N
N

N

HAL

open science

A Concurrent Calculus with Atomic Transactions

Lucia Acciai, Michele Boreale, Silvano Dal Zilio

» To cite this version:

Lucia Acciai, Michele Boreale, Silvano Dal Zilio. A Concurrent Calculus with Atomic Transactions.

2006. hal-00109264

HAL Id: hal-00109264
https://hal.science/hal-00109264

Preprint submitted on 24 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00109264
https://hal.archives-ouvertes.fr

hal-00109264, version 1 - 24 Oct 2006

A Concurrent Calculus with Atomic Transactions

Lucia Acciatt, Michele Borealé, and Silvano Dal Zilié

1 Laboratoire d’Informatique Fondamentale de MarseilleFjl. |
CNRS and Université de Provence, France
2 Dipartimento di Sistemi e Informatica, Universita di Fizen Italy

Abstract TheSoftware Transactional Memo($TM) model is an original approach for
controlling concurrent accesses to ressources withouhdleel for explicit lock-based
synchronization mechanisms. A key feature of STM is to meva way to group se-
guences of read and write actions insatemic blockssimilar to database transactions,
whose whole effect should occur atomically.

In this paper, we investigate STM from a process algebrgppetive and define an ex-
tension of asynchronous CCS with atomic blocks of actiong. g@al is not only to set
a formal ground for reasoning on STM implementations but &dsunderstand how this
model fits with other concurrency control mechanisms. We gisw this calculus as a
test bed for extending process calculi with atomic transast This is an interesting di-
rection for investigation since, for the most part, actuatks that mix transactions with
process calculi consider compensating transactions, alrttuat lacks all the well-known
ACID properties.

We show that the addition of atomic transactions results verg expressive calculus,
enough to easily encode other concurrent primitives suguasied choice and multiset-
synchronization (a la join-calculus). The correctness wf @ncodings is proved using
a suitable notion of bisimulation equivalence. The eqeinaé is then applied to prove
interesting “laws of transactions” and to obtain a simplenmal form for transactions.

1 Introduction

The craft of programming concurrent applications is aboastering the strains between two
key factors: getting hold of results as quickly as possibleile ensuring that only correct

results (and behaviors) are observed. To this end, it i$ tdtavoid unwarranted access to
shared resources. Ti8oftware Transactional Memo@TM) model is an original approach
for controlling concurrent accesses to resources withagirtguexplicit lock-based synchro-
nization mechanisms. Similarly to database transactitwesSTM approach provides a way
to group sequences of read and write actions inatdenic blocksvhose whole effect should

occur atomically. The STM model has several advantagest Muably, it dispenses the pro-
grammer with the need to explicitly manipulate locks, a testiely recognized as difficult

and error-prone. Moreover, atomic transactions providkeeancconceptual basis for concur-
rency control, which should ease the verification of corentrprograms. Finally, the model is
effective: there exist several STM implementations forigigiag software for multiprocessor
systems; these applications exhibit good performancesaatipe (compared to equivalent,
hand-crafted, code using locks).

We investigate the STM model from a process algebra peligpestd define an extension
of asynchronous CCS [22] with atomic blocks of actions. Wétbés calculus ACCS. The
choice of a dialect of CCS is motivated by an attention to eamyt to focus on STM primitives,
we study a calculus as simple as possible and dispense wlithgamal issues such as values,

mobility of names or processestc We believe that our work could be easily transferred to a
richer setting. Our goal is not only to set a formal groundréasoning on STM implementa-
tions but also to understand how this model fits with otherccorency control mechanisms.
We also view this calculus as a test bed for extending prazadeali with atomic transactions.
This is an interesting direction for investigation sinae,the most part, works that mix transac-
tions with process calculi consideompensating transactionsee e.g. [2,4,6,8,9,11,12,13,21].

