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Abstract XML documents may be roughly described as unranked, ordered trees
and it is therefore natural to use tree automata to process or validate them. This
idea has already been successfully applied in the context of Document Type Defi-
nition (DTD), the simplest standard for defining document validity, but additional
work is needed to take into account XML Schema, a more advanced standard,
for which regular tree automata are not satisfactory. In this paper, we introduce
Sheaves Logic (SL), a new tree logic that extends the syntax of the — recursion-
free fragment of — W3C XML Schema Definition Language (WXS). Then we
define a new class of automata for unranked trees that provides decision proce-
dures for the basic questions about SL: model-checking; satisfiability; entailment.
The same class of automata is also used to answer basic questions about WXS,
including recursive schemas: decidability of type-checking documents; testing the
emptiness of schemas; testing that a schema subsumes another one.

Key words Tree automata – Modal logic – XML – XML Schema

1 Introduction

We describe a new class of tree automata, and a related logic on trees, with ap-
plications to the processing of XML documents and XML schemas. Since XML
documents and other forms of semi-structured data [1] can be described as un-
ranked, ordered trees (an unranked tree is a finite labeled tree where nodes can
have an arbitrary number of children), it is natural to use tree automata to reason
on them and apply the classical connection between automata, logic and query
languages.

? This work was partially supported by ATIP CNRS “Fondements de l’Interrogation des
Données Semi-Structurées” and by IST Global Computing PROFUNDIS.
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This approach has already been successfully applied by various researchers,
both from a practical and a theoretical point of view, and has given some no-
table results, especially when dealing with Document Type Definitions (DTD), the
simplest standard for defining constraints on the shape of XML documents. A
good example is the XDuce system of Pierce, Hosoya et al. [15], a statically typed
functional language with “tree grep”-style patterns for traversing and manipulating
XML. In this tool, types are modeled by regular tree automata (which are similar in
spirit to DTD) and the typing of pattern matching expressions is based on closure
operations on automata.

DTD is a schema language, that is, a description of document types expressed
in terms of constraints on the structure and content of valid documents. The schemas
expressible with DTD are sometimes too rigid and inadequate for many purposes.
For instance, a document may become invalid after permutation of some of its
elements. Several schema languages have been proposed to overcome these limi-
tations, such as RELAX-NG [6] or the W3C XML Schema Definition Language
(WXS) [3]. The specification of WXS is based on a notion of complex types that
defines the content model of groups of elements. There are three possible grouping
operators in WXS: (1) the sequence group that constrains elements to appear in
the same order as they are declared; (2) the choice group that constrains only
one element in a group to appear in an instance of the schema; and (3) the all
group that constrains all the elements in the group to appear in any order. Infor-
mally, sequence and choice allows the expression of regular constraints (as
with DTD), while the all group operator provides a simplified version of the &

connector of SGML.

Contributions. Our first contribution is an automata theoretic approach for WXS,
that relies on a new class of tree automata, named sheaves automata (SA). We
define a simplified version of WXS that embeds regular tree expressions and se-
quential composition (·) together with an associative-commutative operator (&) to
model the all group. Since we focus on the interactions between regular con-
straints and the all group, we leave out several other features of WXS, like
mixed-content models, primitive types, or redefinition for example. To the best
of our knowledge, it is the first work applying automata theory to WXS that con-
siders the all group operator. Given a schema, we can built a sheaves automaton
that recognizes the set of well-typed documents (Proposition 16). This property
yields a procedure to decide whether a document is well-typed (Theorem 4) and to
decide type inclusion (Theorem 6). Our approach provides a compact and efficient
way to deal with the interleaving operator & without replacing the composition
E1 & . . . & Ep of p elements by a regular expression matching all the possible
permutations of the Ei’s.

The second contribution is a new modal logic for trees, the sheaves logic (SL),
that extends the basic constructions of WXS with logical operators. This logic de-
liberately resembles TQL [4,5], a logic for unordered trees at the basis of a query
language for semi-structured data. By design, every formula of SL directly relates
to a deterministic sheaves automaton. As a result, we obtain the decidability of
the model-checking problem (Theorem 3), that is finding if a document conforms
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to a given schema, and of the satisfiability problems, that is finding if the model
of a schema is empty (Theorem 2). There are several benefits in using logic in-
stead of directly compiling WXS definitions into sheaves automata: SL offers a
concrete syntax for describing languages recognizable by an SA; it is a test bed
for possible extensions of WXS; it may be used as the basis of a query language
that uses sheaves automata for traversing and manipulating documents. Also, from
a theoretical point of view, the automata and the logic defined in this paper are
interesting in their own rights. Indeed, a subclass of SA has already been used to
obtain decidability results for the static fragment of the ambient logic [13].

Our third contribution is an extensive study of the properties of sheaves au-
tomata. Actually, the decidability results mentioned above directly follow from
these properties. We prove that standard constructions (product, closure under
union and intersection) and algorithms (decision of emptiness and membership)
can be adapted to this class, but that there is no determinization algorithm. Actu-
ally, we exhibit a language accepted by a non-deterministic sheaves automaton that
cannot be accepted by a deterministic automaton (Proposition 4). Furthermore, we
show that the class of languages accepted by sheaves automata is not closed under
complementation (Proposition 8).

Content of the paper. We start by defining a simplified syntax for XML doc-
uments and XML Schema. In Section 3, we introduce some basic mathematical
tools used in the remainder of the paper and explain how counting constraints on
documents may arise from the boolean combination of WXS definitions. In Sec-
tion 4, we present the Sheaves Logic (SL), a new tree logic intended to describe
validity constraints on XML documents. Section 5 introduces a new class of au-
tomata for unranked trees, called Sheaves Automata (SA), that is used to decide
sheaves logic. In Section 6, we apply automata techniques to obtain decidability
results for the sheaves logic, then the same tool is used to solve problems related
to documents validation with respect to WXS definitions. Before concluding, we
report on work related to logic and automata for unranked trees in the context of
XML.

2 Documents and Schema

We define a simplified syntax for XML documents and XML schema and describe
schema validation as a type checking process for documents.

XML documents may be seen as a simple textual representation for unranked,
ordered labeled trees. In this article, we follow the notations of [15] and choose
a simplified version of XML documents by leaving aside attributes and entities
among other things. Most of the simplifications and notation conventions used
here are also found in the presentation of MSL [3], an attempt to formalize some
of the core ideas found in WXS.
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2.1 XML Documents

We assume there are disjoint sets of constants and tag names. We let c, c′, . . .
range over constants and a, b, . . . range over tags. A document d is an ordered
sequence of elements a1[d1] · . . . · an[dn]. A document may be empty, denoted ε,
and documents may be concatenated, denoted d ·d′. This composition operation is
associative with identity element ε.

Elements and Documents

e ::= element or constant
a[d] element labeled a, containing d
c constant (any type)

d ::= document
e1 · . . . · en document composition (with n ≥ 0)

The XML specification states that a well-formed document must have a root
element, that is, a unique top-level element. Hence, in our setting, a well-formed
XML document is an element. We consider a finite set of primitive types, like
String or Integer for instance. A primitive type is a set of atomic data con-
stants and we use the notation Datatype to stand for any particular primitive
type. We assume that every constant c belongs to a unique primitive type Datatype,
denoted c ∈ Datatype. A formal description of how types are associated to con-
stants escape the scope of our study. We will also not consider subtyping relations
between primitive types (as expressible in WXS).

Example 1 A typical entry of a bibliographical database could be the document:

book [ auth[ ”Knuth” ] · title[ ”Art of Computer Programming” ] · date[ 1970 ] ]

2.2 Syntax of Schema

Schemas are the types of documents. We assume an infinite set of schema vari-
ables ranged over byX,Y, . . . We consider two separate syntactical categories for
schemas: E for element schema definitions and T for top-level schemas. The no-
tation Reg(E1, . . . , Ep) stands for a regular expression on the elements (Ei)i∈1..p.
It can be the empty sequence ε, any element Ei with i ∈ 1..p, the concatenation
of two expressions R .R′, choice R | R′ or iteration R∗ where R,R′ are regular
expressions on the elements (Ei)i∈1..p.

Negation and conjunction of regular expressions are not required since they
can be derived from these operations, nonetheless, in the remainder of the paper,
we use the notation Reg to stand for a regular expression that matches the comple-
ment language of Reg and the notation Reg ∩Reg ′ for an expression matching the
intersection of the languages of Reg and Reg ′.



XML Schema, Tree Logic and Sheaves Automata 5

Syntax of Schema (WXS)

E ::= Element schema
a[T ] element with tag a and interior matching T
a[T ]? optional element
Datatype datatype constant

T ::= Top level schema
X variable
Reg(E1, . . . , Ep) regular expression of elements
E1 & · · · & En interleaving composition (n ≥ 2)
AnyT any type (match everything)

A (top-level) schema is basically a regular expression that constrains the order
and number of occurrences of elements in a document. An element a[T ] describes
documents that contain a single top element tagged with a and enclosing a sub-
document satisfying the schema T . An optional element a[T ]? matches one or
zero occurrence of a[T ]. The most original operator is the interleaving connec-
tor, E1 & · · · & En, which describes documents containing (exactly) elements
matching E1 to En regardless of their order. This operator corresponds to all
groups in the concrete syntax of WXS. It is possible to describe the possible
interleavings of a finite set of elements using a regular expression, for instance
|σ permutation of 1..nEσ(1) · . . . ·Eσ(n) for the above case, but the size of this encoding
is exponentially bigger than the size of the original expression. The interleaving
operator gives a simple notation for such expressions and we shall see how sheaves
automata provide an effective way to cope with this operator even in the presence
of recursion. Our simplified description of WXS also contains the constant AnyT
— Any Type in WXS terminology — which matches every document and stands
for the most general type.

The type of a document may be given by a set of recursive schema definitions
together with the type associated to its root element, that is by an equation of the
form

a[Xj ] with X1 = T1, . . . , Xn = Tn ,

where Xj (j ∈ 1..n) is the type of the root element and T1, . . . , Tn are top-level
schema that only contain variables in X1, . . . , Xn. To comply with the WXS stan-
dard, we assume that there is only one equation Xi = Ti for each variable Xi and
that Ti is not a variable. These assumptions can be relaxed without changing our
main results.

Example 2 The following schema matches the book entry given in Example 1:

book [Book ] with Book = auth[String] & title[String]
& date[Integer] & ref [Ref ]?,

Ref = (entry[Book ])∗

The definition of the type for books entries consists of two equations. The
first equation states that a bibliographical item includes three mandatory fields —
author, auth[String], title, title[String], and publication year date[Integer]
— and one optional field for references (the order in which these fields appear
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is irrelevant). The equation for Ref states that a reference is a possibly empty
sequence of book entries. This type could be expressed as follows using the WXS
concrete syntax:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="book" type="Book"/>

<xsd:complexType name="Book">
<xsd:all>

<xsd:element name="auth" type="xsd:string"/>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="date" type="xsd:integer"/>
<xsd:element name="ref" type="Ref"

minOccurs="0" maxOccurs="1"/>
</xsd:all>

</xsd:complexType>

<xsd:complexType name="Ref">
<xsd:sequence>

<xsd:element name="entry" type="Book"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Our simplified specification leaves out many features of WXS like complex
datatypes, mixed content models, element and attribute groups, “object-oriented
features” (like substitution groups and redefinitions), . . . and focus instead on the
interactions between the all and sequence group operators. Our syntax also
captures some of the constraints put on these operators:

– an all group can only contain individual element declarations and not choice
or sequence elements,

– no element may appear more than once in the “content model” of an all
group, that is, the values of the minOccurs and maxOccurs attributes1 must
be 0 or 1.

For example, the terms E1 · (E2 & E3) and (E1 & E2)∗ are ill-formed with our
syntax and in the WXS specification.

In contrast, we do not limit regular expressions Reg to be 1-unambiguous,
meaning that the typical algorithm used to test whether a word matches Reg does
not require any look-ahead. This constraint, known in WXS as the Unique Particle
Attribution Rule, also appears in the specification of DTD. We do not consider
either the Consistent Declaration Rule, an equivalent restriction for interleaving
compositions, (a1[T1] & · · · & ap[Tp]), which specifies that for all i, j ∈ 1..p, if
ai = aj then Ti = Tj . The motivation to include these restrictions in WXS is
to keep schema processors simple to implement and to obtain a one pass typing
property. These restrictions are not necessary to prove that every WXS definition

1 For simplicity we have chosen iteration S∗ and option a[T ]? instead of a more general
repetition operator E{m,n}, expressible using minOccurs and maxOccurs.
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may be interpreted by a sheaves automaton (see Section 6.1), but they can lessen
the complexity of the constraints appearing in the SA obtained by our translation.

2.3 Semantics of Schema

We make explicit the role of schema as a type system for documents and de-
fine the relation S ` d : T , meaning that the document d satisfies the schema
T in the environment S . In our setting, an environment is a set of equations
X1 = T1, . . . , Xn = Tn obtained from a type declaration a[X ]with S. Hence
S always defines a unique mapping between variables and top-level schema. We
denote S(X) the unique type T associated to X in the environment S if it exists.

