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Convergence of a Generalized Fast Marching
Method for a non-convex eikonal equation

E. Carlini * M. Falcone*, N. Forcadel’, R. Monneau |
October 24, 2006

Abstract
We present a new Fast Marching algorithm for a non-convex eikonal equation modeling
front evolutions in the normal direction. The algorithm is an extension of the Fast Marching
Method since the new scheme can deal with a time-dependent velocity without any restric-
tion on its sign. We analyze the properties of the algorithm and we prove its convergence in
the class of discontinuous viscosity solutions. Finally, we present some numerical simulations
of fronts propagating in R2.

AMS Classification: 65M06, 65M12, 491.25.
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1 Introduction

The goal of this paper is to propose and analyze a numerical scheme to compute the evolution
of a front driven by its normal velocity c(x,t) under very general assumptions on c¢. In
particular, we will remove the usual assumption which assigns to ¢ a constant sign during
the evolution. This means that the front can oscillate and pass several times over the same
points. The initial front is the boundary of an open set €2y, which is represented by a
characteristic function lg, — 1, defined equal to 1 on {5 and —1 on its complementary
set. Mathematically, we are interested in the discontinuous viscosity solution é(z,t) of the
following equation

(1.1) { Ou(w,t) = c(z,t)|DO(z,t)] on R x (0,T)

0(-,0) = 1o, — L.

Here the support of the discontinuities of the function € localizes the front we are interested
in. This work is motivated by the numerical computation of dislocations dynamics where
the velocity of the front can change sign (see Rodney, Le Bouar, Finel [13]).
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A very popular method to describe the evolution of a front is the Level Sets method
(see the seminal paper by Osher and Sethian [12] as well as the monographies [15, 16], [9]),
where the discontinuous solution 6 is replaced by a continuous function, and the equation is
discretized using finite difference method with a CFL condition of the type At||c||« < Az
for explicit schemes, where Az is the space step and At is the time step.

Another well-known method is the Fast Marching Method (FMM) (see Sethian [17, 14]),
where the unknown of the problem is the time ¢(x) the front reaches the point x. This
method works for non negative (non positive) velocities and provides a very efficient scheme
which concentrates the computational effort on a neighborhood of the front. To be more
precise, keeping in mind the viewpoint of discontinuous solutions, in the usual FMM we
define the Accepted region (A+) as the discretization of the region {# = 1} and the Narrow
Band (NB-) as the discretization of the boundary 0 {6 = 1}, which is at the discrete level
contained in the region {# = —1}. The algorithm computes the new values only at the nodes
belonging to the narrow band and accepts just one of them, the one corresponding to the
minimum value (see Kim [10] for a faster implementation). In the case when ¢ cannot change
sign we have a monotone (increasing or decreasing) evolution and the front passes just one
time on every point of the computational domain. The corresponding arrival time of the
front is univalued so that the evolutive problem reduces to a stationary problem (the eikonal
equation). Note that in this method, there is no time step, because the time is itself the
unknown of the problem so that the original evolutive problem (1.1) reduces to a stationary
problem as remarked in [8] and [11].

To set this paper into perspective, let us recall that the FMM was initially developed
for (1.1) with time independent velocities ¢(z) > 0 (see Sethian [14] and Tsitsiklis [20] for
the method previously developed on graphs). This FMM scheme has been proved to be
convergent, using a relation between the FMM solution and the numerical solution to finite
difference schemes for the Level Sets formulation, for which it is known that these schemes are
convergent (see Cristiani and Falcone [7]). More recently, the method has been extended to
more general Hamilton-Jacobi equation by Sethian and Vladimirsky [18, 19] and it has been
also adapted to the case of time-dependent non-negative velocities ¢(z,t) > 0 by Vladimirsky
[21]. However, up to our knowledge, no proof of convergence has been given for the variable
sign velocity case.

The goal of this paper is to propose a Generalized Fast Marching Method (GFMM) which
works for general velocities ¢(z, t) without sign restrictions. This implies that the evolution
is not necessarily monotone and that the time of arrival of the front can be multivalued.
Then, in our GFMM it is natural to introduce two Accepted regions (A,) and (A_), and
two Narrow bands (F) and (F_) in order to be able to take into account the changes of
sign of the velocity. The typical picture is Fig. 1. In some sense we track two fronts : one
moving with positive velocity and one moving with negative velocity. A preliminary version
of this new scheme has been proposed in [5], however in that first version no proof was given
and some small but very important details, which make the scheme work in the general case,
were missing.

Our GFMM has a great potential for several future developments. Let us only mention
the application to dislocations dynamics that we will study in a future work.

We introduce in Section 2 the GFMM scheme. Let us observe that there are several
subtilities, that do not appear in the usual FMM for ¢(z) > 0. These new features seem
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Figure 1: The narrow bands F; and F._.

necessary to make the scheme work for general ¢(x,t). Let us list a few of them. First, where
the velocity changes sign in space, we need somehow to regularize it to avoid instabilities (in
time) of the front. Second, because the time step is somehow the difference At,, =t,.1 —t,
between two computed times, we need our algorithm to ensure that this time step remains
bounded from above by a given time step At. In fact, this is necessary since the convergence
result shows that to improve our approximation of the solution the discretization parameters
At and Az must go to 0 and when the velocity is very close to zero, if that bound is not
respected, the algorithm may generate a sequence of time steps At,, non convergent to zero.
Third, we may get computed times ¢,,; which satisfy ¢,,1 < t,, if for instance the velocity
is always equal to zero except at time ¢,,. In this case, it is necessary to update the time with
the value ¢, and not t,. Fourth, when the front is close to a given point we have to choose
carefully if we update or not the value of the time at this given point. This really depends
on the position of the discrete front at time ¢,, and at time ¢,,,; and on the definition of the
new accepted points.

The main result of this paper is Theorem 2.5 which shows the convergence of our GFMM
algorithm. When the discontinuous solution is unique, this result states that the numeri-
cal solution converges to the discontinuous viscosity solution as Ax, At go to zero. In the
case where the discontinuous viscosity solution is not unique, the result only claims that
the upper semicontinuous envelope (obtained by a limsup*, see (2.8) for a definition) of the
numerical solution is a discontinuous viscosity subsolution and, conversely, that the lower
semicontinuous envelope (obtained by the liminf,) is a supersolution.

Another novelty is the proof of convergence of this GFMM algorithm. In fact, we can not
use the relation with the usual schemes for the eikonal equation as in the case of non-negative
velocities ¢(x) > 0 and we need a direct proof. It is interesting to remark that, even in the
case of non-negative velocity, our proof is new. However, the idea of our proof is inspired
by the paper by Barles and Georgelin [2] on fronts driven by Mean Curvature where they
prove convergence for a scheme in the framework of discontinuous viscosity solutions (we
also refer to Barles, Souganidis [4] for convergence in the framework of continuous viscosity
solutions). Basically, it is sufficient to consider a test function touching the upper semicon-



tinuous envelope of the numerical solution (obtained as Az, At go to zero) which violates
the subsolution property and to derive from this some properties of the discrete solution for
non-zero Az, At. This corresponds to consider test functions touching the discrete analogue
of the discontinuous function € in order to get a contradiction with the basic properties of
the algorithm.

The paper is organized as follows. In Section 2 we introduce our notation, present our
GFMM algorithm and the main result of this paper, i.e. the convergence of the algorithm
(Theorem 2.5). Several comments and the explanation of the subtleties of the algorithm are
discussed in Section 3. Section 4 is devoted to prove comparison principles and symmetry
for GEFMM. In Section 5, several preliminary results are presented, focusing on properties
of discrete times and on the geometry of the level sets of test functions. In Section 6, we
use the results of Section 5 to prove the subsolution property of the limsup* envelope of
the numerical solution, while the comparison principle of Section 4 is used to prove this
subsolution property at the initial time. The main result of Section 6 is the proof of our
main Theorem (Theorem 2.5). Finally, in Section 7 we present some numerical simulations
and comment these results in connection with our theoretical results.

2 The GFMM algorithm and the main result

In this section we give details for our GFMM algorithm for unsigned velocity. Let us start
introducing our definitions and notation.

Let us consider a lattice Q = {z; = (i, .., iy ) = (1A, .., inAz), [ = (i1,..,ix) € ZN}
with space step Az > 0. We will also use a time step At > 0.

The following definitions will be useful in the following.

