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1 Introduction

Let F be a finite extension of a p-adic field, K a quadratic extension of F .
The principal series representations of GL2(K) distingushed for GL2(F )
are well known, it’s also known that the Steinberg representation is distin-
gushed ( cf.[A-T] for a summary of these results due to Y.Flicker, J.Hakim
and D.Prasad,).
We give here a description of dihedral representations (those which the Lang-
lands correpondance associate with 2 dimension induced representations of
the Weil group of K, cf.(2) p.122 in [G-L]) distinguished with respect to
GL2(F ).
Every distinguished representation of GL2(K) is paramatrised by a regular
multiplicative character ω of a quadratic extension L of K.
We show ( theorem 5.1) that such a representation is distinguished for
GL2(F ) if and only if one can choose L to be biquadratic over F and ω
trivial one the invertible elements of the two other quadratic extensions of
F in L.
The results we prove here are theorems 3.3, 5.1 and 5.3. The method is
to isolate first representations distingushed for GL2(F )+ using theorem 3.1,
then to determinate those who are GL2(F )-distinguished using theorems 4.1
and proposition 4.1.
Thus, in the case of odd residual caracteristic, we obtain every supercuspidal
distinguished representations.
We also observe ( see proposition 5.3) that if we consider the principal series
as paramatrised by a multiplicative character of a two dimensional semi-
simple commutative algebra over K, the statement for distinguishedness is
the same as for the supercuspidal dihedral representations.
We then give a generalisation of theorem 5.1 to dihedral representations (
non necessarily supercuspidal) in theorem 5.3.
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2 Preliminaries

2.1 Generalities

We consider F a finite extension of Qp, and K a quadratic extension of F
in an algebraic closure F̄ of Qp.
If L is a quadratic extension of K in F̄ , then to every character ω of L∗, we
associate a representation of GL2(K) via the Weil representation ( cf.[J-L]
p.144).
Such a representation is called dihedral.
We note θ the conjugation of F/K.
For A is a ring, we note A∗ the group of its invertible elements.
For E2 a finite extension of a local field E1, we note respectively TrE2/E1

and NE2/E1
the trace and norm of E2 over E1.

We also note Gal(E2/E1) the Galois group of E2 over E1 when E2/E1 is
Galois, otherwise we note AutE1

(E2/E1) the group of automorphisms of the
algebra E2 over E1.
Moreover if E2 is quadratic over E1, we note ηE2/E1

the nontrivial character
of E1

∗ with kernel NE2/E1
(E1

∗).
For n a positive integer, we note GLn(K)+, the subgroup with index two of
GLn(K), of matrices whose determinant is a norm of K over F .
For Π a representation of a group G, we note π its class, and Π∨ its smooth
contragedient when Π is a smooth representation of a totally disconnected
locally compact group.
If φ is an automorphism of G, we note Πφ the representation of G given by
Π ◦ φ.
If H is a subgroup of G, and µ is a character of G, we say that a representa-
tion Π of G is µ-distinguished for ( with respect to) H if there exists on the
space of Π a linear functionnal L verifying for h in H, L ◦ Π(h) = µ(h)L.
If µ is trivial, we say that Π is distinguished for H.

2.2 Quadratic extensions of K

For L a quadratic extension of K, three cases arise:

1. L/F is biquadratic ( hence Galois), it contains K and two other
quadratic extensions F , K ′ and K ′′. Its Galois group is isomorphic
with Z/2Z×Z/2Z, its non trivial elements are conjugations of L over
K, K ′ and K ′′.

The conjugation L over K extend those of K ′ and K ′′ over F .

2. L/F is cyclic with Galois group isomorphic with Z/4Z.

3. L/F non Galois. Then its Galois Closure M is quadratic over L and
the Galois group of M over F is dihedral with order 8.
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To see this, we consider a morphism θ̃ from L to F̄ which extends
θ. Then if L′ = θ̃(L), L and L′ are distinct, quadratic over K and
generate M biquadratic over K. M is the Galois closure of L because
any morphism from L into F̄ , either extends θ, or the identity map of
K, sothat its image is either L or L′, so it is always included in M .
Finally the Galois group M over F cannot be abelian ( for L is not
Galois), it is of order 8, and it’s not the quaternion group which only
has one element of order 2, whereas here the conjugations of M over
L and L′ are of order 2. Hence its the dihedral group of order 8.
We deduce from this the folowing lattice:

L’ B N’

K K’ K’’

F

L

M

N

Figure 2:

Here M/K ′ is cyclic of degree 4, M/K and B/F are biquadratics.

