
HAL Id: hal-00109377
https://hal.science/hal-00109377

Submitted on 11 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiple scattering of high-frequency seismic waves in
the deep Earth: modelling and numerical examples.

Ludovic Margerin, G. Nolet

To cite this version:
Ludovic Margerin, G. Nolet. Multiple scattering of high-frequency seismic waves in the deep Earth:
modelling and numerical examples.. Journal of Geophysical Research : Solid Earth, 2003, 108 (B5),
pp.2234. �10.1029/2002JB001974�. �hal-00109377�

https://hal.science/hal-00109377
https://hal.archives-ouvertes.fr


Multiple scattering of high-frequency seismic

waves in the deep Earth: Modeling and

numerical examples

Ludovic Margerin
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[1] We apply the modern theory of radiative transfer to the modeling of the global
propagation of high-frequency seismic waves in the Earth. This theory stems from an
exact statistical treatment of the wave equation and incorporates rigorously the effects of
multiple scattering. The statistical mean time between scattering events (the mean free
time) and the typical correlation length of the random fluctuations (the scale length) are
introduced as the fundamental parameters of the theory. The integro-differential equation
of transport describes statistically the propagation of energy in phase space and can be
conveniently solved by means of Monte Carlo simulations. We provide a general
description of the method, stressing the important modifications required to adapt it to
global propagation. The theory is applied to the modeling of PKP precursors, probably the
best documented examples of wave scattering at the global scale. Guided by recent results
of Hedlin et al. [1997], we solve the transfer equation in a variety of Earth models
presenting exponentially correlated fluctuations of elastic parameters superimposed upon
PREM. The validity of Born approximation is tested in a series of random media with
mean free time and scale length in the 100–3200 s and 4–24 km ranges, respectively. For
errors in coda envelope amplitude bound by 20%, the Born approximation can be safely
applied in media with mean free times larger than about 400 s, relatively independent of
the scale length. This corresponds to rather moderate (<0.5% RMS) perturbations, thus
severely limiting the range of validity of Born approximation. INDEX TERMS: 7203

Seismology: Body wave propagation; 7207 Seismology: Core and mantle; 7260 Seismology: Theory and

modeling; KEYWORDS: multiple scattering, precursors, radiative transfer, Born approximation, Monte Carlo

method, heterogeneity
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1. Introduction

[2] In recent years, a lot of efforts have been invested in
the development of accurate methods of generation of
synthetic seismograms, in conjunction with the rapid
growth of available computational power. For example,
the spectral element method provides an innovative and
powerful tool to generate full seismogram waveforms [e.g.,
Komatitsch and Tromp, 1999; Chaljub, 2000]. We antici-
pate that in the foreseeable future seismologists will be able
to simulate the propagation of elastic waves in the whole
range of the seismic spectrum. Nevertheless, the extraction
of meaningful information from seismic data remains a key
problem. It is noticable, for example, that tomography,
probably one of the most successful achievements of

seismology, relies solely on observations of travel times
of isolated phases, thereby neglecting the information con-
tained in wave amplitudes. Recently, Nolet and Dahlen
[2000] have shown theoretically that the resolving power
of seismic tomography was severely limited by the inability
of ray theory to account for diffraction and other finite
frequency phenomena. The current trend in modern tomog-
raphy is to take into account scattering effects in the
interpretation of travel times and waveforms [Woodward,
1993; Li and Tanimoto, 1993; Zhao and Jordan, 1998;
Dahlen et al., 2000; Hung et al., 2000].
[3] Clearly, the role of scattered waves in the interpreta-

tion of direct arrivals is a topic of growing interest. The
interpretation of the direct arrivals themselves is more
difficult. At high frequencies (>1 Hz), the correlation length
of amplitude and phase is very short, typically of the same
order as the wavelength [Aki, 1973; Flatté and Wu, 1988],
which implies rapid spatial variations of waveforms. How-
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ever, in this frequency range, seismogram envelopes con-
stitute a robust observation that is increasingly being used to
provide a description of the Earth in a statistical sense [e.g.,
Sato and Fehler, 1998]. The problem of imaging in com-
plex media is common to many areas of physics like
acoustics, astrophysics, atmospheric optics, to cite a few
only. In all these fields a standard tool of interpretation of
scattered waves is radiative transfer theory, also known as
transport theory. First developed on a phenomenological
basis by astrophysicists to model the propagation of light
through clouds, transport theory now stands on its own firm
theoretical foundations. In particular, multiple scattering
theories borrowed from the field of quantum electrodynam-
ics have established the connection between transport and
wave equations. Mathematicians have also put forward the
transport equation as an exact asymptotic consequence of
the wave equation [Ryzhik et al., 1996].
[4] In seismology, radiative transfer theory has been

introduced by Wu [1985] to model the spatial distribution
of energy in the coda of crustal earthquakes. The theory was
applied to data by Wu and Aki [1988], who provided the
first inferences on the mean free path and absorption length
of waves in the lithosphere. An important step was taken by
Gusev and Abubakirov [1987], who incorporated time
dependence and scattering anisotropy in the modeling. They
also introduced the now familiar Monte Carlo method to
solve the radiative transfer equation. Recent years have seen
the development of more and more sophisticated models
including depth-dependent scattering and velocity structures
[Hoshiba, 1994, 1997; Margerin et al., 1998] and mode
coupling [Sato, 1994; Zeng, 1993;Margerin et al., 2000]. In
this paper, transport theory is applied to the modeling of
envelope records of global seismic data. In contrast with
previous investigations, ray bending and spherical geometry
will be taken into account. We first present the transport
equation in a seismological context with an eye on the
application to the modeling of PKP precursors. Because
mode coupling can be neglected for this particular problem
(as explained in section 4), we limit ourselves to a single
mode formulation of transport theory. The evolution of
polarization as well as mode conversions that are so
important to explain equipartition of seismic waves in the
coda have been considered elsewhere [Margerin et al.,
2000; Hennino et al., 2001]. A Monte Carlo method of
solution of transport equations is presented and several
examples pertaining to the modeling of PKP precursors
are examined. A section addresses the validity range of the
well-known Born approximation in connection with recent
results by Hedlin et al. [1997] and Cormier [1995, 1999].

2. Radiation Transport in Stratified Media

[5] The problem of seismic wave propagation in random
media is vastly more complex than that of rays propagating
in a smoothly varying 3-D Earth model, where rays are
defined by their initial slowness vector and where ray
bundles remain ordered. In a random medium the interac-
tion with the scatterers is such as to perturb the ray slowness
vector in a random fashion. In the limit of strong scattering,
waves propagate uniformly in all directions and the wave
field satisfies a diffusion equation. In this paper we are
dealing with the far more complicated intermediate stage,

where waves experience only a few scattering events
between source and receiver, and can be analyzed using
the theory of radiative transfer.
[6] In the theory of radiative transfer, we discard the phase

information contained in individual rays; rather, we are
interested in the energy transmitted, very much like an
astronomer is interested in the light intensity obtained by
summing photons. A considerable simplification is reached
by formulating the problem in this way. The energy flux in
such a medium is then a function of location, time and
direction. It is important to realize that energy may flow in all
directions from one point in space, unlike the situation we
know so well from ray theory in a smooth Earth. In addition,
because the probability of scattering is a function of the
wavelength of the wave with respect to the size of the
scatterer, the intensity is also a function of frequency. In this
way we reduce the number of variables for a scalar wave
field to seven: three for position, two for direction, frequency
and time. To conserve the phase information, we would have
to formulate a finite difference or finite element scheme with
billions of variables to be handled in a computer at the same
time. The price we pay for our simplification is that we can
only construct the envelope of the seismic signal.
[7] In this section, we derive from a phenomenological

viewpoint the transport equation for acoustic waves taking
into account important specificities of seismology like
reflection/transmission at major discontinuities inside the
Earth and the continuous refraction of rays in smooth parts
of the reference medium. This level of presentation will be
sufficient for our purposes. Only when necessary, we will
borrow some results from the complete elastic theory as
exposed by Weaver [1990] and Ryzhik et al. [1996].