Definition 2.1 The neighborhood of the node I € ZV is the set
VI ={JeZ" :|J-1 <1},

Definition 2.2 Given the speed ¢} = c¢(xy,t,) we define the function

= ¢ otherwise.

S { 0 if there exists J € V(I) such that (c}cy < 0 and |c}] < |cB]),
Definition 2.3 The numerical boundary OF of a set E C ZV is
OF = V(E)\E

with
V(E)y={JeZ", 3AUeE, JeV{)}

Definition 2.4 Given a field 07 with values +1 and —1, we define the two phases
Y ={l: 07 =+1},

and the fronts
Fl=00%, F'=F'UF"



In the description of the algorithm we will use the following notations:

(2.2) +g >0 for [ € Fy

means

(2.3) +9g>0 for /€ F, and —g>0for [ e F_.
Moreover,

(2.4) min{& g+} =min{0, ¢;,¢9_} and miax{(L g+} =max{0,9.,9_}.

2.1 The algorithm step-by-step

We describe now our GFMM algorithm for unsigned velocity. As one can see, to track
correctly the evolution we need to introduce a discrete function u} € RT defined for
I € F™ to represents the approximated physical time for the front propagation at the nodes
I = (iy,..,in) of the fronts at the n-th iteration of the algorithm.

Initialization

1. Set n=1

2. Initialize the field 0° as
0o _ 1 for z; € €
™1 =1 elsewhere

3. Initialize the time on F°
u)=0forall I € F°

Main cycle

4. Initialize U™ everywhere on the grid

1 u’}_l for J € Fi~!
u _—
+J 00 elsewhere.

1

5. Compute u" ' on F™" ! as

Let I € F'!, then

(a) if £6}71 >0, 4} = oo,
~n—1

(b) if &¢771 < 0, we compute @}~ ' as the solution of the following second order
equation:

N 2
Z& 2
> (miax (o,a?;*l — ﬂi,ﬁ,i)) — ’(Ani)‘Q if [ e F*71,

k=1



10.

11.

12.

13.

(2.5)

where
kA /- . . . .
I%% = (g, oy ip1, 0 £ 1,011, -, IN)-

. t, = min {11?*1, I € F”_l}.
1, = min{t,, t,_1 + At}.

oty = max(tn,l,fn)

if t, =t,_1 + At and t, < t, go to 4 with n :=n + 1.

Initialize the new accepted point
NAY ={I € F!™', a4} ' =1,}, NA"= NAT UNA"

Reinitialize 0™
—1 for Ie NAY
07 =< 1 for Ie NA"

071 elsewhere

Reinitialize u™ on F™

(a) If I € F\V(NA"), then u} = u}} .
(b) If I € NA"™ then u} = t,.

(c) I € (F"1NV(NA™)\NA", then u} = uj '
(d) If I € V(NA")\F"! then u? = t,

Set n:=n+ 1 and go to 4

Let us describe a few features of this new algorithm:

1.

We know, at each time step, the time on the fronts, i.e. on both side of the front. This
is necessary to allow the changes of the velocity sign in time.

In step 5, we use the regularized velocity ¢ and not ¢ in order to stabilize the front.

step 7 avoids large jumps in time and guarantees that ¢, — ¢, 1 < At with At small
enough.

step 9 allows to increase the time. For example, if at time step n, we have E‘?_l =

0VI € F™!, then there will not be new accepted points and the time will not change
and the algorithm will be blocked without steps 7 and 9.

step 8 guarantees that the physical time ¢, does not decrease.



6. In step 12, for the reinitialization of u}, we change its value only if a point of the
neighborhood of the point I has been accepted. Moreover when u7 is updated, we use
the physical time ¢,, and not ¢, or t,.

These choices, which can appear strange with respect to the classical FMM scheme, will
be motivated in Section 3, giving also some examples which justify the new definition.

2.2 The main result

The scheme approximates the evolution of the fronts by a double Narrow band and the
physical time by the sequence {t;,k € N}, defined at the step 8 in the algorithm. Such
sequence is nondecreasing and we can extract a subsequence {t5, ,n € N} strictly increasing
such that

tkn = tkn+1 =..= tkn+1,1 < tkn+1'

We denote by S} the square cell S} = [z, xr + Ax[x[ty,, tk, [ with
(27, 27 + Ax[= T, [2;,, 2, + Ax|

and by ¢ the couple
e = (Ax, At).
Let us define the following functions:
sup{07* : k, <m < kpy1 — 1} if (x,t) € S? and c(z, ty,) > 0

(2.6) O (x,t) =< Inf{07 : k, <m <kpy1—1} if (x,t) € S? and c(xy,ty,) <0
Tovme ky, <m <k, —1 if (z,t) €SP and ¢(xy,tg,) = 0.

This definition is equivalent to the following
(2.7) 0 (z,t) = 05 7N if (z,t) € ST

We define the half-relaxed limits

(2.8) go(a:,t): limsup 6°(y,s), 6°(z,t)= liminf 6°(y,s).

e—0,y—z,5—t e—0,y—a,5—1

We make the following assumption

(A) The velocity ¢ € W (RY x [0, T), for some constant L > 0 we have |c(z/, ') —c(z,t)]| <
L(|z' — x| + |[t' — t|), and Qg is a C? open set, with bounded boundary 9.

Theorem 2.5 (Convergence Result)
Under assumption (A), 9 (resp. 68°) is a wiscosity sub-solution (resp. super-solution) of
(1.1). In particular, if (1.1) satisfies a comparison principle, then 0’ = (6°)* and (50)* =¢°
is the unique viscosity solution of (1.1).

Remark 2.6 When the uniqueness holds, this is up to the upper and lower semi-continuous
envelopes.



Remark 2.7 Note that when ¢ > 0, our GFMM algorithm is a modified FMM algorithm
where the time on the narrow band is computed using only the accepted points. In this
monotone case the viscosity solution of (1.1) is unique and our result provides a convergence
result (see also Test 3 in the last section).

Remark 2.8 The Lipschitz-continuity in time of the velocity could be relazed to continu-
ity, but is assumed here to simplify the presentation of the proofs, which are already quite
complicated.

3 Justifications and examples

In this section we will show that in the variable sign scheme it is necessary to introduce new
variables to track correctly the evolution of the front.

3.1 Introduction of the numerical speed ¢}

Let us show by an example in dimension N = 1 what would happen choosing ¢} instead
than c7.
Consider the speed

o(z) = {—5 if x < 2y

0 if x> a;’

as plotted in Fig.2.

tn
c=c" A
t3
2
0T E— t1
L B e B e e
g T
T Az
Figure 2: The velocity c". Figure 3: Evolution with the velocity ¢".

Suppose £ = At, and 65 =1 for J < I, §9 = —1 for J > I. Then the nodes I, I + 1 will
be accepted at the iteration 1, with t; = At. Then after each time interval At the nodes I
and I + 1 will change phase, producing spurious oscillations on the fronts, see Fig. 3.

Let us now consider the same example but with the numerical speed ¢}, as plotted in
Fig.4. In this case the nodes on the front have always speed zero, and the front does not
move as one would expect.
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Figure 4: The velocity ¢". Figure 5: Evolution with the velocity ¢".

3.2 Introduction of the time step

In the case of monotone evolution with speed depending only on the space variables, the
FMM algorithm approximates the corresponding stationary equation of (1.1) and then no
time step At is required. In our more general case, the dependence of the speed in time
makes necessary to introduce a time step At in the algorithm. We show its need by an
example. We provide for simplicity the example in dimension N = 1.

Let us take as speed a linear function in time : ¢(t) = T — ¢, where T is a fixed positive
constant. In this case the sequence of the discrete time {¢,},cn is given by:

Ax
le(ta)|

Let us define the sequence 7,, = T — t,. Such a sequence verifies: 7, = f(7,,-1) where
f(r)=7— %. Since f is invertible for any 7 > 0, we then define 7,, = Az and we evaluate
Te by 7 = f 7 (7py1) for any k < n, then 73, < 7_1.

Then we have defined

tn+1 =t, +

{tm:T—Tm, m=n,n—1,....,ng

no = min{m, &, > 0}.

It results t,, =T — Az and then ¢, =T+1—Ax,ie. t,.1 —t, = 1. We want to avoid this
situations, since a big increment in the sequence of the discrete time step can bring a loss
of informations and in general the algorithm would not converge to the correct evolution of
the fronts. We show such a distribution of discrete time together with the linear speed in
Fig.6 and we show the wrong evolution of a front in this case in Fig.7.