In the case p odd, F has exactly three quadratic extensions which gen-
erate its unique biquadratic extension. If there exists L non Galois over F ,
then it implies that the cardinal q of the residual field F verifies q ≡ 3[4],
and M is generated over L by a primitive fourth root of unity in F̄ .

2.3 Quadratic characters

We wish to calculate how ηL/K restricts to F ∗ in the following two cases.

1. If L is biquadratic over F , then ηL/K has a trivial restriction to F ∗.

Indeed, we haveNL/K(K ′∗) = NK ′/F (K ′∗) andNL/K(K ′′∗) = NK ′′/F (K ′′∗)
because the conjugation of L over K extend those of K ′ and K ′′ over
F .

Both these groups are distict from local class field theory and of index
2 in F ∗, sothat they generate this latter, but both are contained in
NL/K(L∗) which therefore contains F ∗.
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In other words ηL/K restricts trivially to F ∗.

2. If L is cyclic over F , then ηL/K |F ∗
is non trivial.

If it wasn’t the case, F ∗ would be contained in NL/K(L∗), and compos-

ing with NK/F on both sides, F ∗2 would be a subgroup of NL/F (L∗).

But F ∗2 and NL/F (L∗) have both index 4 in F ∗ and give different
quotients ( Z/2Z×Z/2Z for the first and Z/4Z for the second), sothat
one cannot be contained in the other.

2.4 Weil’s representation

Let L be a quadratic extension of K, then for any character ω of L∗ , we
associate an irreducible representation Π(ω) of GL2(K) ( cf.[J-L]), with cen-
tral character ω|K∗ηL/K .
If ω is regular for NL/K , then Π(ω) is supercuspidal, otherwise there exists
a character µ of K∗ sothat ω = µ◦NL/K , and then π(ω) is the the principal
series π(µ, µηL/K).

The conjugation of K over F naturally extends to an involutive auto-
morphism of GL2(K) which we also note θ.

Here we want to determinate Π(ω)θ.
Suppose there exists θ̃ an element of AutF (L/F ) which extends θ, we then
have:

Proposition 2.1 If θ extends to an element θ̃ of AutF (L/F ), then Π(ω)θ

is isomorphic with Π(ωθ̃) .

Proof :
Following [J-L], Π(ω) is the induced of r(ω,ψF ) from Gl2(K)+ the group
GL2(K).

The space of this representation S(L,ω) is constitued by the continuous
functions f with compact support from L∗ to complex numbers verifying,
for x in L and y in Ker(NL/K), f(xy) = ω−1(y)f(x).

Then the mapping which associates to f in S(L,ω) the function f θ = f◦θ̃

is an equivariant morphism between r(ω,ψF )θ and r(ωθ̃, ψF ).

We then see π(ω)θ = [Ind
GL2(K)
GL2(K)+

(r(ω,ψF ))]θ ≈ [Ind
GL2(K)
GL2(K)+

(r(ω,ψF )θ)] ≈

Ind
GL2(K)
GL2(K)+

(r(ωθ̃, ψF )) = π(ωθ̃) where Ind
GL2(K)
GL2(K)+

designs the induced rep-

resentation from GL2(K)+ to GL2(K).

Remark :
It is not always true that θ extends to an element θ̃ of AutF (L/F ).
For instance, take F local with residual characteristic q ≡ 3[4], and let πF
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be a prime element ( generating the maximal ideal of the integers ring).
We choose K = F (πF

1/2) and L = F (πF
1/4).

Let θ̃ be a F linear morphism extending θ to L, with values in F̄ . Then
θ̃(πF

1/4) = iπF
1/4, where i is a primitive fourth root of unity.