The idea of providing hardware support for software tratisas originated from works
by Herlihy and Moss [20] and was later extended by Shavit andtdu [25] to software-only
transactional memory. Transactions are used to proteepbeution of an atomic block. Intu-
itively, each thread that enters a transaction takes a Bnapsthe shared memory (the global
state). The evaluation is optimistic and all actions aréquered on a copy of the memory (the
local state). When the transaction ends, the snapshot ipa@u with the current state of the
memory. There are two possible outcomes: if the check ineicénat concurrent writes have
occurred, the transaction aborts and is rescheduled;wafesrthe transaction is committed
and its effects are propagated instantaneously. Very tigcelarris et al. [19] have proposed a
(combinator style) language of transactions that enablésary atomic operations to be com-
posed into largeatomic expression$Ve base the syntax of CCS on the operators defined
in [19].

The main contributions of this work are: (1) the definitioragfrocess calculus with atomic
transactions; and (2) the definition of an asynchronoustikition equivalence, that allows
compositional reasoning on transactions. We also have &auoi more specific technical re-
sults. We show that ACCS is expressive enough to easily encode interesting ceamtyprim-
itives, such as (preemptive versions of) guarded choicenanitiset-synchronization, and the
leader election problem (Section 3). Next, we define an edgmce between atomic expres-
sions= and prove thatz; and= are congruences (Section 4). These equivalences are used to
prove the correctness of our encodings, to prove inteig&tiahavioral laws of transactions”
and to define a simple normal form for transactions. We alewvshat transactions (moduio)
have an algebraic structure close to that of a bound seiodatin observation that could help
improve the design of the transaction language. Finallyprm@ose a may-testing equivalence
for ATCCS, give an equivalent characterization using a traceebasmantics and show that
may testing equivalence is unable to notice the presencamsactions (Section 5). Section 6
concludes with an overview on future and related works. Tto®fs of the main results are
reported in the appendices.

2 The calculus

We define the syntax and operational semantics €8S, which is essentially a cut down
version of asynchronous CCS, without choice and relabelpegators, equipped with atomic
blocks and constructs for composing (transactional) secpeeof actions.

Syntax of Processes and Atomic ExpressionsThe syntax of ACCS, given in Table 1,

is divided into syntactical categories that define a stcatiibn of terms. The definition of
the calculus depends on a set of names, ranged over liny.. As in CCS, names model
communication channels used in process synchronizatignthley also occur as objects of
read and write actions in atomic transactions.

Atomic expressionganged over byM, N, ..., are used to define sequences of actions

whose effect should happen atomically. Actiassa andwt a represent attempts to input
and output to the channal Instead of using snapshots of the state for managing tdara

Actions a,p ::=rda (tentative) read access &

| wta (tentative) write access

(Atomic) Expressiondd,N ::= end termination
| retry abort and retry the current atomic blogk
| a.Mm action prefix

| MorElseN alternative

Ongoing expressionsA, B ::= (M)g.5 execution ofM with statec and logd

| AorElse B ongoing alternative

ProcessesP,Q ::=0 nil
| a (asynchronous) output
| aP input
| xa.P replicated input
| PIQ parallel composition
| P\"a hiding
| atom(M) atomic block
| {Alm ongoing atomic block

Tablel. Syntax of ACCS: Processes and Atomic Expressions.

we use a log-based approach. During the evaluation of aniataotk, actions are recorded
in a private logd (a sequence; ... an) and have no effects outside the scope of the transaction
until it is committed. The actiometry aborts an atomic expression unconditionally and starts
its execution afresh, with an empty legThe termination actioand signals that an expression
is finished and should be committed. If the transaction cacobemitted, all actions in the log
are performed at the same time and the transaction is clodegtwise the transaction aborts.
Finally, transactions can be composed using the opesaRirse, which implements (preemp-
tive) alternatives between expressioksorElse N behaves as expressibhif M aborts and
has the behavior d¥l otherwise.