If instead we introduce a threshold At as in the GFMM algorithm step 7, then it results
tns1 = tn + At, and we get the correct evolution for At small enough (see Fig. 8).

3.3 Why we update the front using ¢ instead of t

We explain by an example in dimension N = 1, why it is correct to assign the value ¢,
instead of t,, on the front F'™ in the Step 12 of the algorithm.
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Figure 6: Jump in the discrete time without threshold At in the case of a linear in time
velocity
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|
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Figure 7: Front evolution without the Figure 8: Front evolution with the thresh-

threshold At old At
Fixed p € N, we define As = pAt and § = ﬁ—f and we consider a piecewise constant speed
for ¢ > 0:

o(t) = ) if te[(2k—1)As,2kAs) for some k € N\{0},
1o otherwise

as in Fig.9 on the left.
If we update the front using ¢ instead of t, the corresponding evolution will be the one
plotted on the right of Fig.9. In fact the front will start to move using the velocity given

at time ¢, = pAt and since f,11 = 0+ 35 = G5 = At, then tyr1 = min{i, 1,1, + At} =
P P

min{At, As + At} = At and ¢, = max(t,,t,+1) = max(As, At) = As = t,. So the front
will propagate on the right at the iteration p, ...,2p — 1 but at constant time ¢ = ¢, (Fig.9).
On the contrary, if we update the front using ¢, the front will start to move using the
velocity given at time ¢, = pAt and the iteration p + 1 will be as before. But since #,,9 =

10
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Figure 9: Wrong evolution when the time is updated with .

tp+1+cﬁ—;”) = As—l—%:) = As+At, then ;f;H = min{t, o, tpr1+ At} = min{At+As, At+As}
and t,49 = max(t,1,ps1) = max(As + At, At) = As + At. So the front will propagate on
the right at the iteration p,...,2p — 1 but at linear times ¢,, = mAt (Fig.10).

t t

Az — 0

Figure 10: Correct evolution when the time is updated with ¢.

4 Comparison principles for the GFMM algorithm

As we said in the introduction, our convergence result will be proved in the framework of
discontinuous viscosity solutions. To this end the role of comparison principles is crucial.
In this Section, we first present a property of symmetry of the algorithm, then present
some comparison principles in some special cases and finally a counter-example to a general
comparison principle.
This Section shows in particular that statements on our GFMM algorithm are highly
non-trivial in general.

4.1 Symmetry of the algorithm

The following lemma claims that if we change the sign of the velocity and the sign of the
two phases at the initial time, then the GFMM algorithm computes the same front.

11



Lemma 4.1 (Symmetry of the GFMM algorithm)
We denote by @O[Qo,c] and 8°[60°, ¢] the functions constructed by the GFMM algorithm with

initial condition 6° and velocity c. Then we have
0°10°, ] = —0°[—6°, —c].
Proof of Lemma 4.1
With the same kind of notation, we remark that
O7[—6°, —c] = —07[6°, ].
We then have, for « € [z, 27 + Az|, t € [ty,, k.. [ and c(zr,tg,) >0

6°[0°, c](z,t) =sup{05[6°,c], kn < k < kpyy — 1}
= —inf{—0%0°, ], k,, < k < kpyy — 1}
= —inf{0F[—0°, —c], k, < k < kpy1 — 1}
= —0°[-0°, —(].
The result is similar for ¢(zy, tx,) < 0. Therefore

0 0

0°6°, ] = —8°[0

7_0]‘

4.2 Comparison principles

Proposition 4.2 (Comparison principle for the time)

We denote by u} (resp. v}) the numerical solution at the point (xy,t,) of the GFMM al-
gorithm with velocity ¢, (resp. c¢,). We assume that there exists T > 0 such that for all
(z,t) € RN x [0, T

inf > S +
se[tfgtl,t], 5>0 co(, 8) 2 se[t—ALtlE, szo(cu(x’ s))

where (f)1 is the positive part of f. We assume that
{° =1} c{° =1} and °=u"=0.

We define m and k such that

b < T <tmia

sE < T <spp
where (ty)m and (Spm)m are respectively the sequence of time constructed by the GFMM
algorithm with velocity ¢, and c,. We then consider

vr = v’f if Ie NAﬁ for some k<k+1
Sk+1 if 95,[ =-1

Then, VI < m, VI € NA!  we have

u’

vy < ub.

12



Remark 4.3 Here the notation for 0,,0,, NAL and further notation in the sequel are obvious
and are not explained. Moreover we also remark that the front for v passes at most one time
at a given point because c, > 0.

Proof of Proposition 4.2
We argue by contradiction. We denote by m(u) the first index such that there exists I €

NA™™ quch that
(4.9) u <o

We define
k(v) such that I e NAKY

with the convention that k(v) = k + 1 if QU ; = —1. This implies that

(u)

bin(u) = ’LLT < V1 = Sk(v)

The proof distinguishes two cases.

1. I € NA™Y ¢ Fm{0—,
We claim that for all J € V/(I)\ {I}, we have

(4.10) art > gkt

Indeed assume that @ (u) ' < oo (if ﬂr’(}t)_l = 00, then (4.10) holds), then J € F" m{u)—1
and we have
tm(u) > ﬂm(u)_l Z vy.

= Uy
It just remains to show that vy = ﬁi( 7 . We argue by contradiction. Assume that
Ai(f’]) 1 - =00, i.e J € {9 —1}. Then v; > sp(). This contradicts the fact that

Vg < tm(u) < Sk(v) and proves (4 10).
We define
E* = sup{k, sp <t} < k(v).
In particular, we have ¢,y — At < Spe < . Since for all J € V(I)N ijﬁj‘)‘l

we deduce that
(4.11) Spe > U, (U) h

Indeed, +00 > v +(1f]) LS sp= would imply that there exists k' > k* such that t,,.,) >

ﬁ(z}) = s which contradicts the definition of k*.
Then we claim that for all J € V(I) N F"0 ™!

(4.12) oy =

13



We now prove the claim (4.12). First, because we have ﬁfﬁ?il < 400, we deduce that

0];’(;)_1 = 1 and then there exists & < k(v) — 1 such that if £ > 1, then J € NAF and

@T})fl = v = 53, and if k = 0, then 6 ; = 1 and ﬁ(i’, =15 =0.
Assume by contradiction that £ > £*. Then
ﬁ(zjf) Uf} = Sk 2 Skr41 > Sk

Contradiction with (4.11). Therefore & < k*. Now we have 0];’(? =1land 0", = —1 for
m < k(v) — 1. Therefore J € F} and

which ends the proof of the claim (4.12). We deduce that

/\k(v) 1 /\k;* <70 Am(u)
Uy Uy g = Uy ’

where we have used (4.10). We define the following function

ff(mw +ﬂi02.

We then have, using the fact that 0% > sp« iy > sp-

E* Ax A:U W)— m(u
fove (sxe1) < forr (0F) = | 5| < | g | = fameoms (877 < e (@77
IU CIu

We then deduce that
Sprt1 < be(u)_l < U}n(u) =1

This is absurd.
0

2. 1€ NATY c 90,
We cons1der the followmg subcases

(a) 1€ {6 =1}. Then v; =19 =0 =u? < u7™. This is absurd.
(b) I €{6)=—1}. Then ) ; = —1 and so there exists n < m(u) such that
93}1 =-1 and 0;;=

This implies that
uy > vp > uT(u) > uj.

This is absurd. [J

Remark 4.4 If we implicit the computation of the gradient, i.e. the computation of u in step
b, the situation seems better and one could expect to prove a general comparison principle
without restriction on the velocity.

14



We now rephrase this comparison principle for the functions #° and prove it.

Corollary 4.5 (Comparison principle with a nonnegative velocity)
Under the assumptions of Proposition 4.2, we have for all (z,t) € RY x [0, T]

0 (x,t) < 65 (x,t).

Proof of Corollary 4.5
By contradiction, assume that there exist x; and ¢ such that

(4.13) 0 (xr,t) =1 and 65(xr,t) =—1.
We denote by ¢ the first time such that (4.13) holds. We then have, since ¢, > 0,
0 (xr,s) =—1 if s<t.

We then deduce that there exists m(u) such that ¢ = t,,,), I € N A™ and uT(u) = tm) = L.

Moreover, since the index I has not been already accepted for v, we have v; >t = uT(u).