Indeed i2 = −1, because θ̃(πF
1/2) = θ(πF

1/2) = −πF
1/2.

Moreover, i cannot be in L: indeed, this element is a root of unity with
order prime to q, thus it would implie that the residual field of L, which is
the one of F as L/F is totally ramified, contains a primitive fourth root of
unity.
This cannot happen because 4 does not divide q − 1.
We conclude that any F linear morphism extending θ to L, sends L onto
F (iπF

1/4) which is distinct from L , and hence cannot be in AutF (L/F ).
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3 Representations distinguished by a character

3.1 Definitions and preliminary results

The following theorem due to Y.Flicker [A-T] ( th. 1.3) will be of constant
use.

Theorem 3.1 Let Π be an irreducible admissible representation of GL2(K),
such that cπ is trivial on F ∗. Then πθ = π∨ if and only if π is distingushed
or ηK/F -distinguished for GL2(F ).

Let GL2(F )+ be the subgroup of index two in GL2(F ), it is clear that
if a representation of GL2(K) is distinguished or ηK/F -distinguished for
GL2(F ), it is distinguished for GL2(F )+, the reverse is true.

Proposition 3.1 (cf.[P], p.71)
A representation of GL2(K) is distinguished or ηK/F -distinguished for

GL2(F ) if and only if it is distinguished for GL2(F )+.

Proof :
We show the non trivial implication.

Let s be an element of GL2(F ) whose determinant is not a norm and let
Π be a GL2(F )+-distingushed representation.

Let L+ be the GL2(F )+-invariant linear form on the space of Π, two
cases arise:

1. If Π∨(s)L+ = −L+, then for h inGL2(F )\GL2(F )+, we have Π∨(h)L+ =
Π∨(h)Π∨(s2)L+ = Π∨(hs)Π∨(s)L+ = −L+ because hs is in GL2(F )+
( here we also note Π∨ the non smooth contragedient). Π is therefore
ηK/F -distinguished for GL2(F ).

2. Otherwise Π∨(s)L+ 6= −L+, and L+ + Π∨(s)L+ is fixed under the
action of GL2(F ).

Theorem 3.1 takes the following form:

Theorem 3.2 Let Π be an irreducible admissible representation of GL2(K).
Then Π is GL2(F )+-distinguished if and only if πθ = π∨ and cΠ restricts
trivially to F ∗.

3.2 Description of the GL2(F )+-distinguished representations

Theorem 3.3 A supercuspidal dihedral representation Π of GL2(K) is GL2(F )+-
distinguished if and only if there exists a quadratic extension L of K bi-
quadratic on F , and a multiplicative character ω of L trivial on NL/K ′(K ′∗)
or on NL/K ′′(K ′′∗), such that π = π(ω).
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Proof:
Let L be a quadratic extension of K and ω a regular multiplicative of

L such that π = π(ω), we note σ the conjugation of L over K, three cases
show up:

1. L/F si biquadratic.
we note σ′ the conjugation of L over K ′ and σ′′ the conjugation of
L over K ′′, σ′ and σ′′ both extend θ, and thus can play θ̃’s role in
proposition 1.1.
The condition π∨ = πθ which one can also read π(ω−1) = π(ωθ̃), is
then equivalent to ωσ′

= ω−1 or ωσ′′

= ω−1.
This is equivalent to ω trivial on NL/K ′(K ′∗) and on NL/K ′′(K ′′∗).
As ηL/K , ηL/K ′ , and ηL/K ′′ are trivial F ∗, we have cπ |F ∗ = ω|F ∗ηL/K |F ∗

=

1 for such a representation .

2. L/F is cyclic, the regularity of ω makes the condition π(ω−1) = π(ωθ̃)
impossible.
Indeed one would have ωθ̃ = ω−1, which would implie ωσ = ω for
σ2 = θ, and so ω would be trivial on the kernel of NL/K from Hilbert’s
theorem 90.
Π can therefore not be GL2(F )+-distniguished.