Processesranged over byP, Q, R ..., model concurrent systems of communicating
agents. We have the usual operators of CCS: the empty prd;dbe parallel composition
P | Q, and the input prefia.P. There are some differences though. The calculus is asgnchr
nous, meaning that a process cannot block on output ac#dss, we usereplicated input
xa.P instead of recursion (this does not change the expresssasfehe calculus) and we
lack the choice and relabeling operators of CCS. Finallg,rttain addition is the presence
of the operatoatom(M), which models a transaction that safeguards the expreb&idrhe
procesg|A}m represents the ongoing evaluation of an atomic bMckhe subscript is used to
keep the initial code of the transaction, in case it is alubated executed afresh, whideholds
the remaining actions that should be performed.

An ongoing atomic blockA, B, ..., is essentially an atomic expression enriched with an
evaluation state and alog o of the currently recorded actions. A statés a multiset of names
that represents the output actions visible to the trammagthen it was initiated. (This notion

of state bears some resemblance with tuples space in catiafircalculi, such as Linda [10].)
When a transaction ends, the stateecorded in the blockM),.5 (the state at the initiation of
the transaction) can be compared with the current statestgite when the transaction ends) to
check if other processes have concurrently made changles tdbal state, in which case the
transaction should be aborted.

Notation. In the following, we writeo w {a} for the multiseto enriched with the namea and
o\ o’ for the multiset obtained frora by removing elements found i, that is the smallest
multiseta” such thato C o’ Wa”. The symbold stands for the empty multiset whif@"} is
the multiset composed of exactiycopies ofa, where{a’} = 0.

Given alogd, we use the notatiowT () for the multiset of names which appear as objects
of a write action ind. Similarly, we use the notatiorD(0) for the multiset of names that
are objects of read actions. The functiams andrD may be inductively defined as follows:
wT(wta.d) =wT(d)W{a}; RD(rda.0) =RD(0)W{a}; wT(rda.6) =RD(wta.d) =wWT(9);
andwT (g) = RD(€) =¢.

Example: Composing Synchronization.Before we describe the meaning of processes, we
try to convey the semantics oft€CS (and the usefulness of the atomic block operator) using
a simple example. We take the example of a concurrent systéntwo memory cellsM; and
Mo, used to store integers. We consider here a straightforasdehsion of the calculus with
“value-passing” In this setting, we can model a cell with valudy an outputij!v and model
an update by a process of the fonyx.(M!V | ...). With this encoding, the channel name
acts as a lock protecting the shared resotce

Assume now that the values of the cells should be synchrdn@ereserve a global in-
variant on the system. For instance, we model a flying ait,ceath cell store the pitch of an
aileron and we need to ensure that the aileron stay aligmed ffte values of the cells are
equal). A process testing the validity of the invariant isdgampleP; below (we suppose that
a message on the reserved charareltriggers an alarm). There are multiple design choices
for resetting the value of both cells to 0, eRy.andPs.

Py £ My 2X.mp?y.if x!=y thenerr!
P, & mpxm?. (0 [TBI0)) P3 & my2x. (!0 | mp.mg!0)

Each choice exemplify a problem with lock-based prograngmirhe composition oPy
with P, leads to a race condition whele acquire the lock oMy, P, on M, and each process
gets stuck. The composition 8f andP; may break the invariant (the value g, is updated
too quickly). A solution in the first case is to strengthen inariant and enforce an order
for acquiring locks, but this solution is not viable in gealeand opens the door fariority
inversionproblems. Another solution is to use an additional (masteR to protect both cells,
but this approach obfuscate the code and significantly dsessthe concurrency of the system.

Overall, this simple example shows that synchronizatiarstraints do not compose well
when using locks. This situation is consistently obsenadl(bears a resemblance to the in-
heritance anomaly problem found in concurrent objectraeid languages). The approach ad-
vocated in this paper is to use atomic transactions. In oamgie, the problem is solved by
simply wrapping the two operations in a transaction, likéhia following process, which en-

1 Keeping to our attention to economy in the definition af@CS, we choose not to consider values in
the formal syntax, but our results could be easily extendedke them into account.