This is absurd. ]

Corollary 4.6 (Comparison principle for a nonpositive velocity)
We denote by u} (resp. v}) the numerical solution at the point (xy,t,) of the GFMM al-

gorithm with velocity ¢, (resp. c¢,). We assume that there exists T > 0 such that for all
(z,t) € RN x [0, T

Se[t—Atﬁ)], 520 ul8) < sE[t—At,t], s>0 (eo(, 5))

where (f)~ > 0 is the negative part of f. We assume that
{0 =—-1} c {02 =—-1} and °=u"=0.
Then, for all (z,t) € RN x [0,T], we have
0 (x,t) < 65 (x,t).

Proof of Corollary 4.6
This is a straightforward consequence of Corollary 4.5 and the fact that 6°[—6°, —c] =
—6°[0°, c] (with the notation of Lemma 4.1). [

4.2.1 Counter-example for the comparison principle in general

We now give a counter-example for a more general comparison principle for which the two
velocities can change their signs.

Proposition 4.7 (Counter-example)
Let N = 1. We assume that the velocity c, and c, are null everywhere except on a node I

A
for which ¢,(xr,-) > ¢y(zy,-) are given in Figure 11 and 12 respectively with Tx = kAt. We

also suppose that
HS,J = 11if and only if J < I and Gg,J =11if and only if J < I.

Then
9’;}3 =—1 and fo =1.
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Proof of Proposition 4.7

1. For the GFMM associated to w.
The node I will be accepted with a time u¥ = t;, = kAt and we will affect the value
tr, = kAt to u¥. Then the velocity will change of sign and the node I will be accepted
again with a time 2kAt (see Figure 11).

2. For the GFMM associated to v.
Since the velocity is nonpositive, nothing will move. The current time ¢,, will continue
to increase and we will have ¢, = (k+2)At and then the velocity will become positive.
The node I will then be accepted with a time v53 = t,,5 = (k+2)At (see Figure 12).

We then conclude that the node I will be accepted for v before to be accepted for u and so
no comparison principle can hold in general.

t A t A t t

2k At —

At | (k + 2)At (k +2)At —

ard g kAL 41 kAt kAt

5 5 éulzr, ) ) ) (1,0
Figure 11: Velocity and evolution of the Figure 12: Velocity and evolution of the
front for w. front for v.

5 Preliminary results on the discrete time and on the
level sets of test functions

The GFMM algorithm described in Section 2 has several properties which fit the physics of
the problem we want to solve. We present in this Section several results that will be used in
the proof of Proposition 6.1 which is crucial for the proof of our main result of convergence.

In a first subsection, we present some properties of the various times 4,t,¢ appearing
in our algorithm, and in a second subsection we give some geometrical consequences of the
existence of test functions tangent from above to our function 6°.

5.1 Preliminary results on the discrete time

Lemma 5.1 (Time character of the u)
Assume there exists § > 0 and (I,n) € ZN x N such that c(zr,t,) > 5 >0, 0771 = —1 and
n =1 (resp. c(zr,ty) < =6 <0, 07 =1 and 0} = —1), then for any J € V(I) N F}~!
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2
(resp. J € V(I)NE™1'), we have for Ar < —

16L
4A
ﬂ:}: p{tm <tn179m1 -1,05=1, for m<p<n-1} > tn—Tx
with the convention that ﬁf} =040 =1for0<p<n-1

4Azx

(resp. ﬂ’f} =sup{tm <t, 1, 07 ' =1,05=~-1, for m<p<n-1} > t,— 5

with the convention that u';” F=0if0h=—1for0<p<n-1).

This lemma claims in fact that the u’}~ 1 is defined as the last time at which the front passed

through J. Intuitively, this comes from the fact that, since the velocity is locally non-negative
and since the front has crossed the node x; at time ¢,,, it has crossed the node x; at a time
closed to t,.

Proof of Lemma 5.1

We only do the proof in the case ¢ > 0 (the case ¢ < 0 is similar). By assumptions,
¢ is Lipschitz-continuous with constant L, and there exists dp < ¢/(4L) such that for all
(xg,tm) € Bs,(x1) X [tn — o, tn + o], we have

)
> —
-2
This implies that
(5.14) 07" = —1 for all m such that t, — dy <t,, <t, 1
Let J € V(I)N F}~'. We define
my=sup{m <n-—1, 07" =—-1,07 =1}.

We claim that for all J € V(I) N F?, we have t,,, > t,, — d for Az small enough. Indeed,
by contradiction, assume that there exists J € V(I) N F}~! such that t,,, <t, — . Let us
define p > 0 such that

by = o =ty > 1.

We then have 0 P < t, — 6y and @ T > tn—p = tn. Using the fact that

+J
N 2 2
max (0, a7 7~ L_grrt = ﬂ
12 +ex ) ) T\ e
Cr

k=1

we then deduce that
—p— e 2Ax
50:tn—p_(tn_60) SU? p I—UT} P IST

4A
This is absurd for the choice §y = Ta: < % which is valid for Az small enough. More-

over, using (5.14), we deduce that J € F™ for all m; < m < n — 1. This implies that

~n1 n—1 my __
Uy =uy;  =uy =tm,. 0O

The following lemma is concerned with the fact that we can control the decay of the time
t, given by the GFMM algorithm, by the variations in time of the velocity.
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Lemma 5.2 (Error estimate between ¢, and t,)
Assume that there exists I € NA™ such that |¢}~'| > § > 0. Then, the following estimate

holds of 5
(ty — 1) " < sTATAL i At < %
Proof of Lemma 5.2
We only treat the case ¢j~' > § > 0 (the other case is similar). Assume that #, < t,, then

necessarily ¢, = t,,_1. We define p > 0 such that
tn,p,1 < tn,p =..=t,_1 =1,
In particular, we have
thop <ty <y Pt VT FrPl

and
t,=ay !t <ant vJe Pl

We claim that I € F" 7. Indeed, assume that I ¢ F" ?~'. Using the fact that 67 """ = —1
(since &7 > 0), we deduce that for all J € V/(I)NF"~!, we have 7 ?~' = —1 and so uy ) =ty
this means that also the node J has been accepted at the physical time ¢,, . This implies
that @) ~' > ¢, and this is absurd.

. )
Moreover, because t,,—, — tn—p—1 < At, we have ¢ ” > g for At < 5T We then have

al 2 Az \?
(5.15) Z (max <O ay P! — Ul J_rl)) = <En_p_1)
=1

and

(5.16) i(max <0 ar ALH))Q _ (%)2

Let us compare @'} ; and ﬂ:ﬁf*l for J € V(I)NFr='. It J ¢ F} 77!, then uy changes values
during~ the iterations n — p < m < n — 1, and for such m we have ﬂ’f} =uj =ty = t,.
Since t,, < t,, then this node J € V(I) does not contribute to the evaluation of (5.16) and

(5.17) i(mfx@t Aiﬁf))2:§:<miax<0t Ai;ki))Q.

Let us denote by

fulv) = {i (max (o Yy +pc,i))2}1/2.

k=1

The function f, verifies for any ¢ € N such that I € F?:

. Az ,
fq(“?) = =

‘CI‘
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Then

= fn*pfl('&?_p_l) - fnfl(gn) = Az ( /C\nlpl o ~n11|)

T | &}
—p—1 _
<A.I’A? P —6’; P|
=~ ——1 _
[P ler ™

< Aw\@tc\Lm |tn7p — tn7p71|

N [ ler ™|
< 2Ax’atC‘LooAt'
S— %5

5.2 Preliminary results on the level sets of test functions

; .
J t =V ()

v 0=-1 Lk,

bl — F j 0=—1
=1 t=T.(a) 91
— |
zz P &1 =
Figure 13: Test function from below Figure 14: Test function from above

Lemma 5.3 (Separation of the phases of §° by the level set of a test function)

Let ¢ € C* in a neighborhood V' of (xg,to) such that p(xg,te) > 0 (resp. @i(xo,to) < 0).