We say that a document a[d] is of type a[X]with S if and only if S ` d : X .
For the sake of readability, we use the auxiliary function inter(d) which com-

putes the interleaving of the elements in d, that is all the documents obtainable
from d after permutation of its elements:

inter(e1 · . . . · en) = {eσ(1) · . . . · eσ(n) σ permutation of 1..n} .

The relation w ∈ Reg(a1, . . . , an) means that w is a word recognized by
the regular expression Reg(a1, . . . , an). In the following, we use this relation
in situations where the letters are element formulas and write Ei1 · . . . · Eik ∈
Reg(E1, . . . , En).

Valid Documents (WXS)

S ` d : T

S ` a[d] : a[T ]
S ` d : a[T ]

S ` d : a[T ]? S ` ε : a[T ]?

c ∈ Datatype

S ` c : Datatype
S(X) = T S ` d : T

S ` d : X

d = e1 · . . . · ek S ` ej : Eij i ∈ 1..k Ei1 · . . . · Eik ∈ Reg(E1, . . . , En)

S ` d : Reg(E1, . . . , En)

d ∈ inter(e1 · . . . · en) S ` e1 : E1, . . . ,S ` en : En

S ` d : E1 & . . . & En S ` d : AnyT

The reader may easily check from these rules that the document defined in
Example 1 has the type book [Book ] given in Example 2.

3 Presburger Arithmetic, Parikh Mapping and Counting Constraints

In this section, we introduce some basic mathematical tools that are useful in the
definition of both our tree logic and our new class of tree automata.
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3.1 Presburger Arithmetic

Some computational aspects of sheaves automata rely on arithmetical properties
over the semigroup (N,+) of natural numbers with addition. Formulas of Pres-
burger arithmetic, also called Presburger constraints, are defined in the table be-
low. We assume an infinite set of integer variables ranged over by N,M, . . .. We
let n,m, . . . range over integer values. Presburger constraints allow us to define
a substantial class of (decidable) properties over positive integers like for ex-
ample: the value of X is strictly greater than the value of Y , using the formula
∃Z.(X = Y + Z + 1); or X is an odd number, ∃Z.(X = Z + Z + 1).

Presburger Constraint

Exp ::= Integer expression
n positive integer constant
N positive integer variable
Exp1 + Exp2 addition

φ, ψ, . . . ::= Presburger constraint
(Exp1 = Exp2) test for equality
¬φ negation
φ∨ψ disjunction
∃N.φ existential quantification

We denote φ(N) a Presburger formula whose free variables are all in N =
(N1, . . . , Np) and we use the notation |= φ(n1, . . . , np) when φ{N1←n1} . . .
{Np←np}, the formula φ where the variables (Ni)i∈1..p have been substituted by
the values (ni)i∈1..p, is satisfied.

Presburger arithmetic is decidable, which means that for every formula φ(N)
we can decide if there exists (n1, . . . , np) such that |= φ(n1, . . . , np). Nonetheless,
the complexity of deciding validity can be very high [14]: every algorithm which
decides the truth of a Presburger constraint φ has worst case runtime of at least
22
cn

for some constant c, where n is the length of φ. Conversely there is also a
known triply exponential upper-bound in the worst case [26], i.e. the complexity
of checking the satisfiability of a formula φ is in time at most 22

2cn

for some
constant c. Furthermore the problem is NP-complete for the existential fragment
of Presburger arithmetic.

The constraints arising in the study of our simplified fragment of WXS will
stay in a simple fragment of Presburger arithmetic. For the sheaves logic, instead,
we will consider the most general class of constraints.

3.2 Parikh Mapping

Another mathematical tool needed in the presentation of our new class of automa-
ton is the notion of Parikh mapping. Given some finite alphabetΣ = {a1, . . . , an},
that we consider totally ordered, the Parikh mapping of a wordw ofΣ∗ is a n-tuple
of natural numbers, #(w) = (m1, . . . ,mn), where mi is the number of occur-
rences of the letter ai in w. We shall use the notation #a(w) for the number of
occurrences of a in w, or simply #a when there is no ambiguity.
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The Parikh mapping of a set of words is the set of Parikh mappings of its ele-
ments. Parikh’s theorem states that the Parikh mapping of a context-free language
is definable by a Presburger formula and that this formula can be explicitly com-
puted. If the language L is regular, a Presburger formula representing the Parikh
mapping of L can be computed in linear time [28]. This property is useful when
we consider the intersection of a regular word language with a set of words whose
Parikh mapping satisfies a given Presburger constraint. This is the case in Sec-
tion 4, for example, when we test the emptiness of the language accepted by a
sheaves automaton.

3.3 Relation with XML Schema

In the following section we study a modal logic for documents that directly em-
beds WXS. This logic is obtained by extending the syntax given in Section 2.2
with operators for disjunction and negation (as usual), and by adding arithmeti-
cal constraints on the number of elements to the interleaving composition. For
instance, it is possible to define formulas of the form ∃N1, N2 : (N1 = N2) :
N1 a[True] & N2 b[True], meaning that a valid document should be the composi-
tion of n1 elements labeled a and n2 elements labeled b, regardless of their order,
with the constraint that n1 = n2.

To motivate the use of counting constraints, we consider an example that shows
how a boolean combination of &-compositions introduces “counting capabilities”
to schema. The following example cannot be directly expressed in WXS, but could
be obtained when computing the intersection, composition and interleaving of sets
of documents recognized by schemas (which may arise, for example, when typing
queries):

title[String] & auth[String] & ¬(title[True] & AnyT ) . (1)

Assume we have documents composed of only three tags: author , title and
date . Informally, the expression ¬(title[True] & AnyT ) matches documents that
do not have a title element (it cannot be decomposed into any document, matched
by True , composed with an element labeled title). Hence a bibliographical entry
matching (1) must contain exactly one field labeled title and at least one field la-
beled auth . These constraints could be expressed more directly using Presburger
constraints by saying that a valid entry must be of the form nt title[String] &

na auth[String] & nd date[AnyT ] where (nt, na, nd) is a sequence satisfying
the constraint φ(Nt, Na, Nd) =def (Nt = 1∧Na > 1). Therefore we can char-
acterize the set of documents matching (1) by the pair made of the formula φ and
the sequence of element schemas (title[String], auth[String], date[AnyT ]). As
a consequence, it appears that boolean combinations of schemas may be used to
define a mixture of regular and counting constraints on the sequence of elements
occurring in a document.

One of the main contributions of this paper is to show that a boolean com-
bination of schemas can be related to a triple (Reg , φ, (E1, . . . , En)) made of a
sequence of element formulas, a Presburger constraint φ with n variables, and a
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regular expression Reg with atoms in E1, . . . , En. We use this “normal form” for
WXS definitions as a basis for defining a new class of tree automata, which in turn
is used to prove the decidability of type-checking documents (Theorem 4). We also
prove that, if arbitrary conjunction and concatenation of schemas were allowed,
then type-checking becomes undecidable. This last result is obtained through the
study of a modal logic for documents, defined in Section 4, that extends WXS.

4 Modal Logics for Documents

Now, we define a modal logic for documents, the “General Document Logic”
(GDL), that extends the basic constructs of the W3C XML Schema (sequential
and interleaving composition) with counting constraints and logical connectives
(but without recursive definitions). This logic is in the spirit of the Tree Query
Logic (TQL) of Cardelli and Ghelli [5], a modal logic for unranked, unordered
trees that has recently been proposed as the basis of a query language for semi-
structured data. We show that our first attempt to extend WXS is too expressive
(Proposition 1, the satisfaction problem for GDL is undecidable) and identify a
decidable fragment of GDL, called the Sheaves Logic (SL).

4.1 Syntax of Formulas

The formulas of GDL, ranged over by D,A,B, . . . are given by the following
grammar. Aside from the usual propositional logic operators, formulas are built
from three main ingredients: (1) element formulas a[D] to express properties of
a single element in a document; (2) regular formulas Reg(D1, . . . , Dp) corre-
sponding to regular expressions on sequences of documents; (3) counting formulas
∃N : φ(N) : N1D1 & . . . & NpDp to express counting constraints on bags of el-
ements, that is in situations where the order of the elements is irrelevant. This last
operator is the main addition to the logic and is used to match documents obtained
by interleaving n1 documents matchingD1, . . . , np documents matchingDp, such
that (n1, ..., np) satisfies the Presburger formula φ.

Syntax of Formulas (GDL)

E ::= Element
a[D] element with tag a and formula D
Datatype datatype constant

D ::=
E element
Reg(D1, . . . , Dp) regular expression on formulas
∃N : φ(N) : N1D1 & . . . & NpDp generalized interleaving, N = (N1, . . . , Np)
True any document (truth formula)
D∨D′ disjunction
¬D negation
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The generalized interleaving operator is inspired by the relation between schema
and counting constraint given in Section 3.3. This operator is useful to express con-
straints on documents more expressive than with WXS. For example, it is possible
to define a type equivalent to (E1

∗
& E2), that matches documents made only of

elements matching E1 but one matching E2, using the formula ∃N1, N2 : (N1 >
0)∧(N2 = 1) : N1E1 & N2E2. For the sake of simplicity, we introduce a unique
terminal Datatype whereas a more realistic approach would use several ones. Our
results can be easily restated in this extended framework which simply adds some
tedious technical complications.

4.2 Satisfaction Relation

We define the relation d |= D, meaning that the document d satisfies the formula
D. This relation is defined inductively on the definition ofD. As with the definition
of the WXS semantics, we use the relation W ∈ Reg(D1, . . . , Dp) meaning that
W belongs to the language generated by Reg (observe that, in this case, W is a
word on the alphabet {D1, . . . , Dp} made of formulas). We also use the notation
W ∈ φ(D1, . . . , Dp) when the Parikh mapping of the sequence W satisfies the
formula φ, that is, |= φ(n1, . . . , np) where nj is the number of occurrences of Dj

in W .

Satisfaction (GDL)

d |= a[D] iff (d = a[d′]) ∧ (d′ |= D)
d |= Datatype iff (d = c) ∧ (c ∈ Datatype)
d |= Reg(D1, . . . , Dp) iff d = d1 · . . . · dk ∧

∃i1, . . . , ik.
∧

j∈1..k dj |= Dij ∧
Di1 · . . . ·Dik ∈ Reg(D1, . . . , Dp)

d |= ∃N : φ(N) : N1D1 & . . . & NpDp iff d ∈ inter(d1 · . . . · dk) ∧
∃i1, . . . , ik.

∧
j∈1..k dj |= Dij ∧

Di1 · . . . ·Dik ∈ φ(D1, . . . , Dp)
d |= True always true
d |= D∨D′ iff (d |= D) ∨ (d |= D′)
d |= ¬D iff not (d |= D)

4.3 Expressiveness of the Logic

We start by defining some syntactic sugar in order to give examples of schemas
expressible in GDL. We use the notation E1 & . . . & Ep, for the formula satisfied
by documents made of a sequence of p elements matching E1, . . . , Ep, regardless
of their order.

(E1 & . . . & Ep) =def ∃N1, ..., Np : (N1 = ... = Np = 1) : N1E1 & . . . & NpEp

Likewise, we define the notation (ai[S] & · · · ) for the formula satisfied by doc-
uments containing at least one element matching ai[S]. We assume here a finite
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set of possible values for tags, say {a1, . . . , ak}, but it is possible to handle an
unbounded number of tags using a minor extension of the logic (see for example
the approach taken in [13]).

(ai[S] & · · · ) =def ∃M,N1, . . . , Nk : (M = 1)∧
∧
i∈1..k(Ni > 0) :

Mai[S] & N1a1[True] & · · · & Nkak[True]

As a more complex example, let us assume that a book reference is given by the
schema in Example 2. The references may have been collected in several databases
and we cannot be sure of the order of the fields. The following formula matches
collections of books that contain at least 5 entries written by Knuth or Lamport.

∃N,M : (N +M > 5) :

(
Nbook [(auth[”Knuth”] & · · · )]
& Mbook [(auth[”Lamport”] & · · · )]

)
The following theorem states that GDL is too expressive.

Proposition 1 The satisfaction problem for GDL is undecidable.

Proof We show that given a two-counter machine, there is a formula matching
exactly the set of terminating computations of the machine. Therefore, deciding
the satisfiability of GDL formulas would imply deciding the halting problem for
two-counter machines which is undecidable. The complete proof is given in Ap-
pendix A.1. ut

4.4 A Decidable Document Logic

We define a fragment of GDL by restricting regular expressions and interleaving
operators to act only on element formulas. We call this subset the Sheaves Logic
(SL). We prove (Theorem 2) that the satisfaction problem for SL is decidable. The
property follows from a reduction to a new class of tree automata, the so-called
sheaves automata, in the sense that the set of documents matched by a formula in
SL will correspond to the set of terms accepted by an automaton.