2.1. Physical Assumptions

[8] Before going to a detailed presentation, it is important
to outline the physical assumptions underlying the
approach. We assume that small fluctuations of the elastic
parameters are superimposed on a piecewise smooth back-
ground medium. For example, in an acoustic medium, the
velocity v will be decomposed as v(R) = vr(R)(1 + a(R)),
where R is the position vector, vr(R) is the wave speed in a
reference (unperturbed) background medium like PREM
[Dziewonski and Anderson, 1981] and a(R) represents a
fluctuation with zero statistical mean. Central to the under-
standing of transport theory is the idea of separation of
scales. On the one hand, we assume that the typical length
scale over which the field vr varies significantly is much
larger than the wavelength. On the other hand, the typical
scale over which the field a varies can be of the same order
as the wavelength, which entails scattering of the waves by
the inhomogeneities. The fact that the wavelength is con-
sidered otherwise as a small quantity allows us to use ray
theory to predict the evolution of the wave field between
scattering events. For a precise mathematical formulation of
the scaling relations, we refer to Ryzhik et al. [1996]. The
fluctuating part a will be described by a correlation function
�(R, r) = ha(R � r/2)a(R + r/2)i, where angle brackets
denote an ensemble or statistical average. This function can
be expanded in a Fourier integral:

� R; rð Þ ¼
Z

�a R;kð Þeik�rd3k: ð1Þ
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Provided the field fluctuations are quasi-homogeneous, i.e.,
exhibit fast variations in the r variable as compared to the R
variable, �a can be interpreted as the local power spectrum
of inhomogeneities. Thus it is possible to allow for slow
variations of the correlation function along the rays to
model possible statistical inhomogeneity of the medium.

2.2. Specific Intensity and Related Quantities

[9] The fundamental quantity describing the radiation
field is the so-called specific intensity or radiance defined as

I w; t;R; nð Þ ¼ dE

d� nð Þdw n � dSj jdt ; ð2Þ

where dE is the amount of energy in the solid angle d�(n)
around space direction n within the frequency range [w, w +
dw] flowing through the surface dS during the time interval
dt. It is an angularly resolved flux whose direction of
propagation can be tracked through the medium. Specific
intensity is not directly accessible to seismologists but rather
the local energy density defined as

r t;Rð Þ ¼
Z
�w

dw
Z
4p

1

vg w;Rð Þ I w; t;R;nð Þd� nð Þ; ð3Þ

where �w is the frequency band of the radiation, vg is the
group speed of a wave packet with central frequency w and
4p denotes the whole sphere of space directions. Note that
in this definition, the group velocity is independent of the
propagation direction of the waves. This implies that the
background medium as well as the statistical properties of
the fluctuations are isotropic, which will suffice for our
applications. In absence of fluctuations (a 	 0) and of
temporal dispersion vr and vg obviously coincide. Another
quantity of interest is the energy current vector defined as

J t;Rð Þ ¼
Z
�w

dw
Z
4p

I w; t;R; nð Þnd� nð Þ; ð4Þ

so that the net rate of energy flow through an arbitrary
surface dS is given by J � dS.

2.3. Variation of Intensity in Free Space

[10] The first point we wish to examine is the variation of
intensity induced by the propagation in the background
medium. Thus we leave aside for the moment the effects of
scattering (a 	 0) to concentrate on the effects of ray
bending caused by vr. To address this point, it is interesting
to note that the specific intensity at a point can also be
viewed as a set of quasi-plane waves having random phases
and propagating independently. To study the variation of
intensity due solely to the velocity gradients in the reference
medium, we assume that each quasi-plane wave propagates
according to the laws of geometrical optics. Suppose we
want to follow a beam of energy defined by its extension
(�R0, �w0, ��0) in phase space at t = t0. At time t it
occupies another volume of phase space (�R(t), �w(t),
��(t)). When absorption is absent, the total energy E
carried by the beam is conserved as it evolves through the
medium and should therefore verify dE/dt = 0. Using the

definitions of specific intensity and energy density, this can
be rewritten as

d

dt

Z
�w tð Þ

dw
Z

�R tð Þ

d3R

Z
�� tð Þ

1

vg w;Rð Þ I

� w; t;R; nð Þd� nð Þ ¼ 0: ð5Þ

In Appendix A, we show that in a stationary, isotropic
medium this implies the following:

dI

dt
þ
d log v2r

� �
dt

I ¼ 0; ð6Þ

and accordingly, the generalized intensity I = vr
2I is

conserved along the ray path. We can give this result a
simple physical interpretation. Consider a beam traveling
through two surfaces S1 and S2 perpendicular to the ray at
locations P1 and P2, respectively (see Figure 1). For the
sake of simplicity we have dropped the time and frequency
dependence in this illustration. By definition of a beam, the
energy flowing through the two surfaces should be equal.
Now the specific intensities at P1 and P2 are

I1 ¼
dE

dS1d�1

; I2 ¼
dE

dS2d�2

; ð7Þ

respectively. In equation (7), d�1(2) denotes the solid angle
subtended by dS1(2) at P1(2) (see Figure 1). By definition, the
geometrical spreading Ri!j along the ray connecting Pi to Pj

satisfies the following relation:

dS1d�1

dS2d�2

¼ R2
2!1

R2
1!2

ð8Þ

From ray theory, we know that the geometrical spreading in
3-D obeys the reciprocity relation v1R1!2 = v2R2!1 [Dahlen
and Tromp, 1998; Snieder and Chapman, 1998] which
imposes

v21I1 ¼ v22I2; ð9Þ

where v0 and v1 are the velocities at P1 and P2, respectively.
Hence equation (6) simply reflects the geometrical effects of
focusing/defocusing. In the case of a homogeneous medium,
the specific intensity itself is conserved along the ray which
makes it a fundamental quantity in optical measurements.