There exist 60 > 0, r > 0, 7 > 0 such that if max((0°)" — ) is reached at (z.,t.) €
1%

Bs,(zo,to) CV with (6°)*(z.,t.) = 1, then there exists ¥. € C*(B,(xy), (to — 7, to +T)) such
that

(i) For all (x,t,) € Qrr(x0,t0) = Br(xo) X (to — T, t0 + 7)
O (zy,tm) =1 =t >V (x)) (resp. t, < Ve(x))).
(ii) There exists (I,n) € ZY x N such that
(ze,te) € QF = [xr, 21 + Az] X [t thnin],  (0°)*(xr,th,) =1, th, = V()

n
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and B
0y =1, 0'=—-1 me<m<n-—1

(resp. 07 = =1, 67'=1 moy<m<m-—1)
where
n=inf{k, k,<k<k,1-—1, 0j=1 (resp. 0] =-1)}

and mgo = inf{m, t,, >ty — 7}.
(#ii) The following Taylor expansion holds

D(p(l’o, tO)

Ue(zy) = Ve(zr) — i(xo, to)

(IJ — l’]) + (AZL’) O (Al’ + |l’[ — ZL’Q‘ + |tkn — to‘).

(iv) If pi(wo,to) < 0, then for all (x;,ty,) € Qrr(T0,t0) = Br(wo) X (to — 7,10+ 7)

Gs(xj,tkn_l) =1 and 95(xj,tkn) = -1 — tkn S \I’E(I'J).

Proof of Lemma 5.3

We consider the case ¢;(xg,tg) > 0. The other case can be treated in a similar way. We
define p. = p + ((60°)" — ¢)(zc,t.). In particular, we have (6°)* < ¢. and (0°)*(x.,t.) =
e (xe,t.) = 1. We start by proving (7) and (i7). The proof is decomposed in several steps.

Step 1. We have t. = t,,.
Indeed, assume that t. € (ty,,tx,,,). Using the fact that (6°)*(z.,t.) = 1, we deduce
that (6°)*(z.,t) = 1 for t, <t < t,,, and so ¢, (z.,t.) = 0. This is absurd for d,
small enough since ¢;(xg,tg) > 0.

Step 2. We have (0°)* = —1 on all Q} ' =|xs,x; + Ax[X]ts

(wsa tkn) € Q?_l'
Indeed, since ¢.(x.,t,) = 1 and (p:); > 0, we deduce that ¢ (z.,t) < 1if t < ty, .
Using the fact that (6°)* — ¢, reaches a maximum in (z.,t, ), yields

tr,[ such that

n—17

(0°) (ze,t) < pelze,t) <1 if t < ty,

and so
(0°) (zeyt) = =1 it < ty,.

Using the semi-continuity of (6°)*, one deduce that

(6°)* = —1 on all Q%" such that (z.,t,,) € Q" "

Step 3. There exists I € Z", such that (z.,tx,) € Q7 and (6°)* = 1 on Q7.
By contradiction, assume that on all cubes Q7 such that (x.,t,) € Q’}, we have
(05)* = —1. Then, using Step 2, we deduce that ()* = —1 in a neighborhood of
(xe, ty, ). This is absurd since (6°)*(z., tg,) = 1.
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Before continuing the proof, we need a few notation. We set
n=inf{k, k, <k <k, —1,0F=1}.

In particular, we have 7 = 1 and 67! = —1.
Since (p)¢(2e, tk,) > 0 for € small enough, by Implicit Function Theorem, there exists a
neighborhood V. of (z.,t.) and a function W_ such that

{pe(z,1) <1} & {t < V.(2)}
in V.. Using the fact that (6°)" < . yields
(5.18) {(0°) =1} C {t > V.(a)}.

Moreover, for dp small enough, i.e. for (z.,t.) closed enough to (zg,ty), we can assume
that V. D Q.. (wo,t9) = B.(z0) x (to — 7,to + 7). We define v = x. — 27 € [0, Az)" and

V. (z) = V. (x + v). In particular, we have ¥ _(z;) = ty,,.
Step 4. For all (xj,tx,) € Qrr(To,t0) = Br(xo) X (to — Tyto + T)
0°(xg,tg,) =1 = tg, > P (xy).
To prove this, we consider the collection of nodes

C={(xs,te,) € Qrr(zo,to) N {67 =111

By inclusion (5.18), we then have t,,, > W.(x;), Y(vs,ts,) € C. We deduce
V(I'J, tkm) eC - -
Q? = [1‘],1‘] + Al’] X [tkmatkm+1] C {t > \IJE(I‘)}
This implies that B
(xg + (e — 1), ty,,) € {t > Ve(2)}

and so
(7, th,,) € {t = Ve(2)}

which implies i) because any t,, can be written ¢, for a suitable m.

Step 5. We have 07" = —1 for my < m <n — 1 where my = inf{m, t,, > to, — 7}.
By contradiction, suppose that there exists my < m < m — 1 such that 07" = 1. We
then define m; as

my =sup{m <m—1, 07" = 1}.

In particular, we have 67" = —1 (since #7~' = —1). Two cases may occur:
(8) tm, = ty, = tr.

In this case, we have ¢} = ¢/ % > 0 (since §7"' = —1 and 67 = 1). This
contradicts the fact that 67" =1 and 7" = —1.

(b) tm, < by, = b
In this case, we have 0°(x,t,,,) = 1 and t,,, < ty, = V.(z;). This contradicts
Step 4.
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We now prove (iii). )
By Implicit Functions Theorem, we have . (z, ¥ (x)) = 1. Deriving yields

QOt(.I, ‘ijé(I»que(I) + DQO(ZE, ‘II(I» =0.

Taking x = x. yields

DV (z;) = _Dw(xsaflls(xs)) _ _Dw(xlatkn) +O(Ax)

pi(e, Ve (ze)) pi(r t,)

and so
N D(p(l’o, tO)

¢i(z0,t0)
Moreover, by Taylor expansion, we get, if |p(z.,t.) — 1| is small enough, for all J € V(1)

DV (zr) = + O(|zr — xo| + |tr, — to| + Ax).

\IJE(I‘J) :\IJE(I'[) + (l’J — 1‘[) . D\Ifs(l'[) —+ O(’ALL“Q)
~ Do(x0,t)

=Veler) ©(xo, to)

. ([L’J — 1’1) -+ (ALL’) O(Aﬂﬁ + ’.CE[ — 1’0’ + ’tkn — toy).
where “the O is uniform in €”. This ends the proof of (ii7).

It just remains to show that if ¢ (zo,%0) < 0, then for all (z;,t,) € Qr-(20,t0) =
B(xo) X (to — T, to + 7)

HE(I'J,tkn_l) =1 and HE(I'J,tkn) =-1 =54 tkn < \I’E(I‘J).
In this case, inclusion (5.18) is replaced by

{(6) =1} € {t < W.(a)}.

By definition of 6°, for all y € [x;,z; + Ax], we have (6°)*(y,tx,) = 1. Taking y = x; + v,
we then deduce that B B
tkn S \Ifs(y> = ‘Ilg(IJ + V) = \Ija(ZL’J).

Lemma 5.4 (Approximate horizontal level set in the i-direction for negative ve-
locity)

Under the notation and assumptions of Lemma 5.8 with pi(xg,te) < 0, let us suppose that
there exists g > 0 such that ¢ < —§ < 0 on Bs,(zo,to)-

Let us assume moreover that (x1,t7) € Bs,(wo,t0), 071 =1 and 7 = —1. If for some fived
i€ {l,..,N} we have

~m-1_ ~mel ~m-1_ w1
up - —u' g, <0 and up —ut, o <0

then

‘D@(aj—o’%) e < o(1).

(o, to)
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Proof
We first prove that if a7 — 4’} < 0 for some .J € V(I)\ {/}, then

\IJE(.T[) — \I’E(.TJ) S O(Aﬂf)

There are two cases: u" J = oo or u" J < 00.
If u"} < oo then J € F"'. By Lemma 5.1 it results

ﬂ”’ =sup{tm <tp 1, 07 ' =1,05=-1, for m<p<nmn-1}

and by Lemma 5.3 (iv) we have u” ; < W (z).
We then deduce that

0>ay ' — ﬁ?*} >ty — V(1)) =V (27) — V(1)) — (tn — ).
We apply Lemma 5.2 and we obtain
\IJE(.T[) — \I’E(.TJ) S O(Aﬂf)

If ﬂrj_} = 00 then necessarily 67! = 1, now either 67 = 1, respectively either 7 = —1. Then
we can apply Lemma 5.3 (7), respectively (iv), and we get t7 < ¥ (z;). We deduce then

\Ije(x[) — ‘Ija(xj) S tﬁ - tﬁ S 0.
Using Lemma 5.3 (i44) for J = I** we deduce that

D(p(l’o, tO)

+Azx
©i(xo, to)

ce; < o(Ax).