Syntax of Formulas (SL)

E ::= Element
a[D] element with tag a and formula D
Datatype datatype constant

D ::=
Reg(E1, . . . , Ep) regular expression on elements
∃N : φ(N) : N1E1 & . . . & NpEp generalized interleaving, N = (N1, . . . , Np)
True any document (truth formula)
D∨D′ disjunction
¬D negation

The definition of the satisfaction relation for SL can be slightly simplified in
the case for generalized interleaving. The definition for the other operators is un-
changed.
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Satisfaction (SL)

d |= Reg(E1, . . . , Ep) iff d = e1 · . . . · ek ∧
∃i1, . . . , ik.

∧
j∈1..k ej |= Eij ∧

Ei1 · . . . · Eik ∈ Reg(E1, . . . , Ep)
d |= ∃N : φ(N) : N1E1 & . . . & NpEp iff d = e1 · . . . · ek ∧

∃i1, . . . , ik.
∧

j∈1..k ej |= Eij ∧
Ei1 · . . . · Eik ∈ φ(E1, . . . , Ep)

We can explain the difference in expressiveness between SL and GDL on
a simple example. The formula AB =def (a[True]∗ · b[True]∗)∧∃(Na, Nb) :
(Na = Nb) : Na a[True] & Nb b[True]) is in SL. This formula matches doc-
ument of the form a[ ]n · b[ ]n (think of the word language an · bn) that can be
recognized with a one-counter automata. The formula AB ·AB, which is in GDL
but not in SL, matches documents of the form a[ ]n · b[ ]n · a[ ]m · b[ ]m, with
n,m > 0. We prove, see Proposition 4, that this language cannot be accepted by
any deterministic sheaves automaton.

Next, we state that we can always assume that the element formulasE1, . . . , Ep
occurring in a regular expression or a generalized interleaving operator are pair-
wise disjoint, i.e. the models of Ei and Ej are disjoint when i 6= j. This property
is used in the proof of Theorem 1.

Proposition 2 From a regular formula Reg(E1, . . . , Ep) of SL we can build an
equivalent formula Reg ′(E′1, . . . , E

′
m) such that the element formulasE′1, . . . , E

′
m

are pairwise disjoint. Likewise, from a counting formula ∃N : φ(N) : N1E1 &

. . . & NpEp of SL we can build an equivalent formula ∃M : φ′(M) : M1E
′
1 &

. . . & MmE
′
m such that the element formulas E′1, . . . , E

′
m are pairwise disjoint.

Proof We build a sequence of pairwise disjoint element formulas E′1, . . . , E
′
m

such that any regular (resp. counting) formula on the sequence E1, . . . , Ep is
equivalent to a regular (resp. counting) formula on E′1, . . . , E

′
m. Since Datatype

is already disjoint from any a[D], without loss of generality, we can assume Ei =
ai[Di] for all i ∈ 1..p. Let Ia denote the set of indexes i such that ai = a. For
each non-empty subset I of Ia, we set Da

I =def
∧
j∈I Dj if I = Ia, otherwise

Da
I =def

∧
j∈I Dj ∧

∧
j∈Ia\I ¬Dj . By construction, the formulas Da

I are pairwise
disjoint and Ei is equivalent to ai[

∨
I⊆Iai ,i∈I

Dai
I ].

LetEi1, . . . , E
i
ni be the sequence of formulas ai[Dai

I ] for all set of index I such
that i ∈ I and I ⊆ Iai . By construction, an element e = a[d] models a[Da

I ] if and
only if I is the set of indexes i such that d |= Di, or equivalently I = {i | e |= Ei}.
Hence, d ∈ Reg(E1, . . . , Ep) iff d ∈ Reg{E1←(E1

1 | . . . | E1
n1

)} . . . {Ep←(Ep1 |
. . . | Epnp)}, the regular expression obtained from Reg by substituting Ek with the
expression (Ek1 | . . . | Eknk) for all k ∈ 1..p. (This property follows from a simple
structural induction on the syntax of Reg .)

Likewise, since each Ei is equivalent to the disjoint sum of the Eij’s, for j ∈
1..ni, the counting formula ∃N : φ(N) : N1E1 & . . . & NpEp is equivalent to
the formula: ∃M : φ

(∑
j∈1..n1

M1
j , . . . ,

∑
j∈1..npM

p
j

)
: M1

1 E
1
1 & . . . & Mp

np E
p
np ,

which yields the result for a counting formula. ut



14 Silvano Dal Zilio, Denis Lugiez

5 A New Class of Tree Automata

We define a new class of tree automata, named sheaves automata (SA), specifically
designed to operate with WXS. A main distinction with other automata-theoretic
approaches is that we do not focus on regular expressions over paths but instead
concentrate on the all group operator (denoted & in our simplified syntax), which
is one of the chief additions of WXS with respect to DTD.

In the transition relation of SA, we combine the general rules for regular tree
automata with regular word expressions and counting constraints. In this frame-
work regular word expressions allow us to express constraints on sequences of el-
ements and are used when dealing with sequential composition of documents (the
sequence operator of WXS). Correspondingly, the Presburger constraints are
used when dealing with interleaving composition (the all group of WXS) and
appear as the counterpart of regular expressions when the order of the elements is
not relevant.

We assume an infinite set of states ranged over by q, q′, . . . A (bottom-up)
sheaves automaton A is a triple 〈Q,Qfin, R〉 where Q is a finite set of states of
cardinality |Q| = p, and Qfin is a set of final states included in Q, and R is a set of
transition rules. Transition rules are of three kinds:

(1) c→ q
(2) a[q′]→ q
(3) φ(N1, . . . , Np) ` Reg(Q)→ q

In type 3 rules, Reg(Q) is a regular expression on the alphabetQ = {q1, . . . , qp}
and φ(N1, . . . , Np) is a Presburger arithmetic formula with free variables N1, . . . ,
Np. Type 1 and type 2 rules correspond to the transition rules found in regular tree
automata for constants (leave nodes) and unary function symbols. Type 3 rules,
also termed constrained rules, are the only addition to the regular tree automata
model and are used to compute on nodes built using the concatenation operator “·”
(the only nodes with an unbounded arity). Intuitively, the variable Ni denotes the
number of occurrences of the state qi in a run of the automaton and a type 3 rule
may fire if we have a term of the form e1 · . . . · en such that:

– each ei leads to a state qji ∈ Q;
– the word qj1 · . . . · qjn is in the language defined by Reg(Q);
– the formula φ#(qj1 · . . . · qjn) is satisfied, that is, |= φ(n1, . . . , np), where ni

is the number of occurrences of qi in qj1 · . . . · qjn .

To stress the connection between variables in the counting constraint φ and the
number of occurrences of qi matched by Reg(Q), we will use #qi instead of Ni
for the names of integer variables.

Example 3 Let the signature be {c, a[ ], b[ ]}. We define the automaton A by the
set of states Q = {qa, qb, qs}, the set of final states Qfin = {qs} and the following
set of five transition rules:

c→ qs a[qs]→ qa b[qs]→ qb (#qa = #qb) ` (qa | qb | qs)∗ → qs
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We show in Example 4, after defining the transition relation, that this particular
automaton accepts terms with as many a’s as b’s in the children of a node, as in
the example b[ε] · a[c · b[ε] · c · a[ε]].

The constant True stands for any tautology in Presburger arithmetic (for ex-
ample ∃X.(X = X)). Likewise, we use AllQ for the regular expression (q1 | . . . |
qp)
∗ that matches all possible words in the alphabet Q. If we drop the Presburger

arithmetic constraint and restrict to type 3 rules of the form True ` Reg(Q)→ q,
we get hedge automata [20]. Conversely, if we drop the regular word expression
and restrict to rules of the form φ(#q1, . . . ,#qp) ` AllQ → q, we get a class
of automata which enjoys all the good properties of regular tree automata [7,13],
that is closure under boolean operations, a determinization algorithm, decidability
of the test for emptiness, etc. When both counting and regular word constraints
are needed, some of these properties are no longer valid, as shown below. For in-
stance, we prove in Proposition 4 that non-deterministic SA are not closed under
determinization.

5.1 Transition Relation

The transition relation of an automaton A, denoted d →A q, or simply→ when
there is no ambiguity, is the relation defined by the following three rules.

Transition Relation:→

(type 1)

c→ q ∈ R
c→ q

(type 2)

d→ q′

a[q′]→ q ∈ R
a[d]→ q

(type 3)
e1 → qj1 . . . en → qjn
qj1 · . . . · qjn ∈ Reg |= φ#(qj1 · . . . · qjn)
φ ` Reg → q ∈ R (n 6= 1)

e1 · . . . · en → q

The rule for constrained transitions (type 3 rules), can only be applied to se-
quences of length different from 1. Therefore it could not be applied to a sequence
of only one element. It is possible to extend the transition relation for type 3 rules
to also take into account this particular case, but it would needlessly complicate
our definitions and proofs without adding expressivity.

Example 4 Let A be the automaton defined in Example 3 and d be the document
c ·a[ε] · c · b[a[ε] · b[ε]]. The following proof tree describes how to use the transition
rules of A to accept d:

c→ qs

ε→ qs
a[ε]→ qa c→ qs

ε→ qs
a[ε]→ qa

ε→ qs
b[ε]→ qb (?)

a[ε] · b[ε]→ qs

b[a[ε] · b[ε]]→ qb (?)

c · a[ε] · c · b[a[ε] · b[ε]]→ qs
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The transition ε → qs and the two transitions marked with a (?)-symbol use the
only constrained rule ofA. The words used to check the constraints are ε, qa·qb and
qs ·qa ·qs ·qb. It is easy to check that these words belongs to AllQ = (qa | qb | qs)∗
and that they contain as many qa’s as qb’s (their respective Parikh mapping are
(0, 0, 0), (1, 1, 0) and (1, 1, 2)).

Our example shows that SA can accept languages which are different from
regular tree languages. For instance, as shown by Example 4, we can recognize
trees in which the sequence of children of every node contains as many a’s as
b’s. Indeed, the constrained rule in Example 3 can be interpreted as: “the word
q1 ·. . .·qn belongs to the context-free language of words with as many qa’s as qb’s.”
It is even possible to write constraints defining languages which are not context-
free, like qna ·qnb ·qnc (just take the Presburger constraint (#qa = #qb)∧(#qb = #qc)
in Example 3).

As is usual with automata, we say that a document d is accepted by a sheaves
automaton A if there is a final state q ∈ Qfin such that d →A q. The language
L(A) is the set of terms accepted by A. An automaton is deterministic iff two
distinct rules have incompatible premises, i.e.:

– For any pair of distinct type 1 rules c→ q, c′ → q′, we have c 6= c′,
– For any pair of distinct type 2 rules a[q] → r, a′[q′] → r′, we have a 6= a′ or
q 6= q′,

– For any pair of distinct type 3 rules φ ` Reg → q and φ′ ` Reg ′ → q′, there is
no sequence of states in Reg ∩ Reg ′ satisfying φ∧φ′.

By construction a deterministic sheaves automaton is unambiguous, in that a
term reaches at most one state. Given a sheaves automaton, it is possible to check
if this automaton is deterministic. The only difficult case is for type 3 rules: by
Parikh’s theorem, we can compute a Presburger formula ψ that matches exactly
the Parikh mapping of the regular language Reg ∩Reg ′ and then check the validity
of ψ ∧φ∧φ′.

In the following, we will only consider complete automata, such that every
term reaches some state. This can be done without loss of generality since, for any
automaton A it is always possible to build an equivalent complete automaton Ac.

Proposition 3 For any sheaves automatonAwe can construct a complete automa-
ton Ac that accepts the language L(A) and such that Ac is deterministic if A is
deterministic.

Proof The construction is similar to the standard construction for finite state au-
tomata: add one sink state with the corresponding transition rules. The only tech-
nical point is to preserve determinism (obtained using the closure of regular ex-
pressions and Presburger formulas under boolean combinations). ut

In the following sections, we enumerate several properties of our new class of
automata.



XML Schema, Tree Logic and Sheaves Automata 17

5.2 Deterministic SA are less Powerful than Non-deterministic SA.

The following proposition states a first discrepancy between the properties of
sheaves automata and regular tree automata.

Proposition 4 There is a language accepted by a sheaves automaton that cannot
be accepted by any deterministic sheaves automaton.

Proof We prove that the language L, consisting of the terms (a[ε])n · (b[ε])n ·
(a[ε])m · (b[ε])m, with n,m > 0, is not recognizable by a deterministic SA, al-
though there is a non-deterministic SA accepting L. The proof that a deterministic
automaton cannot recognize the language L is based on an adaptation of the pump-
ing lemma, whereas we exhibit a non-deterministic automaton that recognizes L.
The complete proof is given in Appendix A.2. ut

5.3 A Determinizable Subclass

In this section, we prove that in some cases it is possible to compute a deterministic
automaton accepting the same language as a given automaton. This is the case for
the class of separated automata, defined below.