3. L/K is not Galois ( which implies q ≡ 3[4] in the case p odd), we note
again θ the conjugation of B over K ′ which extends the one of K over
F .
Let πB/K be the representation of GL2(B) which is the base change
lifting of π to B. As πB/K = π(ω ◦ NM/L), if ω ◦ NM/L = µ ◦ NM/B

for a character µ of B∗, then π(ω) = π(µ) ( cf.[G-L], (3) p.123) and
we are brought back to case 1.
Otherwise ω ◦NM/L is regular for NM/B .

If π was GL2(F )+-distinguished, taht is πθ = π∨ and cπ |F ∗, we would

have πθ
B/K = π∨B/K and cπB/K

= cπ ◦NB/K from theorem 1 of [G-L].

As NB/K(K ′∗) = NK ′/F (K ′∗) for the conjugation of B over K extends
that of K ′ over F , one would deduce that cπB/K

would be trivial on

K ′∗ and theorem 2.2 would implie that πB/K would be GL2(K
′)+-

distinguished.
That would contradict case 2 because M/K ′ is cyclic.
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4 Distingushed representations

We described in the previous section the supercuspidal dihedral representa-
tions of GL2(K) which are GL2(F )+ distinguished.
We want to characterize those who are GL2(F )-distinguished among them.

4.1 Definitions and useful results

We refer to [J-L] for definitions and basic properties of ǫ factors attached to
an irreducible admissible representation of GL2(K), and to [T] for those of
ǫ factors attached to a multplicative character of a local field.
The ǫ used here for representations of GL2(K) is the one described in [J-L]
evaluated at s = 1/2 and the ǫ attached to a multplicative character of a
local field is Langlands’ǫL described in [T].

We will use the three following results.

The first, due to J.Hakim can be found in [H], page 8.
Here we repaced γ with ǫ because both are equal for supercuspidal repre-
sentations:

Theorem 4.1 Let Π be a supercuspidal irreducible representation of GL2(K),
and ψ a nontrivial character of K trivial on F . Then Π is distinguished if
and only if ǫ(Π ⊗ χ,ψ) = 1 for every character χ of K∗ trivial on F ∗.

The second, due to Fröhlich and Queyrut, is in [F-Q], page 130 :

Theorem 4.2 Let L2 be a quadratic extension of L1 which is a quadratic
extension of Qp , then if ψL2

is the standard character of L2 and if ∆ is
an element of L2

∗ with TrL2/L1
(∆) = 0, we then have ǫ(χ,ψL2

) = χ(∆) for
every character χ of L∗

2 trivial on L∗
1 .

The third is a corollary of proposition 3.1 of [A-T]:

Proposition 4.1 There exists no supercuspidal representation of GL2(K)
which is distinguished and ηK/F -distinguished at the same time.

5 Description of distingushed representations

Theorem 5.1 A dihedral supercuspidal representation Π of GL2(K) is GL2(F )-
distinguished if and only if there exists a quadratic extension L of K bi-
quadratic over F , and a regular multiplicative character ω of L trivial on
K ′∗ or on K ′′∗, such that π = π(ω).

8



Proof:
From the second section, we can suppose that π = π(ω), for ω a regular

multiplicative character of a quadratic extension L of K biquadratic over F ,
with ω trivial on NL/K ′(K ′∗) or on NL/K ′′(K ′′∗).

Let ψK be the standard character of K, ψL the one of L, and a a non
null element of K such that TrK/F (a) = 0, which implies TrL/K ′(a) =
TrL/K ′′(a) = 0.

we note (ψK)a the character trivial on F given by (ψK)a(x) = (ψK)(ax).

To see if π(ω) is distinguished, we use Hakim’s criterion ( th.3.1).

So let χ be a character of K∗ trivial on F ∗, we have π(ω) ⊗ χ =
π(ω × χ ◦NL/K) and we note µ = ω × χ ◦NL/K .

i) if ω|K ′∗ = 1: on a ǫ(π(ω)⊗χ, (ψK)a) = ǫ(π(µ), (ψK)a) = ǫ(π(µ), ψK)µ(a)ηL/K(a).
Now ǫ(π(µ), ψK) = λ(L/K,ψK )ǫ(µ,ψL) ( cf.[J-L] p.150), where the Langlands-
Deligne factor λ(L/K,ψK ) equals ǫ(ηL/K , ψK).