(ouT)a;o0— 0;0w{a} (REP) xa.P;ow{a} — P|xa.P;o

P,oc—P;ou{a} Q;ow{a}—Q;c

(IN) aP;ow{a} — P;o (com) PlO-P|Q
P;c—P;d P,ow{d"} - P;0'w{ad"} ad¢o,0
(PARL) P|Qo—P|Q;d (HiD) P\"a;0 — P'\Ma;d’
(PARR) Q0—~Q;d (ATST) atom(M);0 — {(M)g:e[m; 0

P|Qo—P|Q;d

A— A
(ATPASS) TAIm:0— {ATw:0

(ATRE) {(retry)ysim;0 — atom(M);0

RD(8) Z O
{(end)y.5}m;0 — atom(M); 0

(ATFAIL)

RD(8) Co o=0"wRD(8) wWT(d)=1{ay,...,an}
{(end)gsltmio —an |- [@n;0”

(ATOK)

Table2. Operational Semantics: Processes.

sures that all cell updates are effected atomically.
atom(rd (mp?y).wt (mMp!0).rd (My 2X).wt (m1!0))

More examples may be found on the paper on composable menaoisattions [19], which
makes a compelling case that “even correctly-implemertaderrency abstractions cannot be
composed together to form larger abstractions.”

Operational Semantics. Like for the syntax, the semantics offBCS is stratified in two
levels: there is one reduction relation for processes amrdansl for atomic expressions. With
a slight abuse of notation, we use the same symbQIfor both relations.

Reduction for Processe3able 2 gives the semantics of processes. A reduction isediottm
P;o0 — P';0’ whereo is the state oP. The stateo records the names of all output actions
visible to P when reduction happens. It grows when an output is reducadr;)(and shrinks

in the case of inputs)N) and ReP). A parallel composition evolves if one of the component
evolves or if both can synchronize, rulesagL), (PARR) and €om). In a hidingP\"a,
the annotatiom is an integer denoting the number of outputsaowhich are visible toP.
Intuitively, in a “configuration”’P \"a; o, the outputs visible t&® are those irow {a"}. This
extra annotation is necessary because the scopésakstricted td?, hence it is not possible
to have outputs oa in the global state. RuleH(D) allows synchronization on the narago
happen inside a hiding. For instance, we héRéa) \"a;o — P\"*'a;c.

The remaining reduction rules govern the evolution of atoin@insactions. Like in the case
of (com), all those rules, butATOk), leave the global state unchanged. RuleT) deals
with the initiation of an atomic blocktom(M): an ongoing blocK](M)g:¢[}m is created which
holds the current evaluation stateand an empty log. An atomic block{| A} reduces when
its expressiorA reduces, rule ATPAsS). (The reduction relation for ongoing expression is
defined by the rules in Table 3.) RulestRE), (ATFAIL) and (T OK) deal with the completion
of a transaction. After a finite number of transitions, thaleation of an ongoing expression

RD(O)W{a} Co
(rda‘M)o;é - (M)o;é.rda

RD(O)w{a} Z O
(rda.M)g5 — (retry)s;s

(ARDOK) (ARDF)

(AWR) (wta.M)gs— (M)g:5uta
(AQI) (M orElse M2)g.5 — (M1)g:5 orElse (M2)g:5

(AOF) (retry)q.5 orElse B— B (AOE) (end)q.5 orElse B — (end)y:5

AorElse B— A orElse B AorElse B— AorElse B

Table3. Operational Semantics : Ongoing Atomic Expression.

will necessarily result in a fail statéretry)q.5, Or a succesgend)qs. In the first case, rule
(ATRE), the transaction is aborted and started again from scrat¢he second case, we need
to check if the log is consistent with the current evaluasitete. A log is consistent if the
read actions 0 can be performed on the current state. If the check failg, @t FaIL), the
transaction aborts. Otherwise, rulerOk), we commit the transaction: the namesriD(0)
are taken from the current state and a bunch of outputs oretimesinwT () are generated.