We say that an automaton is separated if and only if each type 3 rule either has
the form True ` Reg → q or the form φ ` AllQ → q . In other words, in all type
3 rule, either the regular part or the counting part is trivial (but the same state q
may appear on the right-hand part of a counting rule and of another regular rule).

Proposition 5 Let A be a separated automaton, then there exists a deterministic
sheaves automaton accepting the same language as A.

Proof The proof relies on an adaptation of the subset construction. The complete
proof is given in Appendix A.3. ut

We stress that the deterministic automaton computed from a non-deterministic
separated automaton is not necessarily (actually usually not) separated.

5.4 Product, Union and Intersection

Given two automata A = 〈Q,Qfin, R〉 and A′ = 〈Q′, Q′fin, R
′〉, we can construct

the product automaton A × A′ that will prove useful in the definition of the au-
tomata for union and intersection. Let us recall that given two languages L on the
alphabet Σ, L′ on the alphabet Σ′, the product L× L′ is the language on Σ ×Σ′
consisting of words w such that π1(w) ∈ L and π2(w) ∈ L′ where π1, π2 are the
morphisms such that π1((a, a′)) = a, π2((a, a′)) = a′ for each a ∈ L, a′ ∈ L′. If
L and L′ are regular languages, then L× L′ is a regular language.

AssumeQ = {q1, . . . , qp} andQ′ = {q′1, . . . , q′l} are the states of the automata
A and A′. The product A×A′ is the automaton A× = 〈Q×, ∅, R×〉 such that:

– Q× = Q×Q′ = {(q1, q′1), . . . , (qp, q
′
l)},
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– for every pair of type 1 rules a→ q ∈ R and a→ q′ ∈ R′, the rule a→ (q, q′)
is in R×,

– for every pair of type 2 rules a[q] → s ∈ R and a[q′] → s′ ∈ R′, the rule
a[(q, q′)]→ (s, s′) is in R×,

– for every pair of type 3 rules φ ` Reg → q ∈ R and φ′ ` Reg ′ → q′ ∈ R,
the rule φ× ` Reg× → (q, q′) is in R×, where Reg× is the regular expression
corresponding to the product Reg×Reg ′. The formula φ× is the product of the
formulas φ and φ′ obtained as follows. Let #(q, q′) be the name of the variable
associated to the numbers of occurrences of the state (q, q′), then:

φ× =def φ
(∑
q′∈Q′

#(q1, q
′), . . . ,

∑
q′∈Q′

#(qp, q
′)
)
∧φ′

(∑
q∈Q

#(q, q′1), . . . ,
∑
q∈Q

#(q, q′l)
)

Proposition 6 We have d → (q, q′) in the automaton A × A′ if and only if both
d→A q and d→A′ q′.

Proof The proof for the first implication, i.e. d→ (q, q′) inA×A′ implies d→A q
and d→A′ q′, is a straightforward induction on the derivation of d→ (q, q′). The
proof for the converse property is similar.

Assume d→ (q, q′) in the automatonA×A′. We only study the case where the
last transition rule is a type 3 rule φ× ` Reg× → (q, q′), coming from the product
of the rules φ ` Reg → q in A and φ′ ` Reg ′ → q′ in A′. Hence d = e1 · . . . · en
where ei →A×A′ (qji , q

′
ki

) for all i ∈ 1..n.
Let w× be the sequence of states (in A × A′) used in the derivation of the

transition, that is, w× = (qj1 , q
′
k1

) · . . . · (qjn , q′kn). By definition of the transition
relation we have |= φ×#(w×).

Letw = qj1 ·. . .·qjn be the sequence of states ofA inw× andw′ = q′k1 ·. . .·q
′
kn

.
By induction, we have ei →A qji and ei →A′ q′ki for all i ∈ 1..n. By definition of
Parikh mapping, we have #q(w) =

∑
q′∈Q′#(q,q′)(w

×) (and a similar condition
for w′). Hence, by definition of φ×, it follows that |= φ#(w) and |= φ′#(w′).
Therefore d→A q and d′ →A′ q′ as needed. ut

Given two automata,A andA′, it is possible to obtain an automaton accepting
the language L(A) ∪ L(A′) and an automaton accepting L(A) ∩ L(A′). The in-
tersection A∩A′ and the union A∪A′ may be simply obtained from the product
A×A′ by setting the set of final states to:

Q∩fin =def
{

(q, q′) q ∈ Qfin ∧ q ∈ Q′fin

}
Q∪fin =def

{
(q, q′) q ∈ Qfin ∨ q ∈ Q′fin

}
The union automaton may also be obtained using a simpler construction: take

the union of the states of A and A′ (supposed disjoint) and modify type 3 rules
accordingly. It is enough to simply add the new states to each type 3 rules together
with an extra counting constraint stating that the corresponding coefficients must
be zero. We choose a more complex construction to preserve determinism.

Proposition 7 The automaton A∪A′ accepts L(A)∪L(A′) and A∩A′ accepts
L(A) ∩ L(A′). Moreover, the union and intersection automaton are deterministic
whenever both A and A′ are deterministic.
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Assume A is a complete and deterministic sheaves automaton. In most cases,
a state q of A can appear on the right hand side of different rules, possibly of
different types. Actually, it is always possible to obtain an automaton equivalent to
A such that a state q cannot be the right-hand side of a type (1) or (2) rule and the
right-hand side of a type (3) rule: replace A by the intersection A∩ B, where B is
the sheaves automaton 〈QB, QB, RB〉 such that QB = {q0, q3}, all states of B are
final and the rules in RB are a[q0] → q0, a[q3] → q0 (for all tag a that appears in
A), True ` ε → q0, and True ` (q0 | q3)+ → q3. Accordingly, we can always
assume that regular and counting constraints in type (3) rules mention only states
that are not the right-hand side of a type (3) rule. We assume that this condition is
met by the automata considered in the remainder of the section.

5.5 Complement

Given a deterministic complete automatonA we obtain a deterministic automaton
that recognizes the complement of the language L(A) simply by exchanging final
and non-final states. This property does not hold for non-deterministic automata.

Proposition 8 Non-deterministic sheaves languages are not closed under comple-
mentation.

Proof We show that given a two-counter machine, there is a non-deterministic au-
tomaton accepting the set of bad computations of the machine. Therefore, if the
complement of this language were also accepted by some automaton, we could de-
rive an automaton accepting the (good) computations reaching a final state, hence
decide if the machine halts. This is not possible since the halting problem for two-
counter machines is undecidable. The complete proof is given in Appendix A.4.
ut

5.6 Membership

We consider the problem of checking whether a document d is accepted by an
automaton A, which we write d

?
∈L(A). We use the notation |d| for the number of

elements occurring in d and |S| for the number of elements in a set S.
Assume there is a function Cost such that, for all constraints φ, the evaluation

of φ(n1, . . . , np) can be done in time O(Cost(p, n)) whenever ni 6 n for all i in
1..p. For quantifier-free Presburger formula (and if n is in binary notation) such a
function is given by K.p. log(n), where K is the greatest coefficient occurring in
φ. In the general case, that is for formulas involving any alternation of quantifiers
(which is very unlikely to occur in practice), the complexity is at least doubly
exponential for a non-deterministic algorithm.

Proposition 9 The problem d
?
∈L(A), where A = 〈Q,Qfin, R〉 is a deterministic

automaton, can be decided in time O(|d| · |R| · Cost(|Q|, |d|)).
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The proof is similar to the proof for tree automata. For non-deterministic au-
tomata, we prove that the problem is NP-complete even for simple sheaves au-
tomata, i.e., separated automata such that Cost(p, n) is polynomial and where
each regular expression occurring in a type 3 rule is trivial.

Proposition 10 For a non-deterministic simple automaton A = 〈Q,Qfin, R〉, the
problem d

?
∈L(A) is NP-complete.

Proof Membership to NP is easy: guess a labeling of d by states of the automaton
where the root is labeled by an accepting state, then check that the labeling is cor-
rect. NP-completeness is shown by encoding 3-SAT. Given an instance of 3-SAT
on the propositional variables x1, . . . , xn and clauses C1, . . . , Cm, we construct a
term d and an automaton A such that d ∈ L(A) if and only if the 3-SAT instance
is satisfiable. The signature used to encode a 3-SAT instance consists of the doc-
ument composition ., one constant 0 and one tag name a. The set of states of the
automaton is Q = {q0, q⊥, qS , q1, . . . , qn} where qS is the unique final state.

Before describing the transition rules of A we detail the construction of the
Presburger constraint #(C) associated to a 3-clause C. We define

#(C) =def Σxi occurs positively in C#qi +Σxi occurs negatively in C(1− #qi) ≥ 1

For instance, if C is the clause x1 ∨¬x2 ∨x3, then #(C) is the constraint
#q1 +(1−#q2)+#q3 ≥ 1. When the #qi’s belong to the set {0, 1}, a conjunction
of clauses

∧
j∈J Cj is satisfiable if and only if the Presburger constraint

∧
j∈J#(C)

is satisfiable.
Now we define the rules ofA. Type 1 and 2 rules of the automaton are 0→ q0,

a[q⊥]→ q⊥, a[qi−1]→ qi and a[qi−1]→ q⊥ for i ∈ 1..n. The unique type 3 rule
of A is: (∧

i∈1..n(#qi ≤ 1)
)
∧(#q⊥ ≥ 0)∧(#qS = 0)

∧(#q0 = 0)∧
(∧

j∈1..m#(Cj)
)
` AllQ → qS .

Assume ak[0] is the term a[. . . a[0] . . .] obtained by nesting k occurrences of
the tag a, that is, ak+1[0] =def a[(ak[0])] and a1[0] = a[0]. The term d used in
our encoding is a[0] · a2[0] · . . . · an[0]. Remark that the document ai[0] may reach
(non-deterministically) either qi or q⊥, therefore we can represent the assignment
xi = 1 by the transition ai[0]→ qi and the assignment xi = 0 by ai[0]→ q⊥.

Clearly, the sizes of d,Q andR are polynomial in the size of the initial problem
and we have d ∈ L(A) iff there is an assignment to the xi’s satisfying the 3-SAT
problem. To conclude, the unique type 3 rule ofA states that d is accepted iff there
is an assignment of the xi’s satisfying all the clauses C1, . . . , Cm. ut

5.7 Test for Emptiness

We give an algorithm for deciding emptiness that combines a marking algorithm
with a test to decide if the combination of a regular expression and a Presburger
constraint is satisfiable. We start by defining an algorithm for checking when a
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word on a sub-alphabet satisfies both a given regular word expression and a given
counting constraint. We consider a set of states, Q = {q1, . . . , qp}, that is also the
alphabet for a regular expression Reg and a Presburger formula φ(#q1, . . . ,#qp).
The problem is to decide whether there is a word on the sub-alphabet Q′ ⊆ Q
satisfying both Reg and φ. We start by computing the regular expression Reg |Q′
that corresponds to the words on the alphabet Q′ satisfying Reg . This expression
can be easily obtained from Reg by a set of simple syntactical rewritings. Then we
compute the Parikh mapping #(Reg |Q′) as explained in Section 3.2 and test the
satisfiability of the Presburger formula:

φ(#q1, . . . ,#qp) ∧
∧
q/∈Q′

(#q = 0) ∧ #(Reg |Q′)

When this formula is satisfiable, we say that the constraint φ ` Reg restricted
to Q′ is satisfiable. This notion is useful in the definition of an updated version of
a standard marking algorithm for regular tree automaton. The marking algorithm
computes a set QM ⊆ Q of states and returns a positive answer if and only if there
is a final state reachable in the automaton.
Algorithm 1. Test for Emptiness

QM = ∅
repeat if c→ q ∈ R then QM = QM ∪ {q}

if a[q′]→ q ∈ R and q′ ∈ QM then QM = QM ∪ {q}

if
{

φ ` Reg → q ∈ R and the constraint
φ ` Reg restricted to QM is satisfiable

then QM = QM ∪ {q}

until no new state can be added to QM

if QM contains a final state then return not empty else return empty

Since Algorithm 1 builds an increasing sequence of subsets of the (finite set
of) states of the automaton the procedure terminates.

Proposition 11 A state q is marked by Algorithm 1, that is q ∈ QM , if and only if
there exists a document d such that d→ q.

Proof Assume d→ q, we prove that q is marked by Algorithm 1 by induction on
the derivation. The proof of the converse property is even simpler: we build for
each state marked by Algorithm 1 a witness d that is a document such that d→ q.
ut

We can also give a result on the complexity of this algorithm. Assume A =
〈Q,Qfin, R〉 is an automaton such that CostA bounds the time complexity to de-
cide the constraints of A, i.e., for any Q′ subset of Q, the satisfiability of the
restriction to Q′ of the constraints occurring in the type 3 rules of A can be tested
in O(CostA).

Proposition 12 Given an automaton A, to decide whether L(A) is empty or not
can be done in time O(|Q| · |R| · CostA).