2.4. The Transfer Equation

[11] From a phenomenological viewpoint, the transfer
equation results from a detailed balance of energy as we

Figure 1. Schematic view of the evolution of a beam of
energy in a smooth medium. The energy flowing through
the elementary surface dS1 (respectively dS2) consists of a
set of quasi-plane waves propagating in the small solid
angle d�2 (respectively d�1) subtended by dS1 (respectively
dS2) at P2 (respectively P1).
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follow a wave beam propagating in direction n along an
elementary ray path. Because of the interaction with the
scatterers, the beam distributes energy over all space direc-
tions and this entails the following change of intensity dI
over the time interval dt:

dI ¼ � dt
t
I ; ð10Þ

where the scattering mean free time t depends on the
wavelength, the correlation length of the inhomogeneities
and the RMS perturbations as explained in section 2.6. The
scattering mean free time can be viewed as the typical
timescale over which the coherent part of the wave field
attenuates or alternatively as the statistical mean time
between two scattering events. We also have to consider
that, upon scattering, the wave beams propagating locally in
space direction n0 can transfer energy to direction n, which
results in a gain term:

dI ¼ dt
t

Z
4p

p n; n0ð ÞI w; t;R;n0ð Þd� n0ð Þ: ð11Þ

The prefactor dt/t represents the relative loss of each beam
during propagation. The normalized phase function p(n, n0)
describes the angular anisotropy of the scattering and can be
interpreted as the probability for a local plane wave
propagating in direction n0 to be scattered into direction n.
As will be seen in section 2.6, the phase function is
completely determined by the choice of correlation func-
tion. Considering the possible presence of sources of
intensity S (w, t, R, n) and collecting the results of
equations (6), (10), and (11), we obtain the transport
equation

d

dt
þ d log v2r

dt
þ 1

t

� �
I w; t;R;nð Þ

¼ S w; t;R; nð Þ þ 1

t

Z
4p

p n; n0ð ÞI w; t;R; n0ð Þd� n0ð Þ: ð12Þ

It is seen that the different contributions are simply added
which reflects the additivity property of intensities in
random media. We emphasize that the derivative d/dt in
equation (12) has to be interpreted as a total or ‘‘material
derivative’’ and can be expanded as

d

dt
¼ @

@t
þ dR

dt
� rR þ dn

dt
� rn; ð13Þ

where we have taken into account the conservation of
frequency along the ray. The derivatives dR/dt, dn/dt can be
further explicated with the aid of the ray equations (see
Appendix A). The d/dt operator is similar to the ‘‘material
derivative’’ of fluid mechanics which physically means that
we follow the beam of intensity along the ray path.

2.5. Boundary Conditions at Interfaces

[12] As a wave beam encounters an interface, the energy
of each plane wave is partitioned into reflected and trans-
mitted waves. In addition, we have to consider that the

beam as a whole undergoes a change of solid angle. In order
to derive the equations connecting the incoming and out-
going intensities, we write a balance of energy on a small
portion dS of the interface (see Figure 2). The incoming
wave is incident from the upper part of the medium with
velocity V1 and is transmitted into the lower part of the
medium with velocity V2. In the general case, the interface
may be curved and will be approximated locally by its
tangent plane. Once again, the laws of geometrical optics
are used to deal with each quasi-plane wave composing the
beam. Henceforth, the different physical quantities are
accompanied with subscripts i, r, t to identify the incident,
reflected and transmitted waves, respectively. In order to
verify the conservation of energy at the boundary, the sum
of the fluxes of the outgoing waves must be balanced by the
flux of the incoming waves:

Ii ni � dSj jd� nið Þ ¼ Ir nr � dSj jd� nrð Þ þ It nt � dSj jd� ntð Þ: ð14Þ

Neglecting to first order the effects of surface curvature, we
have d�(nr) = d�(ni). Using Snell’s law, the change of solid
angle upon transmission can be written as

d� ntð Þ
d� nið Þ ¼

sin qtV2 cos qi
sin qiV1 cos qt

; ð15Þ

where q denotes the angle n makes with dS. Injecting the
last relation into equation (16) and expressing the flux ratios
through the energy reflection and transmission coefficients

Figure 2. Reflection and transmission of specific intensity
at a boundary between media presenting a wave speed
contrast V1/V2. The beam is incident from the upper medium
with velocity V1 and is partially reflected and transmitted.
The incident, reflected, and transmitted waves are labeled
with subscripts i, r, and t, respectively. I and d� denote the
specific intensities and associated solid angles.
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R and T [see, e.g., Ben-Menahem and Singh, 2001], we
obtain the desired boundary conditions:

It ¼
V 2
1

V 2
2

T Ii ð16Þ

Ir ¼ RIi: ð17Þ

Equation (16) can be given a simple interpretation: the ratio
of velocities models the focusing/defocusing of the beam as
a whole, while the transmission coefficient accounts for the
change of energy flux of each individual plane wave upon
propagation through the interface.

2.6. Wave Content of the Transfer Equation

[13] So far, we have based our reasoning on phenomeno-
logical concepts, disregarding important problems such as
the connection between the specific intensity and the field
itself. However, it is important to note that the derivation of
the transfer equation can be made completely rigorous using
multiple-scattering theory [Rytov et al., 1989; Lagendijk
and Van Tiggelen, 1996; Apresyan and Kravtsov, 1996].
Moreover, the theory can be extended to elastic wave
propagation incorporating rigorously the effects of polar-
ization and mode coupling [Weaver, 1990; Ryzhik et al.,
1996]. In particular, they show that the radiance is essen-
tially the Fourier transform of the coherence function of the
wave field.
[14] For our seismological applications, it is important to

relate the parameters of the transfer equation to the stat-
istical description of the medium fluctuations. Provided the
perturbations are weak enough, it is possible to show [Rytov
et al., 1989] that for scalar waves with central frequency w0,
the mean free time and phase function or scattering radia-
tion pattern can be written as

1

t Rð Þ ¼ vg w0;Rð Þ
Z
4p

2pk40 Rð Þ�a R; k1 n� n0ð Þð Þd� nð Þ; ð18Þ

p R; n; n0ð Þ ¼ �a R; k1 n� n0ð Þð ÞZ
4p

�a R; k1 n� n0ð Þd� nð Þð
; ð19Þ

respectively. Because the medium is assumed statistically
isotropic, neither t nor p depends explicitly on n0. Note that
a subtle difference exists between k0 and k1. The former is
the wave number at frequency w0 in the reference medium
while the latter is the real part of the renormalized wave
number at the same frequency in the random medium
[Sheng, 1995; Rytov et al., 1989]. When perturbations are
weak, the two quantities differ very little. Both t and p may
depend slowly on R either due to a change of the wave
number or to the statistical inhomogeneity of the medium.
Because the mean free time represents the relative loss of
energy per unit time of propagating waves, it measures in a
meaningful way the scattering strength of the medium. We
shall therefore prefer this parameter to the often used RMS
perturbations to qualify the scattering medium.

[15] The reader may have recognized that the integral in
equation (18) is nothing more than the scattering cross
section per unit volume obtained in the Born approximation,
provided the slight difference between k0 and k1 is neglected
[Rytov et al., 1989]. The phase function is also seen to be
proportional to the power spectrum of inhomogeneities
evaluated at k1(n � n0), the exchange vector between the
incoming and outgoing propagation directions. This coin-
cides again with the predictions of the Born approximation,
with the same comment as above. These results may be
generalized to elastic waves provided one takes care of all
the possible correlations among the different elastic param-
eters and mode conversions. In practice, this means that the
solution of the Born approximation [e.g., Wu and Aki, 1985]
suffices to compute all the parameters of the transport
equation. For completeness, we present in Appendix B
expressions for the mean free time of elastic waves in
media with exponential correlations and velocity-type per-
turbations, as defined by Wu and Aki [1985]. It is worth
mentioning that as a consequence of equations (18) and
(19), the transport equation reduces to the Born approxima-
tion when the propagation time t is much smaller than the
mean free time. The requirement t/t � 1 ensures that the
losses of the primary field are small and that multiple
scattering can be neglected [Ishimaru, 1978].