Lemma 5.5 (Decay of 6° in the gradient direction of a test function)

Let ¢ be C* in a neighborhood V' of (xg,to) and let us suppose there exist 5o > 0 such that

max((0°)" — @) = (0°)"(ze, te) —p(xe, to) with (xe,t.) € Bs,(xo,to) C V and (6°)*(zc,t.) = 1.
v

Then, there erxists a node (I,n) € ZN x N such that 9];"“_1 1 with (z.,t.) € 0Q) =
Izr, xr + Az[X]tg, , ty,,,[) such that if Fe; - Do(xg,t9) > 0 then

O°(x,t) = =1 in Qfix =|xpis, xpx + Ax[X|ty,, tr,., [-

Proof of Lemma 5.5
Since (6°)*(x.,t.) = 1, there exists a node (I,n) € ZN x N such that 6;""'"" = 1 with

(.1'5, tE) € GQI - a(]xl’ T + Ax[x]tkn’ tkn+1 D
Assume for example that
e;i - Do(xg,tg) <0

and let us Suppose by contradiction that 0 = 1 in Q7 =|xri+, T+ + Ax[X]ty,, tr,,, |-
We define . = ¢ + ((0°)" — ¢)(x.,t.). In particular, we have (6°)* < ¢, and (0°)*(x.,t.) =
e (xe,te) = 1. Smce (6°)* < ., the following inclusion holds

{(0°)" =1} C{pe 2 1}.
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We define 2% = 2, + \e; with 0 < X\ < Ax such that (6°)*(2%*,¢.) = 1. Then o (z2,t.) > 1
and |
905('1'? 7t5) - 905(-1'57 ts)
A

> 0.
Taking the limit for A — 0, we obtain
€; - D@(xfsa te) =€ D‘pa(xfsa te) Z 0.

This ends the proof, since it contradicts the assumption. [J

Lemma 5.6 (Bound on |t. — t,| for negative velocity)
Under the notation and assumptions of Lemma 5.5, if we suppose there exists 6 > 0 and
do > 0 such that c(z,t) < —0 < 0 in (x,t) € Bags,(xo,t9) C V then the following estimate

holds
Az

|te — tm,| < 5
with
tmy = sup{tm, < tp, : O =1, 071, = =1} if we assume — e; - Dyp(xq,tg) > 0

(resp. tm, =sup{t, <ty, : 01" =1, 0fi_ = —1} if we assume + e; - Dp(xo,ty) > 0)
where I is defined in Lemma 5.5.

Proof of Lemma 5.6
Let us define
mozsup{mékn+1 1 elzi _1 glzi__l}'

For Az, At small enough, we can assume that (ZL’K, m) € Bag,(wg,to) for K = I, I%* and
mo < m < kyyq. Since ¢ < 0 in Bag, (20, to), 9];”“ = 1 implies 07" = 1 for all my < m <
knt+1 — 1, and by definition of my, 07 . = —1 for all moy < m < k1 — 1.

This means that I%* € F™ for all mg < m < k.1 — 1 and so

(519) /'LZTJZ‘,:‘: = tmo for mo S m S kn+1 — 1.

In particular, uk"}?il = tm, and by the definition of the 1 . it results 12];"“_1 > tAkn L, with

n+1
tkn+1 = thpirs since thpy > thy,-
By the equation

N 9 2
O ~kn+1_1 ’\kn+l_1 _ A(I;
IIlaX 9 UI - u_ Ik‘:t — /\k 1_1 9
+ ) C n+
k=1 T
we conclude that

~kpp1—1  ~kpgp1—1 (Az) Az
te = tmy < thpyy — lmy < Uy o U,jil,i < Tl—l‘ < T
c

e
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6 Proof of Theorem 2.5

This section is dedicated to the proof of the main theorem, which is preceded by two impor-
tant propositions.

The first proposition will show that the limit function 0" is a sub-solution in all the
domain excepted for the initial time, whereas the second proposition will show that the limit
function 0 is a sub-solution at the initial time. The reason why we need to treat a part
the initial condition is that the proof of the first proposition is based on the definition of
discontinuous viscosity sub-solution (see Barles [1] and Crandall, Ishii, Lions [6]) consisting
in testing the equation by smooth functions, but this definition does not hold at the initial
time. Then we treat the initial condition using the technique of barriers.

At the end of this section, we give the main proof using both results.

Proposition 6.1 (Sub-solution property of the limit)
The function 8" is a sub-solution of the equation

Oi(z,t) = c(x,t)|DO(x,t)|
on RY x (0,7).

Proof of Proposition 6.1
By contradiction, assume that there are (¢, ;) and ¢ € C? such that [/  reaches a strict
maximum at (xg, tg) with go(xo, to) = p(xo,tp) and

(6.20) ©i(z0,to) = oo+ (o, to)| D(zo, to)|

with a > 0. Since the maximum of 0 —  is strict, there exists (x.,t.) — (xo,to) as Az — 0
such that
max((6°)" — @) = ((6°)" — ¢)(ze, te).
In particular, we have (0°)*(x.,t.) = 1 for Az, At small enough. Indeed, by contradiction,
suppose that (6°)*(x.,t.) = —1. Using the fact that (6°)* is upper semi-continuous, we obtain
(6°)* = —1 a neighborhood of (x.,t.). We then deduce that ¢:(z.,t.) = Dyp(z.,t.) = 0 and
SO
0= @i(=, 1) — clze, te) | Dp(=, Le)| — pi(z0, to) — c(zo, to)|[Dp(zo, to)| = o

This is absurd.
If | Dp(zo,to)| # 0, we note that we can rewrite inequality (6.20) as

(6.21) @i(z0,to) = €| Dp(xo,t0)| with ¢ > c(zo, to)
We denote by

DQO(IW tO)

06.22 g = ——> 2,
(6.22) "= Doz,

To continue the proof, we have to distinguish several cases:
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1. C(wo,to) > 0.
In this case, we have in particular, ¢;(zg,to) > 0. Then we can apply Lemma 5.3 and
we deduce that there exist U, € C? and (I,n) € Z" x N such that (z,t,) — (20,0)
as € = (Ax, At) — 0,
0°) (xr,te,) =1, th, = V()
and
or =1, 071 =-1,

where 7 is defined in Lemma 5.3. Using Lemma 5.1 and Lemma 5.3 (i), we deduce
also that for all J € V(I)\ {I} such that 67! = 1, we have
UM:L_} > Ve(zy).

This implies for all J € V/(I)NF}", using also the (general) fact that @} ' < t; =t

[y

(6.23) = <tp -

+.J :\IJE(I])—iL\ﬁ_I S‘Ifg(xf)—‘lfa(xj).

¥
.

By the GFMM algorithm (Step 5), @} ' is solution of the equation

AI 2 N 2
_ 0, — 57! )
(i) =2 (mes 772

If |[Dp(xo,10)| # 0, by adding (6.23) for J = I** on all direction i € C C {1,.., N}
such that
ayt—a e >0 or At —ah 0 >0

and by using Lemma 5.3 (4i), we can estimate

(o) =3 (e (75~ 7he) ) < 3 s ) — el

C(xl’ tr ieC

(Ax)Q SN2 2 . .
<) (o)’ + (A2)*O(Ax + |y — @l + [t, — to])

¢ 1eC
A 2
<! E? + (A2)20(Ax + |21 — 20| + |te, — to])

where ¢ and 7, are defined in (6.21) and (6.22) respectively.
It follows that
1 1

- < 0O(A — tr. —tol).
Carty) 25 (Az + [x1 — mo| + [tr, —tol)

Taking the limit ¢ = (Az, At) — 0, we obtain a contradiction.

If Dp(xg,t9) =0, we get in the same way
1

— < O(A — t. —tol).
At = (Az + |21 — mo| + [t, — tol)

Taking the limit ¢ — 0, since we have assumed c¢(z, ) > 0, we obtain a contradiction.
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2. C(wo, to) < 0.
In this case, we have no informations on the sign of ¢;, so we have to distinguish several
cases:

(a) pi(xo,yto) < 0.
Note that, in this case, |Dy(z0, )| # 0 and (6.21) holds with 0 > ¢ > ¢(xq, o).
Then we can apply Lemma 5.3 and we deduce that there exist ¥, € C? and
(I,n) € ZN x N such that

(%) (@r, te,) =1, by, = We(ap)

and _ ~
07 =—1, 677'=1,

where 7 is defined in Lemma 5.3. Using Lemma 5.1 and Lemma 5.3 (iv), we
deduce also that for all J € V(I)\ {I} such that 7" = —1, we have

This implies that for all J € V(1) N F™*
Ut >t = V() = ta— Ve(zg) + (fa —ta) = Vel2r) — Vel@g) + (fa — ta)

Since ¢(zg, to) # 0, there exists d, dp > 0 such that |¢| > § > 0 on Bs,(zo, to) and
we can apply Lemma 5.2 to get

ay Tt — ﬂi“} > W (xr) — Ve(xy) + o(Ax).

