance (i.e.,
N → +∞) are described in the same framework. Therefore, ∆σ∞ + ∆σu(N) corresponds to the equation
of a constant failure probability in a Woehler diagram.

To understand why a microcrack may initiate a mesocrack, one has to model its interaction with other
mesocracks. An obscuration domain of measure Zobs around mesocracks (i.e., a zone in which the stresses
are less than the applied stresses, thus do not allow for new initiations) has to be defined. The obscuration
domain of measure Zobs is assumed to be proportional to the current size a of propagating mesocracks

Zobs(N − NI ; ∆σ) = S [a(N − NI ; ∆σ)]
n

, (4)

where NI the number of cycles to mesoscopic initiation, n = 1 or 2 the space dimension, S a shape
parameter independent of the Weibull modulus m but dependent on the space dimension n [5]. It may
be noted that the initial mesocrack size a(0; ∆σ) is different from zero and depends upon microstructural
parameters [2]. By using this set of hypotheses, microcracks do not obscure each other and mesocracks
obscure microcracks, thereby partly inhibiting mesocrack initiation, and some mesocracks.

New mesocracks will be initiated only if a microcrack exists in the considered zone, if the initiation
condition is met and if the crack does not belong to any relaxed zone depicted in gray in Fig. 1(a). The
spatial position of the microcracks is represented as a simple abscissa (instead of a two- or one-dimensional
representation) of an x− y graph where the y-axis denotes the number of cycles. The microscopic growth
is depicted by the black zones. A first mesocrack initiation occurs at point 1 for a number of cycles equal
to N1. The initiated mesocrack creates a stress relaxation zone or an “obscured zone.” For a number of
cycles N3, the second mesocrack will be initiated at point 3, which is outside the obscuration zone of
mesocrack 1. The second initiated mesocrack creates its own obscured zone. The sites 2 and 4 do not
create mesocracks because they are obscured by the first and second mesocracks. The space-time (i.e.,
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Figure 1. -a-Depiction of two mesocrack propagations (1 and 3) and obscuration for two microcracks (2 and 4). -b-Horizon for
a given location S. -a-Schématisation de la propagation de deux mésofissures (1 et 3) et de l’écrantage de deux microfissures
(2 et 4). -b-Horizon en un lieu donné S.

number of cycles) diagram is composed of the union of the obscured zones where no crack initiate and
their complementary zones where any active site initiates a mesocrack. The key element to analyze the
interaction between existing mesocracks and microcracks is the horizon of a given site S [Fig. 1(b)]. It
consists in looking at the past of S. A microcrack S will initiate a mesocrack if it is not obscured by
other mesocracks. The horizon is a space-time zone where S is at least obscured by another mesocrack.
Consequently, for a mesocrack to be formed, its horizon should not contain any mesocrack. In the present
setting, obscuration occurs at the mesoscopic level. Therefore, the density λtI is split into two parts,
namely, λm, the density of mesocracks and the obscured density. The increment of λm is related to that
of λtI by

dλm

dN
(N ; ∆σ) =

dλtI

dN
(N ; ∆σ) × [1 − Pobs(N ; ∆σ)] , (5)

with λm(0; ∆σ) = 0 and Pobs the probability of obscuration

Pobs(N ; ∆σ) = 1 − exp
[
−Ẑobs(N ; ∆σ)λtI (N ; ∆σ)

]
, (6)

where Ẑobs is the measure of the mean obscuration zone [6]

Ẑobs(N ; ∆σ)λtI(N ; ∆σ) =

N∫

Nmin

Zobs(N − NI ; ∆σ)
dλtI

dNI
(NI ; ∆σ)dNI . (7)

It is worth noting that Eqn. (6) accounts for overlappings of obscuration zones. Furthermore, in the
context of mathematical morphology, the above-described approach corresponds to a Boolean islands
model [7]. By using Eqn. (3), Eqn. (7) is rewritten in terms of the underlying distribution of endurance
limits ∆σ∞

Ẑobs(N ; ∆σ)λt[〈∆σ − ∆σu(N)〉] =

〈∆σ−∆σu(N)〉∫

0

Zobs[N − NI(∆σ∞); ∆σ]
dλt

d∆σ∞
(∆σ∞)d∆σ∞, (8)

where NI(∆σ∞) corresponds to the number of cycles to initiation associated with ∆σ∞ [e.g., NI(0) =
Nmin]. When the crack propagation law is known, the change of Zobs is written [see Eqn. (4)] and the
current density of mesocracks is derived.
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From this information, a damage model at the mesoscale is written. To each principal direction di is
associated a damage variable Di ≡ Pobs(N ; ∆σi) that characterizes the overall mesocracking state. The
“effective” stress ∆σi is here taken equal to

√
2E∆Yi, where ∆Yi is the amplitude of the thermodynamic

force associated with the damage variable Di, E the Young’s modulus of the virgin material. The meso-
scopic principal stress amplitudes ∆Σi are related to the corresponding strain amplitudes ∆ǫi by the
reduced stiffness tensor K that depends upon the two damage variables. Its inverse reads

K−1(D1, D2) =
1

E





1

1 − D1
−ν

−ν
1

1 − D2





(d1,d2)

. (9)

With this damage description,
√

2E∆Yi = ∆Σi/(1−Di). The onset of coalescence is written as a damage
localization condition. The number of cycles to coalescence Ncoal is obtained from the condition

d(∆Σi) = 0 or equivalently ∆σi
∂ ln(1 − Di)

∂∆σi
= −1, (10)

that corresponds to the onset of strain and damage localization perpendicular to the considered eigen
direction di [8].