3. Monte Carlo Solution of Transport Equations

[16] In this section, we briefly describe the numerical
scheme adopted to solve the transport equation. As is well
known, Monte Carlo simulations constitute a standard
method of solution of complex transport problems involving
a large phase space. In the mathematical literature it is
possible to find rigorous justifications of the method
although the proofs are rather involved [Bal et al., 2000;
Lapeyre et al., 1998]. Heuristic arguments can be found in
the physical literature [Lux and Koblinger, 1991], and in
what follows we shall adhere to this level of rigor.

3.1. Outline of the Simulation

[17] A natural and transparent way of understanding
Monte Carlo simulations relies on the observation that the
transport equation is completely analogous to the Boltz-
mann equation of the kinetic theory of gases. Therefore, by
simulating the trajectories of a large number of particles it is
possible to estimate average values of various physical
quantities of interest such as flux or energy density. This
approach has been adopted in a recent paper by Yoshimoto
[2000]. Below, we briefly describe the logical organization
of the simulation of the space-time evolution of the energy
in the scattering medium.
[18] Each particle is described by a set of variables that

completely specify its state, that is, the position vector R,
the propagation direction n, the propagation time t, and a
weight w. This weight enables the modeling of absorption
due to anelasticity, or reflection/transmission at boundaries.
We shall henceforth assume that the waves have central
frequency w0 and will drop the frequency dependence. The
simulation of one particle’s history is composed of several
steps, as described below:
[19] 1. The particle is launched at the source region,

which consists in randomly selecting its takeoff time t0,
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its initial position R0, and its initial propagation direction
n0, according to the definition of the source function.
[20] 2. The flight time T1 to the first collision is deter-

mined according to the definition of the mean free time. The
ray equations are integrated from time t = t0 up to time t1 =
t0 + T1. The state variables of the particle assume the new
values R1, n1

�, t1.
[21] 3. At this stage, a scattering event occurs and the

propagation direction jumps to the new value n1
+ according

to the definition of the differential scattering cross section.
[22] 4. The process is repeated as follows: a propagation

time Ti from the (i � 1)th to the ith collision is selected. The
integration of the ray equations provides the evolution of the
particle from Ri�1, ni�1

+ , ti�1 to Ri, ni
�, ti, where the particle

jumps from ni
� to n+i because of scattering, and so on, until

the particle escapes the space-time domain where we wish
to compute the solution of the transport equation.
[23] 5. The particle is monitored during propagation and

when it reaches some region of interest its contribution to
the flux or energy density is calculated.
[24] 6. After simulation of a large number of independent

such random walks the contributions of each particle are
averaged to obtain an estimate of energy flux.

3.2. Simulation of Random Vectors

[25] After this brief introduction, we examine at greater
depth each step of the simulation. The modeling of random
variables is at the heart of any Monte Carlo algorithm,and
we will examine this point in a general context. Suppose we
wish to model a random vector Xi, 1 � i � N, with joint
probability density wn(x1; � � � ;xN), where the subscript
denotes the number of components. In the general case
where the different variables Xi are not independent, it is
always possible to use an elementary decomposition of wN

into conditional probabilities. Denoting by xi, the value
taken by the random variable Xi, the probability of the
event \1�i�N (xi � Xi < xi + dxi) is written as

P x1 � X1 < x1 þ dx1; � � � ; xN � XN < xN þ dxNð Þ

¼ w1 x1ð Þw2 x1jx2ð Þ � � �wn x1; � � � ; xN�1jxNð Þdx1 � � � dxN ð20Þ

where wk(x1; � � � ;xk�1 jxk) is the conditional probability of
Xk given X1, � � � Xk�1. This decomposition offers a natural
way of simulating a complex PDF by reading the right-hand
side from left to right. We proceed first with the simulation
of X1, then with the simulation of X2 conditioned on X1,
then with the simulation of X3 given X1, X2, and so on, up to
XN. Hence the simulation of a random vector can always be
simplified into the much simpler repeated selection of
random variables. A number of clever algorithms have been
devised to generate random numbers distributed according
to some prescribed PDF and we refer the reader to Lux and
Koblinger [1991] for extensive references on the topic.
Below, we provide the probabilistic interpretation of the
transport process from a physical point of view. We will not
dwell on a detailed description of the algorithm itself since
this has already been presented a number of times in the
seismological literature [Gusev and Abubakirov, 1987;
Hoshiba, 1994, 1997; Yoshimoto, 2000; Margerin et al.,
2000].

3.3. Simulation of the Transport Process

3.3.1. Source
[26] In transport theory, the source is modeled by a

function S (t, R, n) prescribing the flux of particles leaving
position R at time t in direction n. For convenience, we
demand that S be normalized as follows:

Z
dt

Z
d3R

Z
S t;R; nð Þd� nð Þ ¼ 1: ð21Þ

S can thus be interpreted as the joint probability density
function of the variables R, n and t. In order to launch a
particle, we require the simulation of a random vector (R0,
n0, t0) according to the PDF S. In the numerical examples
presented below, the source is assumed to be isotropic and
point-like, thus S(t, R, n) = 1/4pd(R � R0)s(t), withRþ1
�1 s(t)dt = 1. In this case, the simulation greatly simplifies
since the variables are independent and the problem
becomes axisymmetric. The assumption is not too restric-
tive for the PKP precursor modeling, since these waves
correspond to rays that leave the source in a tiny solid angle.
In addition, the data are generally averaged over different
paths, which tends to wash out the details of the radiation
pattern.
3.3.2. Propagation and Scattering
[27] After a particle has been launched or scattered, we

need to select its flight time Ti to the next scattering
position. In what follows, we assume that the ray equations
can be numerically solved in the background medium. In
the simple case where the mean free time t is constant, the
intensity I decays exponentially along a ray according to
e�t/t. It is straightforward to generalize this result to the case
where the mean free time is a function of the position along
the ray R, by simple integration of equation (10). The
probability of scattering in the time interval [T, T + dT]
thus reads

P T � TN < T þ dTð Þ ¼ e

�

ZT

0

dt

t R tð Þ½ �

t R Tð Þ½ � dT ; ð22Þ

where the integral is taken along the ray path in the
background medium.
[28] When the particle encounters an interface between

media with different wave speeds, the boundary conditions
(16)–(17) have to be implemented. The change of solid
angle due to the deterministic refraction is modeled by
imposing Snell’s law. The partition of energy at the boun-
dary is treated as a Bernouilli process with probability of
reflection R and probability of transmission T ¼ 1�R.
[29] From equation (19), we interpret p(n, n0) as the

probability for a particle propagating in direction n0 to be
scattered into direction n. We note that for acoustic or P to P
scattering in a statistically isotropic medium, the phase
function depends on the cosine of the scattering angle n �
n0 only, independent of the type of perturbations. As usual,
the new propagation direction ni

+ is first randomly selected
in a local orthogonal frame with basis vectors (x, y, ni

�)
(note that the choice of x and y is arbitrary). The coordinates
of ni

+ are then rotated to keep track of the propagation vector
in a global frame.
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3.3.3. Detection
[30] We monitor the evolution of the particle in the

medium and calculate its contribution to the energy flux
at the surface. This is simply done by dividing the surface of
the Earth into patches of elementary area �A and by
dividing the time into intervals of constant width �t, small
compared to the mean free time. Each time a particle
impinges on the Earth surface at q, f and time t, its weight
wi