As ηL/K |F ∗
= 1 et µ|K ′∗ = 1, from theorem 4.2, we have that ǫ(µ,ψL) =

µ(a) and ǫ(ηL/K , ψK) = ηL/K(a).

We deduce that ǫ(π(ω) ⊗ χ, (ψK)a) = µ(a)2ηL/K(a)2 = 1 for a2 is in F .
π(ω) is therefore distinguished.

ii) If ω|K ′∗ = ηL/K ′ : Let χ′ be a character of K∗ which extends ηK/F ,
then χ′ ◦NL/K equals ηK/F ◦NK ′/F on K ′ because the conjugation of L over
K extends the one of K ′ over F .
But ηK/F ◦NK ′/F is trivial on the image of NL/K ′ from the identity NK ′/F ◦
NL/K ′ = NK/F ◦NL/K , but not trivial for NK ′/F is not the kernel NK/F (K∗)
of ηK/F from local class field theory.
Thus ω × χ′ ◦ NL/K is trivial on K ′, and we deduce that π(ω) ⊗ χ′ =
π(ω × χ′ ◦NL/K) is distinguished from i).
This implies that π(ω) is ηK/F -distinguished and thus not distinguished from
proposition 3.1.

The cases ω|K ′′∗ = 1 and ω|K ′′∗ = ηL/K ′′ are handled as well.
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Part I

The principal series

Representations of the principal series of GL2(K) distinguished for GL2(F )
are well known, and described for example in proposition 4.2 of [A-T].

The result is the following:

Proposition 5.1 Let λ and µ be two characters of K∗, whose quotient is
not the module of K or its inverse. The principal series representation
Π(λ, µ) of GL2(K) is GL2(F )-distinguished either when λ = µ−θ or when λ
and µ have a trivial restriction to F ∗.

Now one can construct the principal series Π(λ, µ) via the Weil repre-
sentation ( cf.[B] p.523 à 557), in this case (λ, µ) identifies with a character
of K∗ ×K∗.

This way of parametrising irreducible representations of GL2(K) with
multiplicatice characters of two-dimensional semi-simple commutative alge-
bras over K, includes the principal series (for the algebra K ×K) and the
dihedral representations (for quadratic extensions of K).

Let L be a quadratic extension of K biquadratic over F , as we are
here interested with GL2(F )-distinguishedness, we consider the following
F -algebras.

1. the algebra K ×K

One note AutF (K×K) its automorphisms group. The elements of this
group are (x, y) 7→ (x, y), (x, y) 7→ (y, x), (x, y) 7→ (xθ, yθ), (x, y) 7→
(yθ, xθ), and AutF (K ×K) is isomorphic with Z/2Z × Z/2Z.

The three sub-algebras fixed by non trivial elements of AutF (K ×K)
are K via the natural diagonal inclusion, the twisted form K̃ of K
given by x 7→ (x, xθ), and F × F .

2. l’algèbre L

The groupGal(BF /K) of its automorphisms is isomorphic with Z/2Z×
Z/2Z.

The three sub-algebras fixed by non trivial elements of Gal(BF /K)
are K, K ′ et K ′′.

We then observe that proposition 5.2 for the principal series has the
same statement that the one for theorem 4.1:

Proposition 5.2 A principal series representation Π(λ, µ) of GL2(K) is
GL2(F )-distinguished if and only if the multiplicative character (λ, µ) is

10



trivial one the invertible elements of one of the two intermediate sub-algebras
of K ×K distinct from K.

We now study dihedral non supercuspidal representations.
Let Π be such a representation, there exists a quadratic extension L over K
and a non regular multiplicative character ω of L such that π = π(ω).
If µ is a character of K∗ such that ω = µ ◦NL/K , then π = π(µ, µηL/K).

Three cases arise:

1. For L biquadratic over F , we show that ω restricts trivially to K ′∗ or
K ′′∗ if and only if (µ, µηL/K) restricts trivially to K̃∗ or to F ∗ × F ∗.