Tt — ﬂﬁ_} > —ng - (x; —x7) + (Az) O(Ax + |x; — 20| + |tg, — to|) + o(Ax).

I R

oIl =

By adding the previous equation for J = I** on all direction i € C C {1,.., N}
such that
apt—a" S, >0o0r @t =0, >0

we obtain, since |Dy(xo,to)| # 0

As 5 N ) ) 9
() = (m (057 - 771))

(6.24) > (ng - e;)? + (A:L’)2 O(Ax + |xr — zo| + |tg, — to|) + 0(A:1:)2

=
ing

IfigC (ie uy ' — ﬁ?’j}zﬁ <0and @] ' — ﬂrflli,, < 0), then by Lemma 5.4, we
deduce that

1 —
—Ax ny-e;

(6.25) -

= o(Ax).

27



By combining (6.24) and

_(Aap?

52

—~

6.25), we get

(10 - e0)* + (Az)* O(Ax + |21 — 0| + |th, — to]) + 0o(AZ?)

||'M2

=1

+ (A7)? O(Ax + |7 — 20| + |tr, — to|) + o(Ax?)

This implies
S
A(xp,tmy) A
Taking the limit ¢ = (Az, At) — 0, we get the contradiction since |c(xq, to)| > |¢|.
®t(To,t0) > 0.
Since c¢(zg,t9) < 0, we have by the algorithm that

> O(Az + |z — zo| + |tk, — to|) + o(1).

92 )*
o) < 0. We define
ot

v =+ ((6°)" — ¢)(z.,t.). In particular, we have (6°)* < p. and

(0°) (2c, te) = po(ze,te) = 1.

We have t. = t;,. Indeed, assume that t. € (tx,,t,,,). Using the fact that
(0°)"(we,t.) = 1, we deduce that (6°)"(x.,t) = 1 for t5,, < t < t4,,, and so
(e, t.) = 0. This is absurd for € small enough since ;(xg,tg) > 0.
Using the fact that (¢.); > 0, we deduce that (6°)*(z.,t) < @e(x,t) < 1 for
o)

ot '

t < t,. This is absurd since

(Pt(wo,to) = 0.
Since the equation (6.20) holds with a > 0, we have, in particular, |Dp(zg, to)| #
0. Then, there exists a direction +e; such that Fe;- Dp(z0,ty) > 0. Using Lemma
5.5, we deduce that there exists (I, n) € ZN xN such that 0" = 1 and 6= = —
on QY. =lrpx, xpix + Ax[X]ty,, ty,,,[. We define t, such that

mo = sup{m : t,, <t Qﬁil 1, 07t. = —1}.

In particular, (6°)*(z, tm,) = 1 for all x € [xji+, xpi+ + Azl
We define . = ¢ + ((0°)" — ¢)(x.,t.). In particular, we have (6°)* < ¢. and

(0°)"(we, o) = pe(Te,tc) = 1.

Since the following inclusion {(6°)* =1} C {¢. > 1} holds, ¢.(x, tm,) > 1 for all
x € |z, xri+ + Azl

Let v € [0, Az]Y be such that x. = z; + v and let us define y = 2+ + v
and @(-,-) = ¢(- + v,-). Then it yields @(zr,t.) = ¢e(xe,t.) = 1, and
@(xli’ivtmo) = Qoe(yatmo) > 1

To obtain the contradiction, we consider the expansion of @ up to the first order
0 <P(xgizx,tm,) —P(or,t.)
< (xli»i - 1’1) ' D@(l’[, ts) + (tmo - ts)atﬁ('rfa tE) + O((A$)2 + ’ts - tmoP)'
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Now by Lemma 5.6 and using the fact that 0,¢(xg,ts) = 0 we obtain
+e; - Do(xr,t.)Ax + o(Az) > 0,
that is absurd, since by assumption +e; - Dp(xq, tg) < 0.

3. C((Bo,to) = 0.
In this case, we have
pr=a>0

and we can apply Lemma 5.3. Hence, there exists », 7 > 0, a function ¥, €
C?*(B,(x), (to — 7,to + 7)) and a node (I,n) € Z" x N such that

(65)*(x17tkn) = 17 tkn = \Ils(wl)
and for all J € V(I), t,, € (to — 7,to + 7), we have
(6.26) F(xytm) =1 = t, > V()

We define mg such that
tmofl <tg—7< tmo-

For all J € (V(I)\{I})Nn{6"! =1} (with i defined in Lemma 5.3), we define
my = sup{k <7, 9?1 =—-1}
We distinguish two cases:

(a) There exists J € (V(I)\ {I})N{0"! =1} such that m; < my.

Using the fact that 0F = —1 for mg < k <7 — 1 (see Lemma 5.3 (i1)), we have
that J € Ff, Vmg <k<mn-—1and we deduce that

~

) =ul T <ty and 07 (b)) = 1.

By (6.26), we then have t,,, > ¥.(z,).

We now assume that [Dy| # 0 (the case |[Dy| = 0 can be treated in a similar
way). Using Lemma 5.3, we deduce that

b > WU.(2)) = b, — % o - (2 — 21) + (Az) O(Az + |21 — 7| + [te, — to),
and so
thy — tmg g% o - (x; —zr) + (Az) O(Az + |z; — 20| + |tk, — tol)
g% + (Az) O(Az + |xr — xo| + |tk, — tol)-
Sending Az, At to 0, yields
to—(to—7)=7<0.

This is absurd.
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(b) For all J € (V(D\{I})Nn{6" =1}, my; > my. -
We then have 6°(x;,t,,) = 1 and so by (6.26) we have @'} ] = t,,, > U(z,).
We now assume that |Dy| # 0 (the case |Dy| = 0 can be treated in a similar
way). Using Lemma 5.3, we deduce that

, 1
uy ) > () = ty, — o - (x; —x1) + (Az) O(Az + |27 — 20| + [tR), — L0])>

and so

~n—1 A~ —

1.
;< ty, — U} <=flo (x; —z1) + (Az) O(Az + |21 — 20| + |t1) — L0])

~n—1 T
UI - qu,

By adding for J = I** on all directions i € C C {1, .., N} such that

it =W = max(@f ! - WL a - W) 20,
we deduce that
Az 2 ~ -1 2
(@—1) =3 (w-)
1 ieC
Az 2 2
< — + (Ax)* O(Az + |z1 — xo| + |tr, — tol)-

ie.
1 1
@T‘Q S ? + O(Al’ + |ZE[ — 130| + |tkn — t0|)

Sending Az, At to 0, yields a contradiction since ¢ > ¢(xg,tg) = 0. [

We construct a barrier sub-solution and we prove that 9° defined by (2.8) satisfies the
initial condition of (1.1):

Proposition 6.2 (Initial condition)
We have the following inequality:

-0

(6.27) 0(-,0) < (1g, — log)".

Proof of Proposition 6.2
For v > 0 which will be precised later, we consider the following function

(6.28) v(x) = a dist(z, Qo).

and we define, for all I € ZV
vy = v(zr).

We then define for x; € €)f a velocity oo > ¢, ; > 0 by solving

S0, 50 = (22

k=1 Co
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where
~ vy if vy <oy
vy = .

J oo if vy >y

This define a GFMM with velocity ¢, ; and whose solution is v;. On the one hand, using
the fact that |v; —v;| < @Az, yields for J € V(1)

1
avV'N

(629) Co,I 2

On the other hand, the C? regularity of 92y implies that ¢, ; is uniformly bounded as Az — 0
in a neighborhood of 0€).
Moreover, we can define ¢ in the following way

0 (1) = 1 if z€fr,zr+Azx[and t > vy
T S x € |xr,x; + Ax[ and t < vy.

We denote by u the solution of the GFMM algorithm with velocity ¢(x,t). We then have

and so
{0h =1} c {0) =1}.