(q,f) is added to the corresponding space-time bin and the
average local flux J is estimated as

J q;fð Þ ¼ 1

M

XM
i¼1

w
q;fð Þ
i

�A
; ð23Þ

where M is the total number of simulated particles.
3.3.4. Born Approximation
[31] Monte Carlo simulations of the transport equation

enable the computation of the Born approximation in a
flexible way. Because Born theory is a single-scattering
approximation, the particle is allowed to be scattered only
once. Doing so, we obtain the first order term of a multiple-
scattering series which does not coincide with the Born
approximation unless the mean free time is very large (t !
1). The precise reason for this difference stems from the fact
that the Born approximation neglects the energy losses due
to scattering along the wave path. The scattering loss Ls is
simply computed as the integral of equation (10) along the
ray path. By weighting the particles with 1/Ls, we exactly
compensate for the scattering attenuation and therefore
obtain the Born approximation. Simple consistency checks
of the method are obtained by remarking (1) that the Born
solution scales linearly with the perturbations squared and
(2) that the unscattered energy is completely independent of
the perturbations and should match the predictions of ray
theory. We have verified that our Born solution behaves so.

4. Application to PKP Precursors

[32] Probably the best documented observation of wave
scattering in the deep Earth are the so-called precursors of
the PKP phase. In recent work [Hedlin et al., 1997; Hedlin
and Shearer, 2000], Hedlin and his coworkers have per-
formed a thorough analysis of these precursors and we will
summarize their findings here. The precursors are scattered
wave trains preceding the df branch of PKP that are usually
observed in the 124–142	 epicentral distance range. They
constitute a unique example of scattering because in this
case the diffracted energy comes in before the main phase of
the seismogram and is not blurred by the coda of any other
phase. Seismologists now agree that the precursors stem
from the scattering of the PKPab and PKPbc phases by
inhomogeneities in the lower mantle. More precisely, the
onset time of the precursors usually coincides fairly well
with the predicted minimum arrival time for scattered
PKPab and PKPbc waves, if one assumes that scattering
begins just above the core-mantle boundary (CMB).
[33] A major and original contribution of Hedlin et al.’s

[1997] work is their quantitative analysis of the space-time
dependence of the energy of the precursors. First, they
measured the root mean square amplitudes of the precursors
as a function of time and epicentral distance by averaging

the energy envelopes of a large collection of precursor’s
records. Using the Born approximation, they were able to
predict theoretically the energy distribution of the precur-
sors assuming that heterogeneities with exponential or
Gaussian correlation function are superimposed upon
PREM. They reached the thought-provoking conclusion
that the often invoked D00 layer is unable to explain the
observed duration of the precursors. They proposed that
small-scale heterogeneities with a correlation length of
about 8 km and fluctuations of about 1% would be present
at all depths in the lower mantle. It is interesting to note that
the geometry of the wave paths does not allow a complete
reconstruction of the perturbations that give rise to scatter-
ing. The precursors correspond to wave that are mostly
deflected in a small cone around the forward direction.
Hence we will be insensitive to impedance-type perturba-
tions that give rise to backward scattering as described by
Wu and Aki [1985]. For this particular reason, only velocity-
type perturbations will be investigated in this paper.
[34] Of course, if scatterers are present throughout the

mantle, one might question the validity of single-scattering
approximations. As explained before, the transport equation
is an exact consequence of the wave equation that incorpo-
rates the effects of multiple scattering. The Monte Carlo
simulations will thus provide a reference solution against
which the Born approximation can be tested. As already
outlined before, the Born approximation is recovered from
transport theory in the limit of weak scattering (t ! 1).
Before going to a detailed comparison, we will first present
some simplifications of the physics that were introduced in
order to simplify the numerical work.

4.1. Model Assumptions

[35] We wish to solve the transport equation in an Earth
model that closely resembles that proposed by Hedlin at al.
[1997]. However some difficulties arise in doing so because
the continuous change of velocity in the Earth results in depth
dependent mean free times and phase functions. In Figure 3,
we show the exact depth dependence of the mean free time
calculated at a central frequency of 1.3 Hz in a lower mantle
containing heterogeneities with 4, 5, 8, or 16 km length
scale and 1% RMS perturbations. The mean free time thus
decreases slightly with the radius within the Earth. For
heterogeneities with 8 km length scale, the ratios between
the mean free time at the CMB, and the mean free time
1200 km and 2000 km above the CMB, are approximately
1.08 and 1.25 respectively. It seems therefore reasonable to
approximate the exact radial dependence with a whole mantle
mean value. We also assume like Hedlin et al. [1997] that
scattering occurs on receiver side (or source side) only.
[36] Another difficulty arises from the continuous change

of the angular dependence of the scattering caused by the
variation of the product wave number times length scale
along a ray. In order to quantify in a simple way the change
of scattering anisotropy with depth, we introduce the mean
cosine of the scattering angle defined as

g Rð Þ ¼
Z1

�1

p R; mð Þm dm; ð24Þ

where m is the cosine of the scattering angle. The
dependence of the phase function on the cosine of the
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scattering angle solely has been made explicit in equation
(24). Obviously, g lies in the interval ] - 1, 1 [. When g is
positive, scattering is predominantly in the forward
direction. In Figure 3, it is seen (1) that the depth
dependence of g in Hedlin like models is rather weak and
(2) that g is very close to 1 indicating a strong tendency to
forward scattering. This implies (1) that a mean correlation
length can be defined for the whole mantle and (2) that the
probability of backward scattering is extremely weak. Wave
propagation in the mantle can therefore me modeled as a
(possibly multiple) forward scattering process. This last
assumption has also been implicitly used by Hedlin et al.
[1997].
[37] Until now, the elastic nature of the medium has

somewhat been overlooked in our presentation. In order to
discuss the importance of P to S mode coupling, we show in

Figure 4 the P to P, P to S and total mean free time as
functions of the correlation length. For length scales larger
than 4 km, P to P scattering largely dominates over P to S
mode conversions. This justifies the acoustic treatment of
the scattering used in this study. However, the discontinuous
change of elastic properties at major discontinuities inside
the Earth imposes strong mode conversions. In order to take
these effects into account, we have made use of the exact
elastic reflection and transmission coefficients in the mod-
eling. Since S to P conversions are extremely weak, the part
of the energy that is converted into shear energy at a
boundary is considered as irreversibly lost. In the Monte
Carlo simulation, this is appropriately accounted for by
ascribing to the particle a weight which is proportional to
the P to P transmission coefficient.
[38] To summarize, we model the energy transport in the

mantle as a multiple forward scattering process, taking
accurately into account the effects of ray curvature and
mode conversions at interfaces, but neglecting the effect of
the velocity gradients on the scattering parameters. As
explained above, this is not too strong a simplification
because the changes of mean free time and phase function
with depth are rather moderate in the lower mantle.