A linear complexity bound holds if we have an oracle that, for each set of
states Q′ ⊆ Q and each constraint, tells whether the constraint restricted to Q′ is
satisfiable.
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5.8 Splitting an Automaton

We conclude this section on SA with the definition of constructions that allow the
modification of an automaton while preserving determinacy and the set of recog-
nized documents. In each of these transformations the goal is to single out a set
of states that distinguish terms based on some auxiliary condition: either the terms
are elements of the form a[d]; or they match a given a regular expression; or they
satisfy a given counting constraint.

Splitting states matching elements of the form a[d]. Assume A =def 〈Q,Qfin, R〉
is a complete and deterministic sheaves automaton. Let Q′ be a subset of Q and
a be some given tag name. We want to single out the terms reaching a state q in
A such that the last rule used in the transition is a[q′] → q with q′ ∈ Q′. In the
particular case where Q′ = Qfin, this means isolating the states reached by terms
a[d] such that d is accepted by A. This construction is used in the proof of the
definability theorem to build an automaton accepting the models of a[D] from an
automaton accepting the models of D.

Assume Q = {q1, . . . , qp}. We define a new automaton A n a[Q′] (called A
split by a[Q′]) with states Q ∪ {q̄1, . . . , q̄p} such that a[d] → q̄i in A n a[Q′]
iff a[d] →A qi for i ∈ 1..p and d →A qj with qj ∈ Q′. The set of rules of the
automaton An a[Q′] is as follows:

– for each rule c→ q of A the rule c→ q is in An a[Q′],
– for each rule a[q′]→ q of A if q′ ∈ Q′ then the rules a[q′]→ q̄ and a[q̄′]→ q̄

are inAna[Q′], otherwise the rules a[q′]→ q and a[q̄′]→ q are inAna[Q′],
– for each rule φ(N1, . . . , Np) ` Reg(q1, . . . , qp) → q of A the rule φ′ `

Reg ′ → q is in A n a[Q′], where Reg ′ =def Reg((q1 | q̄1), . . . , (qp | q̄p))
and φ′ =def φ(N1 +N ′1, . . . , Np +N ′p).

The set of final states of A n a[Q′] depends on the application that motivates the
splitting.

The automatonAna[Q′] is deterministic. We prove this property by contradic-
tion, the only difficult case being type (3) rules. Assume w is a sequence of states
in Q ∪ {q̄1, . . . , q̄p} that satisfies two distinct type (3) rules of A n a[Q′]. Hence
the application mapping q̄i to qi for all i ∈ 1..p in w yields a sequence satisfying
two distinct type (3) rules of A, which contradicts the fact that A is deterministic.

Proposition 13 Assume A = 〈Q,Qfin, R〉 is a complete deterministic sheaves au-
tomaton with states Q = {q1, . . . , qp}. The following equivalences hold:

(i) a[d]→Ana[Q′] q̄ iff d→A q′ and q′ ∈ Q′ and a[q′]→ q ∈ R.
(ii) a[d]→Ana[Q′] q iff d→A q′ and q′ /∈ Q′ and a[q′]→ q ∈ R.

(iii) Assume n > 2 then e1 · . . . · en →Ana[Q′] q iff e1 · . . . · en →A q.

Proof We only consider case (iii). The proof is by induction on the term d =def
e1 · · · · · en, where n > 2. Assume d→Ana[Q′] q. By definition of An a[Q′] and
induction hypothesis we have for all i ∈ 1..n that ei →Ana[Q′] q̄i or ei →Ana[Q′]
qi iff ei →A qi. Let w′ be the sequence obtained by concatenating the states of
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Ana[Q′] obtained from e1 up to en and w be the sequence q1 · . . . ·qn obtained by
mapping q̄i to qi in the sequencew′. The last rule used in the transition d→Ana[Q′]
q is necessarily a type (3) rule φ′ ` Reg ′ → q with q ∈ Q such that w′ ∈ Reg ′ and
|= φ′#(w′). This rule corresponds to a rule φ ` Reg → q inR and, by definition of
φ′ and Reg ′, we have that w ∈ Reg and |= φ#(w). Therefore d →A q as needed.
The proof for the converse property is similar. ut

A corollary of Proposition 13 is that An a[Q′] is complete.

Splitting states according to a regular language. Assume A =def 〈Q,Qfin, R〉
is a complete and deterministic sheaves automaton with states Q = {q1, . . . , qp}.
Let Reg be a regular expression on Q. We define a new automaton AReg with
states Q ∪ {q̄1, . . . , q̄p} such that d →AReg q̄ iff d = e1 · . . . · en →A q, for
all i ∈ 1..n, ei →A qi and q1 · . . . · qn ∈ Reg . This construction is used in the
proof of the definability theorem to build an automaton accepting the models of
Reg(E1, . . . , Ek) from automata accepting the models of (Ei)i∈1..k. The set of
final states of AReg is the set {q̄i qi ∈ Qfin}. The set of rules is as follows:

– for each rule c→ q of A the rule c→ q is in AReg ,
– for each rule a[q′]→ q of A the rules a[q′]→ q and a[q̄′]→ q are in AReg ,
– for each rule φo ` Rego → q of A the rules φo ` Rego ∩ Reg → q̄ and
φo ` Rego ∩ Reg → q are in AReg .

By construction AReg is deterministic.

Proposition 14 AssumeA = 〈Q,Qfin, R〉 is a complete and deterministic sheaves
automaton with state Q = {q1, . . . , qp}. The following equivalences hold:

(i) a[d]→A q iff a[d]→AReg
q

(ii) Assume d = e1·. . .·en with n > 2 then d→AReg
q̄ iff d→A q and qi1 ·. . .·qin ∈

Reg where ej →A qij for all j ∈ 1..n.
(iii) Assume d = e1·. . .·en with n > 2 then d→AReg

q iff d→A q and qi1 ·. . .·qin ∈
Reg where ej →A qij for all j ∈ 1..n.

Proof We only consider cases (ii) and (iii). The proof is by induction on the term
d =def e1 · · · · · en, where n > 2. Assume ej →A qij for all j ∈ 1..n and let w be
the sequence qi1 · . . . · qin . Since Reg and Reg are mutually exclusive and cover
all possible cases we have either w ∈ Reg or w ∈ Reg . If w ∈ Reg then we are
in case (ii) and d →AReg

q̄ iff d →A q. If w /∈ Reg then we are in case (iii) and
d→AReg q iff d→A q. ut

A corollary of Proposition 14 is that AReg is complete.

Splitting states according to a counting constraint. Assume A =def 〈Q,Qfin, R〉
is a complete and deterministic sheaves automaton with states Q = {q1, . . . , qp}.
We can adapt the previous construction to the case of counting constraints. Let
ϕ(N) be a Presburger formula with free variables N1, . . . , Np. We define a new
automatonAϕ with statesQ∪{q̄1, . . . , q̄p} such that d→ q̄ inAϕ iff d = e1·. . .·en
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and |= ϕ#(qi1 ·. . .·qin) where ej →A qij for all j ∈ 1..n. This construction is used
in the proof of the definability theorem to build an automaton accepting the models
of ∃N : ϕ : (E1, . . . , Ek) from automata accepting the models of (Ei)i∈1..k. The
final states of Aϕ is the set {q̄i qi ∈ Qfin}. The set of rules is as follows:

– for each rule c→ q of A the rule c→ q is in Aϕ,
– for each rule a[q′]→ q of A the rules a[q′]→ q and a[q̄′]→ q are in Aϕ,
– for each rule φo ` Rego → q of A the rules φo ∧ϕ ` Rego → q̄ and
φo ∧¬ϕ ` Rego → q are in Aϕ.

By construction Aϕ is deterministic.

Proposition 15 AssumeA = 〈Q,Qfin, R〉 is a complete and deterministic sheaves
automaton with state Q = {q1, . . . , qp}. The following equivalences hold:

(i) a[d]→A q iff a[d]→Aϕ q
(ii) Assume d = e1 · . . . · en with n > 2 then d →Aϕ q̄ iff d →A q and |=

ϕ#(qi1 · . . . · qin) where ej →A qij for all j ∈ 1..n.
(iii) Assume d = e1 · . . . · en with n > 2 then d →Aϕ q iff d →A q and |=

¬ϕ#(qi1 · . . . · qin) where ej →A qij for all j ∈ 1..n.

Proof The proof is similar to the proof of Proposition 14. ut

A corollary of Proposition 15 is that Aϕ is complete.

6 Results on the Tree Logic and on XML Schema

In this section we show that Sheaves automata provide a powerful tool to get de-
cidability results for both SL and WXS schema. In this latter case, we show that
separated automata yields more efficient procedures.

6.1 Decidability of SL

The basic idea is to associate to each formula of SL a deterministic sheaves au-
tomaton that accepts the models of the formula.

Theorem 1 (Definability) For each formula D of SL, we can construct a deter-
ministic, complete, sheaves automaton AD accepting the models of D.

Proof The proof is by structural induction on the formula D.

(Base Case) To obtain deterministic complete automata for Datatype or True is
straightforward.

(CaseD is the formula a[D′]) By induction hypothesis there exists a deterministic
complete automaton AD′ = 〈QD′ , QFD′ , RD′〉 accepting the terms satisfying D′.

We split AD′ with the set of states QFD′ and the tag a as in Section 5.8. Let B
be the automaton AD′ n a[QFD′ ]. We define the final states of B to be the states
q̄ (we follow the notations of Section 5.8) such that q′ is a final state of AD′ and
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there is a rule a[q′]→ q in RD′ . By Proposition 13, we have d→B q̄ iff d = a[d′]
with d′ →AD′ q

′. Therefore the automaton B accepts the set of terms a[d′] such
that d′ |= D′, as needed.

(Case D is a regular formula Reg(E1, . . . , Ep)) For simplicity we assume that
the regular expression Reg(E1, . . . , Ep) may only match sequences of at least two
elements. If this is not the case, we replace Reg(E1, . . . , Ep) by a finite disjunction
of regular expressions which are either ε, or an element formula Ei or a regular
expression representing sequences of length at least two. We can also assume that
the formulas E1, . . . , Ep are pairwise disjoint by proposition 2.

By induction hypothesis, for each i ∈ 1..p there is a deterministic complete
automatonAi accepting the models of Ei. LetA× be the product of theAi. It is a
deterministic complete automaton and, by construction, a state of A× is a p-tuple
(q1, . . . , qp) and d →A× (q1, . . . , qp) iff d →Ai qi for i ∈ 1..p. Since the Ei
are pairwise disjoint, it is not possible to reach a state (q1, . . . , qn) containing two
indices i, j such that qi and qj are final in Ei and Ej . These states can be safely
removed from the set of states of A×. We say that a stateQ = (q1, . . . , qp) of A×
is final for Ei iff qi is final for Ai and qj is not final for all j 6= i (by the previous
remark, a state is final for oneEi at most). If the final states forEi areQ1, . . . ,Qn,
we denote by Fin(Ei) the regular expression Q1 | . . . | Qn.

Let RegD be the regular expression Reg(Fin(E1), . . . ,Fin(Ep)). By construc-
tion of A×, d = e1 · . . . · en |= Reg(E1, . . . , Ep) iff ei →A× Qi such that Qi is
final for some Eji for i ∈ 1..n, and Q1 · . . . · Qn ∈ RegD.

LetAD be the deterministic and complete automaton obtained by splittingA×
along RegD. By Proposition 14 this automaton accepts the documents e1 · . . . · en
such that ei → Qli with Qli final for some Eji (hence ei |= Eji ) and such that
Ql1 · . . . · Qln ∈ RegD, that is, d |= Reg(E1, . . . , Ep), as needed.

(Case D is a counting formula ∃N : φ(N) : N1E1 & . . . & NpEp.) We can
assume that the formulasE1, . . . , Ep are pairwise disjoint by Proposition 2. By in-
duction hypothesis, for each i ∈ 1..p, there is a deterministic complete automaton
Ai accepting the models of Ei. As in the previous case we construct the product
automaton A× and we say that a state (q1, . . . , qp) of A× is final for Ei iff qi is a
final state of Ai and qj is not final for Ej for all j 6= i.

Assume Q1, . . . ,Qm are the states of A×. For all i ∈ 1..p we denote by Fi
the set of indices j such that Qj is final for Ei and we denote by NF the set
of indices j such that Qj is not final for any Ei (i ∈ 1..n). We use the integer
variable Mj to denote the number of occurrences of the state Qj in a sequence.
Let φD(M1, . . . ,Mm) be the Presburger constraint φ(Σj∈F1Mj , . . . , Σj∈FpMj)
∧
∧
j∈NF (Mj = 0).
LetAD be the deterministic and complete automaton obtained by splittingA×

along φD. By Proposition 15 this automaton accepts the documents d = e1 · . . . ·en
such that ei → Qli with li ∈ 1..m and such that W ∈ φD where W = Ql1 · . . . ·
Qln . Therefore we necessarily have Qli final for some Eji (hence ei |= Eji ) and,
if nk is the number of states final for Ek in W , we have |= φ(n1, . . . , np). Hence
d |= ∃N : φ(N) : N1E1 & . . . & NpEp, as needed.
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(Case D is a formula D1 ∨D2 or ¬D′) Given deterministic complete automaton
for D1, D2, D

′, the constructions given in Section 5 provide an immediate proce-
dure to build a deterministic and complete automata for D. ut

As a direct corollary of Theorem 1 and Propositions 9 and 12, we obtain key
results on the decidability and on the complexity of the sheaves logic. Let |Q(AD)|
be the number of states of the SA associated to D.