Moreover, using (6.29), we deduce that for a small enough, we have, for all ¢t > 0
o > (clzr, t)*.
Using the comparison principle Corollary 4.5, we deduce that
0 (z,t) > 6°(x,t).
We denote by v°(z) = [sui) ]v(y) and Oye (2, 1) = L{ve(@)>1} — Live ()<t} It is easy to check
ye[z—Azz

that
(0ue)" (2, ) = (67)"(z,t) = (6°)" (2, ).

Passing to the limit ¢ — 0, we then obtain for ¢ > 0
—0
L@z = Yow<n = (@) 2 07(2,1)

and so o
<1QO — 198) > 0 (.1',0)

This implies that 9° satisfies the initial condition (6.27).

Proof of Theorem 2.5 The proof of Theorem 2.5 is now quite simple. Indeed, using
Theorem 6.1 and Proposition 6.2, we get that 0’ is a viscosity sub-solution of (1.1).

For the super-solution property of 6°, it suffices to use the symmetry of 0" and 0° (see
Lemma 4.1). Indeed, by contradiction, assume that there are (z,to) and ¢ € C? such that
6° — ¢ reaches a strict minimum at (zg, to) with

(,0,5(.1'0, to) = -+ C(.fCo, to)‘DQD(iB(], to)’
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with @ > 0 and £, > 0. Let us define ¢; = —c, ¢; = —p and 0, = 0 [6°, —c|. Then,
using Lemma 4.1, we get that 5(1) — (1 reaches a strict maximum at (zo, ty) with 5?(3:0, ty) =
1(z0,to) and

(p1)e(20, to) = a + c1(zo, to) | Dep(o, to)|.

This contradicts the sub-solution property of 5(1). For the initial condition, we use the same
arguments of those of Proposition 6.2.

Moreover, if (1.1) satisfies a comparison principle, then 9’ < ()" and (50)* < 6°. Since,
by definition, 7’ > 6°, we get that 7’ = (6°)* and (50)* — ¢° is a solution of (1.1). This
exactly means that 9’ and 6° are solutions, which is then unique (when the comparison

principle holds for a special choice of the initial data), up to the upper and the lower semi-
continuous envelopes. [J

7 Numerical tests

We are going to verify our algorithm by some numerical tests in dimension N = 2.

First we will give in two cases the representation formula of the solution so that we will be
able to obtain numerical errors comparing it with the numerical solution obtained by the
GFMM algorithm.

Representation formulas for hyperplanes and spheres propagating with linear
speed

We verify that hyperplanes and spheres in RY, that propagate with a linear speed along the
normal direction, keep their shapes during the evolution remaining respectively hyperplanes
and spheres.

These manifolds can be characterized by the level set of a polynomial P(z) : RY — R of
degree 1 and 2. We denote by P(z,t) the polynomials with coefficients depending on ¢.
Each point x s.t. P(x,tg) = 0 verifies the following dynamics:

. DP(y(t),t
gt) = —cly(t), 1) BEuDD.
y(to) ==

since they propagate with speed ¢ along the unit normal to the manifold. These trajectories
are known as characteristics. Then we just need to check that the evolution of each point of
the manifold verifies the equation P(y(t),t) = 0, i.e. deriving with respect to ¢

(7.30) Bi(y(t), ) = |DP(y(t), )] e(y(t),t) = 0,

for any linear speed c(x,t) = a(t)z + b(t) and for any P(z,t) representing hyperplanes or
spheres.

Hyperplanes: P(x,t) = a(t)x + 3(t)
It results Py(z,t) = &(t)x + ((t) and |[DP(x(t),t)| = |a(t)| then P(z,t) verifies (7.30) with
coefficients such that:



Spheres: P(x,t) = R(t)* — |z — xzo(t)]*

It results Py(z,t) = 2(z—xo(t))To(t)+2R(t)R(t) and |DP(x(t),t)| = 2|z —x0(t)| then P(z,1)
verifies (7.30) with coefficients such that:

Test 1 : a rotating line
We choose as initial data a line P(x,0) = x5 4+ 1.5z and then as representing function:

1 if 1.52; >0
(7.31) 0(z,0) = iz Lom
—1 otherwise.

We choose as velocity ¢(x,t) = z;1. We have proved that a line propagating with linear speed
stays a line. Applying the result of the previous section, we obtain that P(z,t) = a(t)z+5(t)
has coefficients solving the following o.d.e.

{al(t) = /1T+ au(t)? {ag(t) =0

062(0) = 1.

Solving, we obtain P(z,t) = sinh(¢ + arcsinh(a;(0)))x; + x.
We compute the discrete solution in the numerical domain D = [—1,1] x [—1, 1] and we
evaluate the error at final time T=0.5. We use the discrete L!-norm

16(er, T) =67 = > [0er, T) — 07| A,

{I:z;eD}

with m the number of iterations corresponding to reach the final time 7. The table 1 shows
the error for the tests run with 26,51, 101,201 number of nodes for each side of the square
domain. The convergence is approximately of order 1.

Fig.15 shows the 0-level set of the discrete solution at each time interval 0.1. The line is
rotating clockwise and it will reach in infinity time the x5 axe. The last line is plotted with
the exact solution in thicker line.

Az | L'-error
0.08 | 0.102
0.04 | 0.0576
0.02 | 0.0304
0.01 | 0.0160

Table 1: Numerical errors for test 1

Test 2 : propagation of a circle
We choose as initial data a circle P(z,0) = 2 + 23 — 1 and then as representing function:

1 2 2-1<0
(7.32) 0(z,0) = T
—1 otherwise.
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Figure 15: A rotating line

We choose as velocity c(z,t) = 0.1t — z;. We have proved that a circle propagating with
linear speed stays a circle. Applying the result of the previous section, we obtain that
P(z,t) = (21 — 201(¢))? 4+ (22 — 2o 2(t))* — R(t)* has coefficients solving the following o.d.e.

go1(t) = —R(t) |d02(t) =0 [ R(t) = —z0.1(t) + 0.1t
201(0) =0 202(0)=0 | R(0) =1

Solving, we obtain xo1(t) = 1/20(2t + 11(exp(—t) — exp(t)) and R(t) = 1/20(—2 +
11(exp(t) + exp(—t))).
We compute the discrete solution in the numerical domain D = [—2,2] x [—2,2] and we
evaluate the error at final time T=0.5.
We use the discrete L!'-norm, defined in the previous test.
The table 2 shows the error for the tests run with 51,101, 201,401 number of nodes for each
side of the square domain. The convergence is approximately of order 1.
Fig.16 shows the O-level set of the discrete solution and at each time interval 0.1, the circle
is expanding ad its centre is propagating on the left.

Az | L'-error
0.08 | 0.4992
0.04 | 0.2784
0.02 | 0.1288
0.01 | 0.0582

Table 2: Numerical errors for test 2

Test 3: comparison between the FMM and GFMM algorithm
When the evolution is monotone, i.e. ¢(x) > 0, there exists a link between the evolutive and
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Figure 16: A propagating circle

the stationary equation(see [8] and [11]):

c(x)|DT(z)| =1 z € (,
T(x)=0 x € 0N.

In this case the discrete function u}, computed by the GFMM algorithm, approximates the
solution T'(x) outside the set (2.

The two schemes, the FMM and the GFMM, are run in the case the speed is ¢(z,t) = 1
with initial set (2 a circle centred in the origin with radius 0.5.

For this choice of speed, the solution T'(x) corresponds at the distance function of the point
x from the set €.

We compare the two schemes computing the errors in the || - || discrete norm:

T (zr) —urlle = sup [T(xr) — ugl.
{I:.T[GD}

As one can see, the GFMM scheme produces in this particular case almost the same results

Az | FMM | GFMM
0.08 | 0.065 | 0.078
0.04 | 0.033 | 0.039
0.02 | 0.020 | 0.018

Table 3: Numerical errors for test 3

of the FMM scheme (as implemented in the HJpack library [22]). The results are slightly
different in particular because the time computed in the narrow band in the classical FMM
uses not only the accepted points but also the points of the narrow band.

Test 4: two collapsing circles
We choose as initial data two circles and as velocity c¢(x,t) = 1 —t. The two circles grow as
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Figure 17: The discrete time u of a propagating circle with positive constant speed

far as the speed is positive. At ¢t = 1, when the velocity changes sign, they start to decrease.
Fig.18 on the left shows the 0-level set of the discrete solution at each time interval 0.2 until
t = 1 and Fig.18 on the right shows the 0-level set of the discrete solution at each time
interval 0.2 for the time interval [1.2,2.4].

Figure 18: Two propagating circles
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