4.2. Some Numerical Examples

[39] The reader may have noticed that the Monte Carlo
method never asks for the computation of dynamic proper-
ties such as geometrical spreading. This constitutes a big
advantage for the problem of PKP precursors where the
incident wave field has a singularity at the b caustic. Of
course this singularity is integrable but it requires a careful
scheme of numerical integration. To demonstrate on a
simple example that the Monte Carlo simulations incorpo-
rate in a natural way the strong effects of focusing/defocus-
ing, we have computed the decay of energy flux of the ab
and bc branches of PKP from the caustic to 160	 epicentral
distance in a perfectly transparent Earth. In this case, no
scattering occurs and the solution of the transport equation
should then reduce to the predictions of ray theory. In order
to speed up the Monte Carlo ray-tracing procedure, the
PREM model has been approximated with 134 layers of
constant velocity gradient. In this case, analytical formulas
for ray tracing can be derived [e.g., Nolet, 1981], which
avoids the costly numerical integration of the ray equations.
We have developed independently a dynamic ray-tracing
code that provides a simple ‘‘exact’’ reference solution in
PREM against which the Monte Carlo simulation can be
tested. Because of its inherently discrete character, the
simulation enables the calculation of the flux at a discrete
set of epicentral distances only. The comparison for an
isotropic point source with unit total energy is shown in
Figure 5. The agreement between the two approaches is
seen to be excellent. The Monte Carlo method catches
rather well the divergence of the flux in the neighborhood
of the caustic, in spite of the crude approximation of the
PREM model. We emphasize that this comparison is one-to-
one with no adjustable parameter.
[40] Another noticable advantage of our method is its

ability to provide the full seismogram envelope in a single
step. Thus contrary to Hedlin’s approach, we do not
compute (1) the precursor amplitudes using Born approx-
imation and (2) the cd + df amplitudes using ray theory.

Figure 3. Multiple scattering parameters of Hedlin-like
models. (a) Mean free time. (b) Mean cosine of scattering
angle.
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Figure 4. Mode conversions as a function of length scale in a Hedlin-like model. Dotted curve P-P
scattering; dash-dotted curve, P-S scattering; solid curve, total. The effect of mode coupling is seen to
become negligible for correlation lengths larger than 4 km.

Figure 5. Energy flux of PKPab and PKPbc as a function of epicentral distance in a perfectly elastic
PREM model for an isotropic, point-like source with unit total energy. Symbols, Monte Carlo
simulations; dashed line, dynamic ray tracing.
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Instead, we obtain a complete solution that incorporates
precursors, direct waves and coda. The normalization of the
precursors amplitudes with respect to the peak amplitudes
of the core phases is therefore made simple. In order to
ensure rapid statistical convergence, we divide the Earth’s
surface into annuli of 3	 epicentral distance. The seismo-
gram envelopes are computed as the RMS energy flux,
taking as reference time the arrival time of the df branch.
This is in agreement with the processing of data. As will be
explained in a forthcoming paper, the data are first binned
into six epicentral distance ranges, next they are aligned
with respect to the df phase, then their RMS amplitude are
evaluated. An example of full seismogram envelope com-
puted in a heterogeneous mantle with weak (0.6%) small-

scale (16 km) perturbations is shown in Figure 6. As often
observed, the energy of the precursors is seen to decay very
rapidly from the caustic to the shadow zone.

5. Born Versus Radiative Transfer

[41] In the rest of the paper we present a series of tests of
Born approximation against transport theory. A general
theoretical study of the limitations of the Born approximation
can be found in the work of Hudson and Heritage [1981]. In
order to determine the mean free time and phase function
from the length scale and RMS perturbations of inhomoge-
neities, we assume a wave speed of 13.65 km/s and a central
frequency of the waves of 1.3 Hz. Although still actively

Figure 6. Example of full seismogram envelopes computed near the PKPdf arrival at various epicentral
distances (indicated on top of each plot). The lower mantle contains heterogeneities with 16 km length
scale and 0.6% RMS perturbations.
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debated, the quality factor of the inner core has been assigned
a PREM-like value of 400. Energy is released at a point-like
isotropic source located at the surface of the Earth, with a
simple source time function of about 8 s duration.
[42] We first examine the effects of strength of the

scattering and heterogeneous layer thickness at fixed length
scale. The example shown in Figure 7 corresponds to an
Earth model with 8 km length scale heterogeneities dis-
tributed throughout the lower mantle, with a mean free time
of 200 s (RMS perturbations of about 0.75%), which is
similar to the preferred whole mantle scattering model of
Hedlin. The precursors mean amplitude is plotted as a

function of time before the df arrival. The peak cd + df
amplitude has been normalized to 1 at all epicentral dis-
tances. Not surprisingly, Born approximation underesti-
mates the precursor amplitudes and it is noticable that the
discrepancy with transport theory clearly depends on the
epicentral distance. In the vicinity of the b caustic Born
approximation matches the complete solution extremely
well, while as one moves deeper and deeper into the shadow
zone its accuracy deteriorates, suggesting the prominence of
multiple scattering in this region.
[43] We pursue our investigation on the validity of Born

approximation by examining in Figure 8 the effects of

Figure 7. Comparison between Born approximation (solid line) and transport theory (dashed line) as a
function of epicentral distance (indicated on top of each plot). The lower mantle has 8 km length scale
heterogeneities and a mean free time of 200 s (equivalent to 0.8% RMS perturbations). The source is
isotropic with a duration of about 8 s. Amplitudes have been normalized with respect to the peak cd + df
amplitudes.
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scattering strength in a medium with 8 km length scale.
Figure 8 serves to illustrate the convergence of single and
multiple scattering theories in the limit of large mean free
times (small perturbations). When the mean free time is of
the order 10 times the transit time of the waves through the
lower mantle, the Born approximation closely approximates
the full solution. If we translate this ‘‘rule of thumb’’ into
perturbations, it implies that in a whole mantle scattering
model with 8 km length scale, perturbations should be
<0.5% for the Born approximation to be valid.
[44] Obviously, if we shrink the scattering layer, the

constraint becomes less severe. This is examined in greater
details in Figure 9, where the upper limit of scattering is
located successively at 150 km, 500 km, and 2000 km

above the core-mantle boundary. The comparison of the
results for mean free times of 400 s (weak perturbations)
and 100 s (strong perturbations) illustrates the cumulative
effects of multiple scattering. We relate this phenomenon to
the fact that in a medium with constant mean free time t, the
distribution of the number of scatterings within a time
interval T follows a Poisson distribution with parameter
l = T/t. As is well known, the Poisson distribution is
characterized by its long tail, which tends to favor high-
order scatterings. It is also noticable that the thickness of
the layer of scatterers plays a major role in the overall shape
of the envelopes. If scattering is restricted to D00 the
amplitudes of the precursors start to decay about 5 s before
the PKPdf comes in, independent of the mean free time.