2. Example

The mesoscopic initiation condition is described by using a damage model [9] written at a microscopic
scale

δDµ

δN
=

( 〈∆σ − ∆σ∞〉
∆SD

)η

, (11)

where ∆SD and η are material-dependent constants, and Dµ the microscopic damage variable. Since
the microscopic yield stress σy is equal to the local fatigue limit amplitude ∆σ∞, the latter appears in
Eqn. (11). Consequently, the number of cycles to initiation (i.e., when Dµ = 1) and the threshold stress
become

NI(∆σ∞) =

(
∆SD

〈∆σ − ∆σ∞〉

)η

and ∆σu(N) = ∆SDN−1/η. (12)

When initiation occurs, the mesocrack size is equal to a(0; ∆σ) = Φ(∆σ∞), where Φ is a characteristic
size of the microstructure (e.g., grain size). If the Hall-Petch relationship applies, ∆σ∞ (= σy) and Φ are
related by

Φ(∆σ∞) =

(
K

∆σ∞

)2

, (13)

where K is a material-dependent parameter. To get closed-form results, it is assumed that the mesocrack
propagation is such that

a(N − NI ; ∆σ) = Φ(∆σ∞)Ψ(N − NI ; ∆σ), (14)

where the function Ψ describes the propagation stage in a simple way. By definition, Ψ(0; ∆σ) = 1, and
Ψ(0; ∆σ) ≤ Ψ(N −NI ; ∆σ) ≤ Ψ(N −Nmin; ∆σ), where the latter describes the propagation of the largest
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crack. Consequently, bounds to the obscuration probability and the density of mesocracks are derived.
Bounds to the obscuration probability become (m > 2n)

Pobs(N ; ∆σ) ≥ 1 − exp

[
− m

m − 2n

{ 〈∆σ − ∆σu(N)〉
∆σ∗

c

}m−2n
]

Pobs(N ; ∆σ) ≤ 1 − exp

[
− m

m − 2n

{ 〈∆σ − ∆σu(N)〉
∆σc(N − Nmin; ∆σ)

}m−2n
]

, (15)

where ∆σ∗
c is a characteristic (initiation) stress depending upon the Weibull and Hall-Petch parameters

and ∆σc is a characteristic (propagation) stress depending in addition on the crack propagation law

∆σ∗
c = ∆σ0 [∆σ0

√
a0/K]

2n

m−2n and ∆σc(N − Nmin; ∆σ) = ∆σ∗
c [Ψ(N − Nmin; ∆σ)]−

n

m−2n , (16)

with a0 = (Sλ0)
−1/n a reference crack size. Bounds to the density of mesocracks read (m > 2n)

λm(N ; ∆σ)

λc(N − Nmin; ∆σ)
≥

(
m − 2n

m

) 2n

m−2n

γ

[
m

m − 2n
;

m

m − 2n

{ 〈∆σ − ∆σu(N)〉
∆σc(N − Nmin; ∆σ)

}m−2n
]

λm(N ; ∆σ)

λ∗
c

≤
(

m − 2n

m

) 2n

m−2n

γ

[
m

m − 2n
;

m

m − 2n

{ 〈∆σ − ∆σu(N)〉
∆σ∗

c

}m−2n
]

, (17)

where γ is the incomplete gamma function γ[p, x] =
∫ x

0
tp−1 exp(−t)dt, λ∗

c and λc characteristic densities

λ∗
c = λ0 [∆σ0

√
a0/K]

2mn

m−2n and λc(N − Nmin; ∆σ) = λ∗
c [Ψ(N − Nmin; ∆σ)]−

mn

m−2n . (18)

The characteristic quantities are related with one another by the following condition

Zobs(0; ∆σ)λt[∆σ∗
c ] = 1 and Zobs(N − Nmin; ∆σ)λt[∆σc(N − Nmin; ∆σ)] = 1, (19)

i.e., the average number of site in a domain of measure 1/λ∗
c (resp., 1/λc(N − Nmin; ∆σ)) is equal to 1.

An upper bound to the number of cycles to coalescence Ncoal is obtained from the condition

Di = 1 − exp

(
− 1

m − 2n

)
or 〈

√
2E∆Yi − ∆σ∗

c m−1/(m−2n)〉 = ∆σu(N), (20)

leading to

Ncoal <

[
∆SD

〈e1/(m−2n)∆Σ − m−1/(m−2n)∆σ∗
c 〉

]η

. (21)

This type of analysis is valid as long as the horizon remains included in any examination zone. Otherwise,
a weakest link hypothesis applies at the considered level.

3. Perspectives

The probabilistic model was described in the simple case of the initiation of cracks on a surface along
two perpendicular directions. A more detailed analysis on the interaction between cracks aligned along
any direction is needed. In thermomechanical fatigue, crack propagation is also driven by the stress
profile induced by temperature variations through the thickness of a structure. This effect has also to be
accounted for.
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