We have the following equivalences:

• ω(K ′∗) = 1 ⇔ µ(NL/K(K ′∗)) = 1 ⇔ µ(NK ′/F (K ′∗)) = 1 be-
cause the conjugation of L/K extends the one of K ′/F , and so
ω(K ′∗) = 1 ⇔ µ|F ∗ = 1 or ηK ′/F .

• ω(K ′′∗) = 1 ⇔ µ(NL/K(K ′′∗)) = 1 ⇔ µ(NK ′′/F (K ′′∗)) = 1 be-
cause the conjugation of L/K extends the one of K ′′/F , and so
ω(K ′′∗) = 1 ⇔ µ|F ∗ = 1 or ηK ′′/F .

• (µ, µηL/K) trivial on K̃∗ ⇐⇒ µθµηL/K = 1 ⇐⇒ µ◦NK/F = ηL/K .

We deduce that µ◦NL/F = 1, which implies that µ|F ∗ = 1, ηK/F ,
ηK ′/F or ηK ′′/F , but the first two possibilities are excluded by the
identity µ ◦NK/F = ηL/K .

Conversely if µ|F ∗ = ηK ′/F or ηK ′′/F , then µ◦NK/F is a character
of order two of K∗ which cannot be trivial from local class field
theory. As the equalities NL/F = NL/K ′ ◦ NK ′/K = NL/K ′′ ◦
NK ′′/K implie that µ◦NK/F is trivial on NL/K(L∗), it is therefore
ηL/K .

Eventually (µ, µηL/K) trivial on K̃∗ ⇐⇒ µ|F ∗ = ηK ′/F or ηK ′′/F .

• Also (µ, µηL/K) trivial on F ∗ × F ∗ ⇐⇒ µ|F ∗ = 1 because we have
already seen that ηL/K is trivial on F ∗.

• Finally these equivalences show that ω(K ′∗) = 1 or ω(K ′′∗) = 1
⇐⇒ (µ, µηL/K) trivial on K̃∗ or on F ∗ × F ∗.

2. If L is cyclic over F . One shows that π(ω) = π(µ, µηL/K) is distin-
guished if and only if µ|F ∗ generates the cyclic group of the characters
of F ∗/NL/F (L∗).

• It is not possible for (µ, µηL/K) to be trivial on F ∗ × F ∗ because
we saw in the preliminaries that ηL/K is not trivial on F ∗.

11



• (µ, µηL/K) trivial on K̃∗ ⇐⇒ µ ◦NK/F = ηL/K .

We deduce as before that µ is a character of F ∗/NL/F (L∗).
As F ∗/NL/F (L∗) is cyclic of order four, the same is true for its
characters group.
As µ ◦ NK/F = ηL/K , we deduce that µ|F ∗ is non trivial, more-
over if µ|F ∗ was of order 2, it would be equal to ηK/F which
is the unique element with order 2 of the characters group of
F ∗/NL/F (L∗), which contradicts µ ◦NK/F = ηL/K .
We deduce that µ ◦ NK/F = ηL/K =⇒ µ|F ∗ generates the dual
group of F ∗/NL/F (L∗).

• Conversely if µ|F ∗ is of order four in the dual group of F ∗/NL/F (L∗),
we deduce that µ◦NK/F is a character of K∗ trivial on NL/K(L∗),
but not trivial because it would implie µ|F ∗ = 1 or ηK/F , namely
µ|F ∗ with order less than 2.
On conclude that µ ◦NK/F = ηL/K .

3. If L is not Galois over F . As ω◦NM/K = µ◦NM/F = µ′◦NM/B , where
µ′ = µ ◦NB/F , we conclude as in the case 3. of the proof of theorem
2.3 that π(ω) = π(µ′) and we are brought back to case 1. because B
is biquadratic over F .

Thus we have the following general theorem:

Theorem 5.2 A dihedral representation Π of GL2(K) is GL2(F )-distinguished
if and only if π = π(ω) for some multiplicative character ω of a quadratic
extension L over K verifying i) or ii):

i) L/F is biquadratic , and ω|K ′∗ = 1 or ω|K ′′∗ = 1,
ii) L/F is cyclic and ω = µ ◦ NL/K for µ a character of K∗ whose

restriction to F ∗ generates the dual group of F ∗/NL/F (L∗).
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