Figure 8. Comparison between Born approximation (solid line) and transport theory (dashed line) in the
133–136 epicentral distance range for a whole mantle scattering model with fixed length scale (8 km)
and increasing values of the mean free time (indicated on top of each plot).
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[45] After focusing on the role of thickness and mean free
time, we show that the correlation length of the scatterers
also strongly influences the amplitude decay of the precur-
sors in the shadow zone. As illustrated in Figure 10, the
scattered energy decreases by a factor 2 or more as the
length scale increases by a factor 4. The discrepancy
between Born approximation and transport theory clearly
increases with the length scale, an effect that is amplified by
the decrease of the mean free time. Thus multiple scattering
strongly enhances the diffusion of energy off of the forward
direction. An important implication of this result pertaining
to data interpretation follows: because Born approximation
overpredicts the amplitude decay of the precursors in the

shadow zone, it may lead to a systematic underestimation of
the length scales of lower mantle heterogeneities.
[46] In order to quantify in a simple and convenient way

the accuracy of Born approximation we introduce the total
(time integral) energy of the precursors predicted by Born
and transport theories, denoted by Eb and Et, respectively. In
Figure 11, a scatterplot of the ratio jEt � Ebj/Et as a function
of length scale and mean free time illustrates the limits of
accuracy of Born approximation in the 133–136 epicentral
distance range. Plots at other epicentral distance range
exhibit essentially the same feature. A noticable exception
is the 139–142 epicentral distance range where Eb differs
from Et by no more than 10%. From Figure 11, we infer that

Figure 9. Comparison between Born approximation (solid line) and transport theory (dashed line) in the
133–136 epicentral distance for various thickness of the scattering layer. The mean free time is 400 s on
the left and 100 s on the right.
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the limit of applicability of Born approximation lies
between 400 and 800 s mean free times, relatively inde-
pendent of the length scale. We recall that for length scales
of 8 km, this corresponds to about 0.3–0.5% perturbations,
which is exceeded by the scatterers proposed by Hedlin et
al. [1997] to explain precursors observations. A reevalua-
tion of their results in the context of transport theory appears
therefore as an important topic for future investigations.

6. Conclusion

[47] Transport theory emerges as a potentially useful
tool to interpret average amplitudes of high-frequency

global seismic data. Its primary domain of application is
the inversion of small-scale statistical fluctuations in the
deep Earth. Because the transport equation incorporates in
a rigorous way the effects of multiple scattering, it is
restricted neither to weak fluctuations nor to scattering
media with limited spatial extension. We have specifically
developed a Monte Carlo code that enables the forward
modeling of high-frequency PKP precursors. Our numer-
ical investigations show that the often used Born approx-
imation suffers from severe limitations and may model
inaccurately the seismograms envelopes. In a companion
paper, we will apply our method to the inversion of a large
data set of PKP precursors and show the feasibility of a

Figure 10. Comparison between Born approximation (solid line) and transport theory (dashed line) in
the 133–136 epicentral distance range in whole mantle scattering models with increasing values of the
correlation length (indicated on top of each plot). The mean free time is 400 s on the left and 100 s on the
right.
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complete inversion of average high-frequency seismic
amplitudes.

Appendix A: Ray Equations

[48] As is customary [Landau and Lifchitz, 1982], we can
define the frequency w as the Hamiltonian H for rays:

H ¼ w t;R;kð Þ; ðA1Þ

and the ray equations in space-time therefore take the
canonical from

dR

dt
¼ @w

@k
; ðA2Þ

dk

dt
¼ � @w

@r
; ðA3Þ

dw
dt

¼ @w
@t

: ðA4Þ

In what follows, the medium will be deemed stationary and
therefore we can drop the time dependence from w, which
implies that the frequency is conserved along a space-time
ray. R and k are the conjugate variables defining the phase

space for the ray analysis and can be viewed as functions of
their initial values R = R0, k = k0 at time t = t0, so that

R ¼ R R0; k0; t
� �

and k ¼ k R0; k0; t
� �

: ðA5Þ

We now introduce the new variable k in lieu of w and n in
equation (5) which now reads

dE

dt
¼ d

dt

Z
�k tð Þ

Z
�R tð Þ

I w; t;R;nð Þ
vg

J1d
3kd3R; ðA6Þ

where J1 is the Jacobian of the coordinate change, which
can be written symbolically as

J1 ¼
d� nð Þdw

d3k

����
����: ðA7Þ

w and n must now be viewed as functions of k. The next
step to compute the total derivative is to introduce as new
coordinates (k0, R0). The method is in complete analogy
with a change from Eulerian to Lagrangian coordinates in
continuum mechanics. Introducing the Jacobian of the
transformation in compact notations as

J2 ¼
d3Rd3k

d3R0d3k0

����
����; ðA8Þ

Figure 11. Scatterplot of the ratio jEb � Etj/Et as a function of the mean free time in seconds (horizontal
axis) and length scale in km (vertical axis) in the 133–136 epicentral distance range for whole mantle
scattering. Eb (respectively Et) denotes the integrated energy of the precursors predicted by Born
approximation (respectively transport theory). When the mean free time is of the order 400 s or less, the
difference between the predictions of the two theories exceeds 20%. This provides an overall view of the
validity of the Born approximation in the length scale-mean free time parameter space. See color version
of this figure at back of this issue.
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we obtain

dE

dt
¼

Z
�k0

Z
�R0

d

dt

I w; t;R;nð ÞJ1J2
vg

� �
d3R0d3k0: ðA9Þ

After straightforward manipulations, and reverting to the
original variables, we findZ
��

d� nð Þ
Z
�r

d3R

Z
�w

dw
1

vg

d

dt
þ d

dt
log

J1J2

vg

����
����

� �
I w; t;R; nð Þ ¼ 0:

ðA10Þ

Because of the arbitrary choice of the beam extension in
phase space one concludes

dI

dt
þ I

d

dt
log

J1J2

vg

����
���� ¼ 0: ðA11Þ

From Liouville theorem we know that a volume of phase
space is invariant and thus J2 = 1. In an isotropic medium,
the Jacobian J1 can be expressed as

J1 ¼
sin qdqdfdw
sin qdqdfk2dk

����
����; ðA12Þ

or

J1 ¼
vgw2

v20
: ðA13Þ

In a stationary medium the frequency along the space-time
ray is conserved: dw/dt = 0; hence, equation (6) is
established.

Appendix B: Scattering Parameters in Elastic
Media

[49] For completeness, in this appendix we provide
closed formulas from which all the scattering parameters
of the transport equation can be calculated. We focus on the
case of exponential correlations in media with velocity-type
perturbations as defined by Wu and Aki [1985]. For con-
venience, let us introduce the differential scattering cross
sections [Sato and Fehler, 1998], defined as the ratio of the
flux of energy scattered into direction n per unit volume and
unit solid angle, to the flux of energy carried by the incident
wave propagating in direction n0. Introducing the cosine of
the scattering angle m = n � n0, one obtains [Wu and Aki,
1985]

dspp

d�
n;n0ð Þ ¼ kpað Þ4

2pa
h�2i

1

3
þ mþ 2

3
m2

� �2

1þ 2 kpað Þ2 1� mð Þ
h i2 ; ðB1Þ

for the P to P differential scattering cross section and

dsps

d�
n; n0ð Þ ¼ ksað Þ4b

2paa
h�2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
þ 2b

a
m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p� �2

1þ ksað Þ2 1þ b2

a2
� 2

b
a
m

� � �2 ;