Theorem 2 (Decidability) The logic SL is decidable.

Theorem 3 (Model Checking) For any document d and formula D the problem
d |= D is decidable in time O(|d| · |RAD | · Cost(|Q(AD)|, |d|)) where AD is the
automaton accepting the models of D and RAD is the set of rules of AD.

6.2 Decidability Results for WXS Schema

WXS definitions are simpler than SL formulas since they do not involve counting
constraints or logical connectives. On the other hand they are more complex since
they allow recursive definitions. We prove that we can relate a WXS definition to
a separated sheaves automaton accepting the well-typed documents. This result
yields the decidability of basic validation problems like type-checking, type inclu-
sion and testing if a schema is inhabited. (Testing for type inclusion is a crucial op-
eration when typing nested pattern-matching expressions in functional languages
like XDuce and amounts to deciding whether the set of documents typed by the
difference of two schema is empty.)

Proposition 16 For every well-formed type declaration a[X]with S, we can build
a complete separated sheaves automaton A that recognizes the set {d S ` d :
X} of documents with type X . Furthermore, the size of the automaton A is linear
in the size (number of symbols) of the environment S.

Proof Assume S is {X1 = T1, . . . , Xn = Tn}. By introducing new variables,
we can always assume that any term Ti is either of the form a[Xj ] or is a compo-
sition involving only element formulas of the form a[Xj ]. The separated sheaves
automaton A = 〈Q,QF , R〉 is defined as follows:

(States) We introduce a state qXi for every variable Xi in S (i ∈ 1..n) and a
state qa[Xi] for every element formula a[Xi] occurring in a right-hand side Tj of S
(j ∈ 1..n). We also consider a state qDatatype for every primitive datatype used in
S.

(Final states) The only final state is qX .

(Rules) We assume that the type 1 rule c→ qDatatype is in A if c is a constant of
type Datatype. The set of rules in A is the smallest set such that:

– for each equation X = a[Y ] in S the type 2 rule a[qY ]→ qX is in A.
– for each pair (a,X) such that a[X] occurs in S, the type 2 rule a[qX ]→ qa[X]

is in A.
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– for each equation X = Reg(E1, . . . , Ep) in S, the constrained rule True `
Reg(qE1

, . . . , qEp)→ qX is in A.
– for each equation X = E1 & . . . & Ep in S, the counting rule

∧
j∈1..k#qEij =

nj ` AllQ → qX is in A, where Ej1 , . . . , Ejk is the sequence of distinct
element formulas in E1, . . . , Ep and nj is the number of occurrences of Eij
in E1, . . . , Ep. In the special case where element formulas E1, . . . , Ep are all
distinct, the counting constraint of the type 3 rule is simply

∧
i∈1..p#qEi = 1.

– for each equation X = AnyT in S, the rules c → qX and a[q] → qX and
True ` AllQ → qX are in A for all states q ∈ Q and constants c.

By construction the automaton A is separated and the size of the automaton is
linear in the size of the type declaration. The proposition follows by proving that
for every equation X = T in S, we have d → qX if and only if S ` d : X and
S ` d : T .

(Proof of the ⇒ direction) The proof is by case analysis on the last rule of the
derivation d→ qX . We do not consider the case where T = AnyT since it trivially
entails that S ` d : T .

If the last rule is a type 1 rule of the form c → q then d is a constant of the
primitive type Datatype, T = Datatype and q = qDatatype. Hence S ` d : X
and S ` d : T as needed.

If the last rule is a type 2 rule of the form a[qY ] → qX , then d = a[d′] with
d′ → qY and T = a[Y ]. By induction hypothesis, S ` d′ : Y and therefore
S ` d : X and S ` d : T .

If the last rule of the derivation is a regular rule True |= Reg(qE1 , . . . , qEp)→
qX then T = Reg(E1, . . . , Ep) and we have d = e1 · . . . ·em where ei → qEji and
qEi1 · . . . · qEim ∈ Reg(qE1

, . . . , qEp). By construction of A, ei = ai[di] where
di → qYji and Eji = ai[Yji ]. Hence, by induction hypothesis, S ` di : Xji for
i ∈ 1..m, which entails that S ` d : X and S ` d : T .

If the last rule of the derivation is a counting rule
∧
j∈1..k#qEij = nj `

AllQ → qT . Then T = E1 & · · · & Ep and we have d = e1 · . . . · ep such
that there is a permutation σ of 1..p with ei → qEσ(i) for i ∈ 1..p. By definition
of the rules of A, ei = ai[di] where di → qXji and Eσ(i) = ai[Xσ(i)]. By induc-
tion hypothesis, S ` di : Xσ(i) for i = 1..p, which entails that S ` d : X and
S ` d : T .

(Proof of the⇐ direction) The proof of the converse direction is by case analysis
on the last rule of the derivation of S ` d : T .

Assume T = a[Y ] and the last rule is of the form S ` d′ : Y entails S ` d :
a[Y ]. Hence d = a[d′] and, by induction hypothesis, we have that d′ → qY . By
construction of A we obtain d = a[d′]→ qX as needed. The case T = a[Y ]? and
d = a[d′] is similar.

Assume T = a[Y ]? and d = ε. Hence ε satisfies the regular expression T and
we have ε → qX by definition of A. The case where T = Datatype and d = c
is a constant of type T is similar.

Assume T = AnyT . In this case, by construction of A, we have d → qX for
every document d.
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Assume T = Reg(E1, . . . , Ep). Hence d = e1. · · · .em and the last rule is
of the form ej : Eij , (i ∈ 1..k), Ei1 · . . . · Eik ∈ Reg(E1, . . . , En) entails S `
d : Reg(E1, . . . , En). By induction hypothesis, di → qXi for i ∈ 1..m and, by
construction of A, ai[di] → qai[Xi] for all i ∈ 1..m. Hence, by definition of A
we have d → qX as needed. The case where T is an interleaving composition is
similar. ut

The previous proof can be easily enhanced to deal with richer schemas. For
example, we could handle all groups extended with Presburger constraints on
repetition operators, such as the (fictional) term ∃N.(a[ε]{0, N} & b[ε]{N,∞})
for instance. Note also that the proof of Proposition 16 does not rely on the Unique
Particle Attribution Rule or the Consistent Declaration Rule of WXS that we men-
tioned in Section 2.2.

From Proposition 16, we obtain several decidability properties on schema,
as well as automata-based decision procedures. For instance, we can define the
intersection and difference of two schema (that are not necessarily well-formed
schema).

Theorem 4 (XML Typing) Given a type declaration a[X]with S and a document
d the problem S ` d : a[X] is in NP.

Proof By Proposition 16, there is a separated automata A that recognizes docu-
ments d′ such that S ` d′ : X . Furthermore, the automaton A has a size linear
in the schema definition which proves, by Proposition 10, that type-checking is in
NP. ut

Theorem 5 (Satisfaction) Given a type declaration a[X]with S, the problem of
finding whether there exists a document d such that S ` d : a[X] is in PTIME.

Proof Same as in the proof of Theorem 4, but using Proposition 12. By Proposi-
tion 16, there is a separated automata A that recognizes documents d′ such that
S ` d′ : X . Furthermore, the automaton A has a size linear in the schema def-
inition which proves, by Proposition 12, that testing if a schema is inhabited is
polynomial. ut

Theorem 6 (Subtyping) Given a type declaration a[X]with S and two schemas
T1, T2 (using only schema variables in S), it is decidable to check whether every
document of type T1 is also of type T2.

Proof By Proposition 16, there is a separated automata A corresponding to the
declaration S ∪ {Y1 = T1, Y2 = T2}. Since separated automata are determiniz-
able (see Proposition 16), we can check the emptiness of the language L(AT1

) ∩
L(AT2

), where ATi is the automata obtained from A by setting the set of final
states to {qYi}. By construction, the intersection is empty iff the type T1 is in-
cluded in the type T2. ut
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7 Related Work

The contributions of this paper are a new class of tree automata for unranked,
ordered trees with counting constraints and a new tree logic for unranked trees. In
this section, we briefly report on related work for tree automata.

Tree automata for unranked, ordered trees have been introduced by Thatcher
[30,29], and also by Pair and Quéré [27]. All the good closure and decidability
properties of regular tree automata have been extended to the unranked case. Tree
automata for unranked trees have been used in connection with schema transfor-
mation by Murata [19], under the name hedge automata. This work is at the basis
of the implementation of RELAX-NG [6], an alternative proposal to WXS.

Automata for unranked, unordered trees were studied by Courcelle who also
extended monadic second-order (MSO) logic by some counting constraints to cap-
ture the recognizable languages [9]. Regular languages of terms with an equational
theory modulo associativity-commutativity are studied in the context of regular
AC-equational languages [25] (where flattened terms correspond to unranked, un-
ordered trees).

Tree automata with constraints is an old idea (see [8] for a survey of equational
constraints). Counting constraints have been used by Niehren and Podelski [24]
for features trees (a special case of unranked, unordered trees) in the framework
of knowledge representation. The class of tree languages that they define is closed
under boolean operations and can be related with a notion of regular expressions
that use counting constraints (these counting constraints are less general than the
one used in our work and are not combined with regular word constraints). More
general counting constraints appear in [17], for an application to automated rea-
soning. Klaedtke and Ruess consider automata for infinite trees with an accepting
condition that depends on one global Presburger formula [10]. Automata for un-
ranked, unordered trees with MSO constraints on transitions have been used by
Colcombet [7]. More complex equational constraints are studied in [16]. Various
extension of tree automata [2] and monadic tree logic have also been used to study
the complexity of manipulating tree structured data but, contrary to our approach,
these studies are not directly concerned with schema languages and are based on
ordered content models.

Query languages for unranked, unordered trees have been proposed by Cardelli
and Ghelli [5] as an extension of the static fragment of ambient logic[4]. A main
difference between TQL and SL is that SL formulas may express properties on
both ordered and unordered sets of trees. In contrast, our logic lacks some of the
operators found in TQL, like quantification over tag names, which could be added
at the cost of some extra complexity. Kupferman, Sattler and Vardi [11] study a
µ-calculus with graded modalities where it is possible to express that a node has
at least n successors satisfying a given property. But the number n may only be a
constant.

The application of tree automata to XML has been widely investigated [23],
mainly with the goal of devising type systems and type-checking algorithms or as a
basis for query languages. More crucially, automata theory is mentioned in several
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places in the XML specifications, principally to express restrictions on DTD and
schema in order to obtain almost linear complexity for simple operations.

A pioneering work on typed transformation languages for XML is the XDuce
system of Pierce, Hosoya et al. [15], a typed functional language with extended
pattern-matching operators for XML. In this tool, the types of XML documents are
modeled by regular tree automata and the typing of pattern matching expressions
is based on closure operations on automata. For applications to schema languages,
an important reference is the work of Murata [20] on hedge automata that have
been used for querying XML documents (together with an extension to two-way
automata). Another large body of work is concerned with the problem of finding
more efficient algorithms or study the expressive power of regular languages (con-
necting these languages to monadic second-order logic). For ranked and unranked
trees, Neven and Schwentick have defined query automata [22] that are two-way
hedge automata that select nodes in a tree according to both a state and the current
function symbol. Complexity results and the relationship with monadic second-
order logic are also established. Finally, extensions of monadic second order logic
with Presburger constraints have been proved undecidable [21], which shows that
such extensions must be carefully designed.

Independently from our work, Muscholl, Schwentick and Seidl [21] proposed
a notion of tree automata for unranked trees which is very close to our definition of
sheaves automata. Despite some slight differences — in their approach, counting
constraints tallies all the sub-terms that can reach a given state, while we never
count the same sub-term twice in our framework — the main properties of the
two classes are identical. In a subsequent article [28], the authors characterize the
expressive power of deterministic automata (it is possible to associate to a deter-
ministic automaton a formula matching the set of accepted trees) and give some
efficient algorithms for the computation of counting constraints. Whereas the work
in [21] defines a MSO-like logic with counting constraints and recursion (but with
a restricted use of negation), we define a tree logic in the spirit of TQL [5] with-
out recursion but with full negation. An unrestricted use of negation and recursion
in our framework can easily lead to inconsistencies, and a better candidate to ex-
tend SL is guarded recursion. As a matter of fact, a restricted class of sheaves
automata [13] has been used to prove complexity properties of the static fragment
of ambient logic, which corresponds to a kind of regular expression language for
unranked, unordered trees. In this paper, we present a similar logic, with the dif-
ference that we deal both with ordered and unordered data structures, while TQL
only deals with multisets of elements.