ðB2Þ

for the P to S differential scattering cross section. In
equations (B1)–(B2), the following notations have been
introduced: a, local P wave speed; b, local S wave speed;
kp, local P wave number; ks, local S wave number; h �2 i,
mean square perturbations; d�, elementary solid angle;a,
correlation length of the fluctuations. Upon integration of
relations (B1)–(B2) over the whole solid angle, one obtains
the total scattering cross sections (per unit volume) �pp �
�ps for P to P and P to S scattering, respectively. The
corresponding P to P and P to S scattering mean free times
are defined as

tpp ¼ 1

a� pp
; ðB3Þ

tps ¼ 1

a� ps
: ðB4Þ

Exact expressions for tpp and tps can be derived using the
results of Wu and Aki [1985]. However, the final formulas
are so complicated that we rather provide the reader with
asymptotic expressions, which capture the essential beha-
vior of the scattering mean free times. The following
formulas are obtained at low frequencies (kpa, ksa � 1):

tpp � 135a

184h�2ia kpað Þ4
; ðB5Þ

tps � 45a

19
ffiffiffi
3

p
h�2ia ksað Þ4

; ðB6Þ

while at high frequencies (kpa, ksa � 1), we find

tpp � a

2h�2ia kpað Þ2
; ðB7Þ

t ps � 2affiffiffi
3

p
nh�2ia

; ðB8Þ

where n is an irrational constant close to 2.70194. Note that
our asymptotic results for P to S mode conversions assume
the Earth to be approximately a Poisson solid. In the low
frequency regime, one find the classical w�4 frequency
dependence for both tpp and tps. At high frequencies, tpp

decreases as w�2, while tps tends to a constant.
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Flatté, S. M., and R. S. Wu, Small-scale structure un the lithosphere and
asthenosphere deduced from arrival time and amplitude fluctuations at
NORSAR, J. Geophys. Res., 93, 6601–6614, 1988.

Gusev, A. A., and I. R. Abubakirov, Monte-Carlo simulation of record
envelope of a near earthquake, Phys. Earth Planet. Inter., 49, 30–36,
1987.

Hedlin, M. A. H., and P. Shearer, An analysis of large-scale variations in
small-scale mantle heterogeneity using Global Seismographic Network
recordings of precursors to PKP, J. Geophys. Res., 105, 13,655–13,673,
2000.

Hedlin, M. A. H., P. Shearer, and P. S. Earle, Seismic evidence for small-
scale heterogeneity throughout the Earth’s mantle, Nature, 387, 145–
150, 1997.

Hennino, R., N. Tregourès, N. M. Shapiro, L. Margerin, M. Campillo, B. A.
van Tiggelen, and R. L. Weaver, Observation of equipartition of seismic
waves, Phys. Rev. lett., 86, 3447–3450, 2001.

Hoshiba, M., Simulation of coda wave envelope in depth dependent scat-
tering and absorption structure, Geophys. Res. Lett., 21, 2853–2856,
1994.

Hoshiba, M., Seismic coda wave envelope in depth dependent S-wave
velocity structure, Phys. Earth planet. Inter., 21, 15–22, 1997.

Hudson, J. A., and J. R. Heritage, The use of the Born approximation in
seismic scattering problems, Geophys. J. R. Astron. Soc., 66, 221–240,
1981.

Hung, S.-H., F. A. Dahlen, and G. Nolet, Frechet kernels for finite-fre-
quency traveltimes: II. Examples, Geophys. J. Int., 141, 175–203, 2000.

Ishimaru, A., Wave Propagation and Scattering in Random Media, vols. I –
II, Academic, San Diego, Calif., 1978.

Komatitsch, D., and J. Tromp, Introduction to the spectral element method
for three-dimensional seismic wave propagation, Geophys. J. Int., 139,
806–822, 1999.

Lagendijk, A., and B. A. Van Tiggelen, Resonant multiple scattering of
light, Phys. Rep., 270, 143–215, 1996.
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Équations de Transport et de Diffusion, Springer-Verlag, New York,
1998.

Li, X.-D., and T. Tanimoto, Waveforms of long period body waves in a
slightly aspherical Earth model, Geophys. J. Int., 112, 92–102, 1993.

Lux, I., and L. Koblinger, Monte Carlo Particle Transport Methods: Neu-
tron and Photon Calculations, CRC Press, Boca Raton, Fla., 1991.

Margerin, L., M. Campillo, and B. A. van Tiggelen, Radiative transfer
and diffusion of waves in a layered medium: New insight into coda,
Q. Geophys. J. Int., 134, 596–612, 1998.

Margerin, L., M. Campillo, and B. A. van Tiggelen, Monte Carlo simula-
tion of multiple scattering of elastic waves, J. Geophys. Res., 105, 7873–
7892, 2000.

Nolet, G., Linearized inversion of (teleseismic) data, in The Solution of the
Inverse Problem in Geophysical Interpretation, edited by R. Cassinis, pp.
9–31, Plenum, New York, 1981.

Nolet, G., and F. A. Dahlen, Wave front healing and the evolution of
seismic delay times, J. Geophys. Res., 105, 19,043–19,054, 2000.

Rytov, S. M., Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical
Radiophysics, vol. 4, Wave Propagation Through Random Media,
Springer-Verlag, New York, 1989.

Ryzhik, L. V., G. C. Papanicolaou, and J. B. Keller, Transport equations for
elastic and other waves in random media, Wave Motion, 24, 327–370,
1996.

Sato, H., Multiple isotropic scattering model including P-S conversions for
the seismogram envelope formation, Geophys. J. Int., 117, 487–494,
1994.

Sato, H., and M. Fehler, Wave Propagation and Scattering in the Hetero-
geneous Earth, Springer-Verlag, New York, 1998.

Sheng, P., Introduction to Wave Scattering Localization and Mesoscopic
Phenomena, Academic, San Diego, Calif., 1995.

Snieder, R., and C. Chapman, The reciprocity properties of geometrical
spreading, Geophys. J. Int., 132, 89–95, 1998.

Weaver, R. L., Diffusivity of ultrasound in polycrystals, J. Mech. Phys.
Solids, 38, 55–86, 1990.

Woodward, M. J., Wave-equation tomography, Geophysics, 57, 15–26,
1993.

Wu, R. S., Multiple scattering and energy transfer of seismic waves-separa-
tion of scattering effect from intrinsic attenuation: I. Theoretical model-
ing, Geophys. J. R. Astron. Soc., 82, 57–80, 1985.

Wu, R. S., and K. Aki, Elastic wave scattering by a random medium and the
small-scale inhomogeneities in the lithosphere, J. Geophys. Res., 90,
10,261–10,273, 1985.

Wu, R. S., and K. Aki, Multiple scattering and energy transfer of seismic
waves, separation of scattering effect from intrinsic attenuation. II. Ap-
plication of the theory to Hindu Kush region, Pure Appl. Geophys., 128,
49–80, 1988.

Yoshimoto, K., Monte-Carlo simulation of seismogram envelope in scatter-
ing media, J. Geophys. Res., 105, 6153–6161, 2000.

Zeng, Y., Theory of scattered P-wave and S-wave energy in a random iso-
tropic scattering medium, Bull. Seismol. Soc. Am., 83, 1264–1275, 1993.

Zhao, L., and T. H. Jordan, Sensitivity of frequency-dependent traveltimes
to laterally heterogeneous, isotropic Earth structure, Geophys J. Int., 133,
683–704, 1998.

�����������������������
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Figure 11. Scatterplot of the ratio jEb � Etj/Et as a function of the mean free time in seconds (horizontal
axis) and length scale in km (vertical axis) in the 133–136 epicentral distance range for whole mantle
scattering. Eb (respectively Et) denotes the integrated energy of the precursors predicted by Born
approximation (respectively transport theory). When the mean free time is of the order 400 s or less, the
difference between the predictions of the two theories exceeds 20%. This provides an overall view of the
validity of the Born approximation in the length scale-mean free time parameter space.
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