8 Conclusion

Our contribution is a new class of automaton for unranked trees aiming at the ma-
nipulation of W3C XML schema. We believe it is the first contribution on applying
tree automata theory to WXS that considers the all group. This addition is signif-
icant in that interleaving is the source of many complications, essentially because
it involves the combination of ordered and unordered data models. This led us to
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extend hedge automata [20] with counting constraints as a way to express prop-
erties on both sequences and multisets of elements. This extension appears quite
natural since, when no counting constraints occurs, we obtain hedge automata and,
when no constraints occur, we obtain regular tree automata.

The all group operator has been the subject of many controversial debates
among the XML community, mainly because a similar operator was responsible
for difficult implementation problems in SGML. Our work gives some justifica-
tions for these difficulties, like the undecidability of computing the complement of
non-deterministic languages. To elude this problem, and in order to limit ourselves
to deterministic automata, we have introduced two separate sorts for regular and
counting formulas in our logic. It is interesting to observe that a stronger restriction
appears in the schema specification, namely that an all group may only appear
at top-level position in a complex type definition.

Another source of problems is related to the size and complexity of counting
constraints. While the complexity of many operations on Presburger arithmetic is
hyper-exponential (in the worst case), the constraints observed in practice are very
simple and it seems possible to neglect the complexity of constraints solving in
realistic circumstances. As a matter of fact, some simple syntactical restrictions on
schema yield simple Presburger formulas. For example, we may obtain polynomial
complexity by imposing that each element tag in an all group a1[S1] & . . . &

ap[Sp] be distinct.

To conclude, we would like to stress that the goal of this work is not to devise
a new schema or pattern language for XML, but rather to find an implementation
framework compatible with WXS. An advantage of using tree automata theory for
this task is that it gives us complexity results on problems related to validating
documents. We also hope to use our approach to define improved restrictions on
schema and to give better intuition on their impact. Another advantage of using
tree automata is that it suggests multiple directions for improving our tree logic.
For instance, adding the capacity for the reverse traversal of a document or an
extension with some kind of path expression modality. These two extensions are
quite orthogonal to what is already present in our logic and they could be added
using some form of backtracking, like a parallel or alternating [8] variant of our
tree automata, or by considering tree grammars (or equivalently, top-down tree
automata). The same extension is needed if we want to process tree-structured
data in a streamed way, a situation for which bottom-up tree automata are not
well-suited.
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A Omitted Proofs

We give the proofs of propositions 1, 4, 5 and 8.

A.1 Proof of Proposition 1: GDL is undecidable

We show that given a two-counter machine, there is a formula of GDL matching
exactly the set of terminating computations of the machine. Since the reachability
problem for two-counter machines is a well-known undecidable problem, we get
that GDL is undecidable.

Two-counter machines are devices made from a finite set of states Q, some
being termed final, a pair of two nonnegative counters C1, C2, and a transition re-
lation δ ⊆ Q×{0, 1}2×Q×{−1, 0, 1}2. A configuration, C, is a triple (q, C1, C2),
where q is a state in Q. We say that the configuration C = (q, C1, C2) can be re-
duced to the configuration C′ = (q′, C ′1, C

′
2), denoted C =⇒ C′, if there is some

transition (q, x1, x2, q
′, x′1, x

′
2) ∈ δ such that for all i ∈ {1, 2}:

– if Ci = 0 then xi = 0 else xi = 1, that is we can test whether the counter i is
nil or not,

– C ′i = Ci + x′i

We also require that if xi = 0 then x′i > 0, that is, we cannot decrease the value
of a null counter. All these conditions can be described by a Presburger arithmetic
formula. For instance, consider the transition rule (q, 0, 1, q′, 1,−1) that requires
that we are in state q, checks if the first-counter is zero, that the second one is
strictly positive, goes to state q′, increments the first counter and decrement the
second one. The corresponding operations on counters are described by the fol-
lowing formula, where we may replace the expression C2 > 0 with the Presburger
formula ∃N.(C2 = 1 +N), and (C ′2 = C2 − 1) with the formula (C ′2 + 1 = C2):

(C1 = 0)∧(C2 > 0)∧(C ′1 = 1)∧(C ′2 = C2 − 1)
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A computation is a sequence of configurations C0,C1, . . . such that for all
indices i > 1 we have Ci−1 =⇒ Ci. It is well-known that there is a fixed (“uni-
versal”) two-counter machine such that it is undecidable for given input values of
the counters whether there exists a computation that may reach a configuration
with a final state, also called a halting configuration.

We encode a configuration C = (q, C1, C2) of a two-counter machine by a
word in the alphabet Σ = Q ∪ {a, b, c, d} as follows. The encoding can be inter-
preted straightforwardly as an encoding on documents where we identify a letter a
to an element a[ε] and a concatenation of words to a concatenation of documents.

[[(q, C1, C2)]] = q · aC1 · bC2 · q · cC1 · dC2

The term aCi is the word a · . . . · a of length the value of the counter Ci. The
redundancy in the encoding of counter values is a technical trick that will prove
helpful in the construction of the formula matching the admissible sequences.

We start by defining the formulaAq that matches words of the form [[(q, C1, C2)]]
for a fixed state q ∈ Q and for arbitrary values C1, C2 of the counters.

Aq =def q · a∗ · b∗ · q · c∗ · d∗ ∧
∃N : Nq = 2∧Na = Nc ∧Nb = Nd : N⊗E

where N =def (Nq, Na, Nb, Nc, Nd)
and N⊗E =def Nq q & Na a & Nb b & Nc c & Nd d .

Therefore we can define the formula Ao that matches exactly sequences of
machine configurations that starts from the initial configuration C0 and ends with
an halting configuration.

Ao =def
(∨
q∈Q

Aq
)∗ ∧ [[C0]] ·Σ∗ ∧ Σ∗ ·

∨
q final

Aq .

Next, we define a formula that will distinguish valid computations from arbi-
trary sequences of configurations. For every transition t = (q, x1, x2, q

′, x′1, x
′
2) in

δ, we define the formulaBt that matches words of the form q ·cC1 ·dC2 ·q′ ·aC′1 ·bC′2
such that the (q′, C ′1, C

′
2) derives from (q, C1, C2) by the transition t.

Bt =def


q · c∗ · d∗ · q′ · a∗ · b∗ ∧

∃N′ :

Nq = Nq′ = 1∧(Nc = 0⇔ x1 = 0)∧
(Nd = 0⇔ x2 = 0)∧Na = Nc + x′1 ∧
Nb = Nd + x′2

 : N′ ⊗E′


where N′ =def (Nq, Nq′ , Na, Nb, Nc, Nd)
and N′ ⊗E′ = Nq q & Nq′ q

′
& Na a & Nb b & Nc c & Nd d .

The conjunction of the formulasAq ·Aq′ and q·a∗·b∗·Bt·q′·c∗·d∗ matches only
words of the form [[(q, C1, C2)]] · [[(q′, C ′1, C ′2)]] such that (q′, C ′1, C

′
2) derives from

(q, C1, C2) by the transition t. Hence we can define the formula Bo that matches
sequences of configurations obtained from transitions of the machine:

Bo =def
(∨
q∈Q

q · a∗ · b∗
)
·
(∨
t∈δ

Bt
)∗·(∨

q∈Q
q · c∗ · d∗

)
.
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Therefore the formula Ao ∧Bo matches only the valid, halting computations
of the machine and, if GDL was decidable, it will be decidable to check whether
the machine halts.

A.2 Proof of Proposition 4: Non-deterministic sheaves automata are strictly more
expressive than deterministic ones

As in the previous proof, we identify the concatenation of elements of the form
a[ε], b[ε] to a word on the alphabet Σ = {a, b}. Let us consider the following
language L over Σ:

L = { w1 · w2 · w3 · w4 w1, w3 ∈ a∗, w2, w4 ∈ b∗,
#aw1 = #bw2 > 1, #aw3 = #bw4 > 1 }

The language L consists of the terms an · bn · am · bm, with n,m > 0. We can
identify each word in Lwith a document and define a non-deterministic automaton
〈Q,Qfin, R〉 accepting all the documents in L. This automaton is such that Q =
{qa1, qa2, qb1, qb2, qs}, with Qfin = {qs}, and has the following five transition
rules:

a→ qa1 b→ qb1 a→ qa2 b→ qb2
(#qa1 = #qb1) ∧ (#qa2 = #qb2) ` qa∗1 · qb∗1 · qa∗2 · qb∗2 → qs

We show that the language L cannot be accepted by a deterministic SA, and
therefore prove our separation result between the expressivity of deterministic and
non-deterministic sheaves automata.

Proposition 17 There is no deterministic sheaves automaton accepting L.

Proof Assume there is a deterministic automaton A accepting L. Let qa (resp.
qb) be the unique state reached by a (resp. b). We will use #qa and #qb as the
variable names that refer to the number of occurrences of qa and qb in Presburger
constraints.

Given the special structure of the language L, we can assume some extra con-
ditions on the constrained rules of the deterministic automaton. Indeed, in an ac-
cepting run of A, a constrained transition rule may only be applied to a word of
(qa|qb)∗. Therefore we may assume that Reg is a regular expression on the alpha-
bet {qa, qb} only, and that the only free variables in the formula φ are #qa and
#qb.

Since the language L is infinite and that the number of transition rules are
finite, there is at least one constrained rule, (?) φ ` Reg → qs, such that both φ
is satisfied by an infinite number of values for #qa and #qb and Reg accepts an
infinite number of words.

By definition of the language L, the terms accepted by the rule (?) are of
the form t(n,m) = qan · qbn · qam · qbm and, by hypothesis, the set of words
t(n,m) accepted by Reg should be infinite. Using a standard “pumping lemma”
on the minimal deterministic finite state automaton (FSA) associated to Reg , it
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must be the case that Reg accepts a much larger set of words. More precisely, if
size(Reg) is the size of the minimal deterministic finite state automaton (FSA)
associated with Reg , then there exists two natural numbers, k and l, such that for
all m,n > size(Reg), if t(m,n) is accepted by Reg , then the following word is
accepted by Reg for all λ, µ > 0:

qan+λ.k · qbn · qam+µ.l · qbm

The proof of this property is similar to the proof of the standard pumping
lemma for FSA and is based on the fact that the number of states in the FSA
associated to Reg is finite, whereas the set of recognized words if infinite. There-
fore, if we consider a subpart of an accepted word of size greater than size(Reg),
then the accepting path of the automaton should contain at least one cycle. For ex-
ample, in the case where n,m > size(Reg) and t(n,m) is accepted, there are two
states q1, q2 of the FSA for Reg such that an accepting run for t(n,m) is as follows:

position in t(n,m) p1 p2 p3 p4
t(n,m) = a · . . . . . . · a · b · . . . · b · a · . . . · a · b · . . . . . . · b

↓ ↓ ↓ ↓ ↓
states reached q1 q1 q2 q2 q (final)

Let k = |p2| − |p1| and l = |p4| − |p3|. Then k is the length of the part
of an that can be iterated without modifying the final state reached by t(n,m),
and similarly for l and am. Moreover, since the automata implementing Reg is
deterministic, every accepting run should include the cycles of size k and l that we
have identified (for words of sufficient length.)

Next, we choose some values of n,m such that n,m > size(Reg)+k.l and that
t(n,m) is accepted by (?). This is always possible since the set of words accepted
is infinite. Since n,m > size(Reg) + k.l we may also write these two numbers
n = n0 + k.l and m = m0 + k.l, with n0,m0 > size(Reg).

By definition of the transition relation we have both:

(1) qan0+k.l · qbn · qam0+k.l · qbm is accepted by Reg
(2) |= φ(n0 +m0 + 2.k.l, n+m)

By property (1) and our (extended) pumping lemma, we have that t = qan0+2.k.l·
qbn · qam0 · qbm is also accepted by Reg . Indeed, we only need to “pump” l times
the first series of a and to “reverse-pump” k times the second.

By property (2), since the Parikh mapping of t is equal to the mapping of
t(n,m), we have that φ is satisfied by t. Therefore the word t is accepted by the
rule (?), that is by A. This contradicts the fact that t is not in L, the language
recognized by the automaton. ut

A.3 Proof of proposition 5: Separated automata are determinizable

Let A = 〈Q,QF , R〉 be a separated automaton, where Q = {q1, . . . , qn}. The set
of states of the deterministic automaton AD is 2Q (a state in AD is a subset of Q)
and the set of final states of AD is F = {Q ∈ 2Q ∃q ∈ Q . q ∈ QF }.
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We start by giving some definitions and results before defining the rules ofAD.
For I ⊆ {1, . . . , n}, we denote by QI the set {qi i ∈ I}. As usual, we will

construct a deterministic automaton AD, with states (QI)I⊆{1,...,n}, such that a
term reaches QI in AD iff QI is the set of states that the term can reach in the
non-deterministic automaton A.

For regular constraints, given a constraint Reg on the alphabet Q, let RegD

be the following regular expression on the alphabet 2Q, obtained from Reg by
substituting each state qi by the expression Σi∈IQi =def (QI1 | · · · | QIk), where
I1, . . . , Ik are the subsets of 1..n containing i:

RegD =def Reg{q1←Σ1∈IQI} . . . {qn←Σn∈IQI} (2)

Proposition 18 Let Q1, . . . ,Qm be elements of 2Q. Then, Q1 · . . . · Qm ∈ RegD

iff there exist qi1 in Q1, . . . , qim in Qm such that qi1 · . . . · qim ∈ Reg .

Proof the proof is by structural induction on the definition of Reg . The case Reg =
ε is trivial.

(Case Reg = qi) By definition RegD = Σi∈IQI .
⇒ condition. A word in RegD is of the form QI with i ∈ I (which means that
qi ∈ QI ). Hence there exists a state q ∈ QI such that q = qi.
⇐ condition. The only word matching Reg is qi and qi ∈ QI impliesQI ∈ RegD,
as needed.

(Case Reg = R1 ·R2) By definition RegD = RD1 . R
D
2 .

⇒ condition. A word W ∈ RegD is of the form W1 · W2 with Wi ∈ RDi for
all i ∈ {1, 2}. By induction hypothesis, for each occurrence of a letter Qi in W1

(resp. W2) there exists some qji ∈ Qi such that the word w1 (resp. w2) obtained
by replacing Qi by qji is in R1 (resp. R2). Hence w1 · w2 ∈ R1 ·R2.
⇐ condition. Assume w = qi1 · . . . · qim is in Reg . Let W be a word W =
Q1 · . . . · Qm such that qji ∈ Qi for all i ∈ 1..m. Since w is in R1 · R2, we can
partition w in two subwords, w = w1 ·w2 such that wi ∈ Ri for all i ∈ {1, 2}. By
induction hypothesis on the expressions R1 and R2, the sub-words W1,W2 such
that W = W1 ·W2 and |W1| = |w1| are such that Wi ∈ RDi for all i ∈ {1, 2}, as
needed. The proof in the case Reg = R∗ is similar (we use the fact that (R∗)D =
(RD)∗). ut

We prove a similar proposition for Presburger formulas ϕ with n variables.
Let I1, . . . , Ip be an enumeration of the subsets of 1..n and ϕD be the counting
constraints in p = 2n variables defined by:

ϕD =def ∃M1
1 . . .M

n
p .
(∧

i∈1..p(Mi =
∑
j∈IiM

j
i ) ∧

ϕ
(∑
{i 1∈Ii}

M1
i , . . . ,

∑
{i n∈Ii}

Mn
i

)) (3)

Proposition 19 LetQ1, . . . ,Qm be elements of 2Q. Then, #(Q1 . . . . . Qm) |= ϕD

iff there exist q1 in Q1, . . . , qm in Qm such that #(q1 · . . . · qm) |= ϕ.
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Proof We start by proving the first implication. Let W be the word Q1 · . . . · Qm
and assume #(W ) |= ϕD. LetMi denote the number of occurrences of a letterQIi
of 2Q in W . By definition of ϕD, there exists a decomposition Mi = Σj∈IiM

j
i

such that |= ϕ
(∑
{i 1∈Ii}

M1
i , . . . ,

∑
{i n∈Ii}

Mn
i

)
.

Let w be the word q1 · . . . · qm obtained by replacing M j
i occurrences ofQi by

the jth letter of the alphabet Q for all i ∈ 1..p, j ∈ Ii. By construction #(w) |= ϕ,
as needed.

The proof of the converse implication is similar. Let w = q1 · . . . ·qm be a word
such that #(w) |= ϕ and assume W is a word of the form Q1 · . . . · Qm obtained
from w such that qj ∈ Qj for all j ∈ 1..m. (An occurrence of a letter of 2Q in W
is replaced by an occurrence of a letter Q.)

Let Mi denotes the number of occurrences of QIi in W and let M j
i be the

number of replacements ofQIi by qj . By definition we have thatMi =
∑
j∈IiM

j
i

and |= ϕ
(∑
{i 1∈Ii}

M1
i , . . . ,

∑
{i n∈Ii}

Mn
i

)
, as needed. ut

We conclude the definition of the deterministic automaton AD by defining the
set of rules RD of AD. The definition of the sets of type 1 and type 2 rules of AD
is the same as in the case of regular tree automata:

(type 1) c→ Q is in AD if Q = {q ∈ Q ∃ c→ q ∈ R}

(type 2) a[Q]→ Q′ is in AD if Q′ = {q′ ∈ Q ∃q ∈ Q . a[q]→ q′ ∈ R}

The definition of type 3 rules is more involved. Let R|3 ⊆ R be the set of
type 3 rules of A and let r ∈ R|3 be a type 3 rule of A. Hence r is of the form
ϕr ` Regr → qr where ϕr is a Presburger formula with n variables, and Regr
is a regular expression on Q. Since A is separated, we have either ϕr = True or
Regr = AllQ. For every subset R′ of R|3 we build a type 3 rule rR′ in AD of
the form ϕDR′ ` RegDR′ → QR′ , where QR′ = {qr r ∈ R′} (the rule is not
necessarily separated). Intuitively, we have a transition e1 · . . . · em → QR′ in
AD that uses rR′ as its last rule if and only if R′ is the set of rules r such that
e1 · . . . · em →A qr using r as its last rule.

(type 3) for each subset R′ of the set of type 3 rules of R, we define the
following three sets of rules:
R1 = {r ∈ R|3 \R′ ϕr 6= True,Regr = AllQ} (counting rules)
R2 = {r ∈ R|3 \R′ ϕr = True,Regr 6= AllQ} (regular rules)
R3 = {r ∈ R|3 \R′ ϕr = True,Regr = AllQ} (trivial rules)

we use these sets to define the rule rDR′ =def ϕR′ ` RegR′ → QR′ such that,

(i) QR′ = {qr r ∈ R′}
(iia) if R3 6= ∅ then ϕR′ = ¬True and RegR′ = ∅,

(iib) if R3 = ∅ then

{
ϕR′ ≡

∧
r∈R′ ϕ

D
r ∧¬(

∨
r∈R1

ϕDr ),

RegR′ ≡
⋂
r∈R′ Reg

D
r ∩ (|r∈R2

RegDr )

where ϕDr ,Reg
D
r are defined as in Propositions 18 and 19.
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By construction, the constraints used in distinct transition rules are mutually
exclusive, therefore the automaton AD is deterministic. We conclude the proof by
showing that L(A) = L(AD).

Proposition 20 For every automata A the automata AD accepts the same lan-
guage as A.

Proof We prove that d →AD Q if and only if Q = {q d →A q}. The proof is
by structural induction on d. We only give the proof in the case where d is of the
form e1 · . . . · em with m > 2. In the cases where d is a constant c or an element
a[d′], the proof is similar to the standard correctness proof for the determinization
algorithm of tree automata.

(Proof of the⇒ direction) Assume d = e1 · . . . · em (m > 2) and d →AD Q.
We prove that Q = {q d →A q}. By induction hypothesis we have a transition
ej →AD QIj iff QIj = {q ej →A q}. Also, by construction, the last rule used
in the derivation d→AD Q should be a type 3 rule of the form rDR′ .

Assume W = QI1 · . . . · QIm . By definition of rDR′ , we have that W ∈ RegDR′
and #(W ) |= ϕDR′ . As a consequence:

(i) for each r ∈ R′ and W ∈ RegDr and #(W ) |= ϕDr ,
(ii) for each r ∈ R1, #(W ) 6|= ϕDr and for each r ∈ R2, W 6∈ RegDr

By Proposition 18, for each r ∈ R we have W ∈ RegDr iff there exist qi1 ∈
QI1 ,. . . , qim ∈ QIm such that qi1 · . . . · qim ∈ Regr. SinceA is separated, for each
rule r such that Regr 6≡ AllQ, the condition ϕr is equivalent to True . Hence, the
rule r can be applied to d = e1 · . . . · em and d→ qr, as needed.

Similarly, by Proposition 19, for each r ∈ R we have #(W ) |= ϕDr iff there
exist qi1 ∈ QI1 ,. . . , qim ∈ QIm such that such that #(qi1 · . . . · qim) |= ϕr. Since
A is separated, for each rule r such that ϕr 6≡ True , the regular expression Regr
is equivalent to AllQ. Hence, the rule r can be applied to d = e1 · . . . · em and
d→ qr, as needed.

(Proof of the⇐ direction) Assume d = e1 ·. . .·em (m > 2) andQ = {q d→A
q}. We prove that d→AD Q. The structure of this proof is similar to the preceding
case. Since d is a sequence, if d →A q then the last rule used in the derivation is
a type 3 rule and q is a state qr for some type 3 rule r ∈ R. Let R be set of such
rules, R = {r qr ∈ Q}. Hence, with our previous notation,Q = QR and we can
define the subsets R1, R2, R3 as above.

Let W be the word QI1 · . . . · QIm such that ej →AD QIj . By induction
hypothesis, QIj = {q ej →A q} et ej →AD QIj for all j ∈ 1..m. The property
follows by showing that the rule rDR of AD may be applied on W to obtain Q.

By Proposition 18, SinceQIj = {q ej →A q}, we haveW ∈ RegDr for every
rule r ∈ R and W /∈ RegDr for every r ∈ R2. Hence W ∈ RegDR . Likewise, we
use Proposition 19 to prove that W ∈ ϕDR . Therefore the rule rDR may be applied
on W and we have d→AD QR = Q, as needed. ut
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A.4 Proof of Proposition 8: Sheaves languages are not closed under
complementation

We show that given a two-counter machine, there is a non-deterministic automaton
accepting the set of bad computations of the machine (see Appendix A.1 for a
definition of two-counter machines). Therefore, if the complement of this language
was also accepted by some automaton, we could derive an automaton accepting the
(good) computations reaching a final state. Therefore we could decide the halting
problem for two-counter machines which is undecidable.

Assume we have a two-counter machine with set of states, Q = {q1, . . . , qp},
final states Qf ⊆ Q and transition relation, δ ⊆ Q × {0, 1}2 × Q × {−1, 0, 1}2,
and counters C1, C2. We use the following signature to simulate the computations
of the machine.

– a constant q for each state q ∈ Q of the two-counter machine,
– two constants C1 and C2 to indicate the beginning of each counter,
– a constant 1 used for counting. We represent the natural number n in unary

format, that is by n successive occurrences of the symbol 1.

A configuration C = (qi, C1, C2) is represented by the word qi ·C1 · an1 ·C2 ·
bn2 , where n1, n2 are the values of the counters C1, C2. As in Appendix A.1, we
interpret words by their canonical representation as documents where we identify
a letter a to an element a[ε] and a concatenation of words to a concatenation of
documents.

Likewise, we can encode sequences of configurations C0,C1, . . . by concate-
nating the words obtained for each configuration Ci: a sequence of configurations
is a document accepted by the word expression ((

⋃
q∈Q q) · C1 · 1∗ · C2 · 1∗)∗.

Therefore there is a SA accepting the set of all sequences of configurations (a reg-
ular automaton will be enough) and also a SA accepting the set of all sequences
ending in a halting state. The construction of an automaton accepting only the bad
sequences of configurations, that is those not matching the definition of δ, is as
follows:

– the automaton has states rq (for each state of the counter machine q ∈ Q),
rC1

, rC2
, 1C1

, 1C2
,⊥, as well as a unique final state, rerror . The state rC1

, rC2

are used to locate the “start of counter value” symbols C1 and C2 and are
associated to two type 1 rules: C1 → rC1 and C2 → rC2 ;

– the constant 1 can reach (non-deterministically) five different states, 1C1 , 1C2 ,
1C′1 , 1C′2 and ⊥. We have five type 1 rules, 1 → 1Ci and 1 → 1C′i for all
i ∈ {1, 2} and 1→ ⊥. The first four states are used to identify the value of the
counter we are interested in, while ⊥ is used for configurations of the machine
whose counter values is not interesting.

– there is one constrained rule for each pair of states (q, q′) such that there is a
transition (q, x1, x2, q

′, x′1, x
′
2) in δ (we use the wild-card symbol r to denote

any state of the kind rq for q ∈ Q):

φ `

 (r , rC1
,⊥∗, rC2

,⊥∗)∗,
(rq, rC1

, 1∗C1
, rC2

, 1∗C2
), (rq′ , rC1

, 1∗C′1
, rC2

, 1∗C′2
),

(r , rC1
,⊥∗, rC2

,⊥∗)∗

→ rerror
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where φ(#1C1
,#1C2

,#1C′1 ,
#1C′2) is the Presburger formula stating that the

values of the counters do not agree with any of the transitions in δ from state q
to state q′.

Let L be the language recognized by the non-deterministic SA. The intersec-
tion of the complement of L with the language of sequences of configurations
ending with a final state is the set of computations of the two-counter machine
reaching a final state. If it were accepted by a sheaves automaton, we would have
a decision procedure for two-counter machines, which leads to a contradiction.