Reduction for Ongoing Expression$able 3 gives the semantics of ongoing atomic expres-
sions. We recall that, in an expressiaria.M)g.5, the subscript is theinitial state, that is a
copy of the state at the time the block has been create® &the log of actions performed
since the initiation of the transaction.

Rule (ARDOK) states that a read actied a is recorded in the log if all the read actions
in d.rda can be performed in the initial state. If it is not the case,dhgoing expression fails,
rule (ARDF). This test may be interpreted as a kind of optimizatiom ffansaction cannot
commit in the initial state then, should it commit at the efithe atomic block, it would mean
that the global state has been concurrently modified duliegekecution of the transaction.
Note that we consider the initial stateand noto W wT (8), which means that, in an atomic
block, write actions are not directly visible (they cannetdmnsumed by a read action). This is
coherent with the fact that outputs @ (d) only take place after commit of the block. Rule
(AWR) states that a write action always succeeds and is recandbd current log.

The remaining rules govern the semantics oftbery, end andorElse constructs. These
constructs are borrowed from the STM combinators used imtpementation of an STM sys-
tem in Concurrent Haskell [19]. We define these operators aritequivalent semantics, with
the difference that, in our case, a state is not a snapshbedgthared) memory but a multiset
of visible outputs. A compositiokl orElse N corresponds to the interleaving of the behaviors
of M andN, which are independently evaluated with respect to the samalkeiation state (but
have distinct logs). TherElse operator is preemptive: the ongoing bldekorElse N ends
if and onlyM ends oM aborts andN ends.

3 Encoding Concurrency Primitives

Our first example is a simple solution to the celebrdéadler electiorproblem that does not
yield to deadlock and ensures that, at each round, a leadkcied.

Consider a system composed toprocesses and a token, nantethat is modeled by an
outputf. A process becomes a leader by getting (making an input.o®§ usual, all partic-
ipants run the same process (except for the value of thaititghle We suppose that there is
only one copy of the token in the system and that leadershipaxfess is communicated to
the other processes by outputting on a reserved naime A participant that is not a leader
output onlooseg. The protocol followed by the participants is defined by thikofving process:

Li = (atom(rdt.wtk.end orElse wtK .end) | k.(wini | T) | K.loose) \°k\°K

In this encoding, the atomic block is used to protect the nomnt accesses to If the
procesd; commits its transaction and inputs (grabs) the token, itédiztely release an output
on its private channéd. The transactions of the other participants may eitherdiadommit
while releasing an output on their private charkieThen, the elected procelssmay proceed
with a synchronization oR that triggers the outpwin; and release the lock. The semantics
of atom() ensures that only one transaction can acquire the lock andhitche atomic block,
then no other process have acquired the token in the samd emchwe are guaranteed that
there could be at most one leader.

This expressivity result is mixed blessing. Indeed, it nsghiat any implementation of the
atomic operator should be able to solve the leader electinigm, which is known to be very
expensive in the case of loosely-coupled systems or in peesef failures (see e.g. [24] for
a discussion on the expressivity of process calculi and@iglcsystems). On the other hand,
atomic transactions are optimistic and are compatible thigruse of probabilistic approaches.
Therefore it is still reasonable to expect a practical immatation of ACCS.

In the following, we show how to encode two fundamental corency patterns, namely
(preemptive versions of) the choice and join-pattern dpesa

Guarded choice. We consider an operator for choige,.P1 + - - - + pn.Py, such that every
process is prefixed by an actign that is either an outpu; or an inputa;. The semantics
of choice is characterized by the following three reductioles (we assume th& is also a
choice):

(c-inP) aP+Q;ow{a}l — P;o (c-out)aP+Q;0—P;ow{a}

a¢o Q;0—-Q;d
(C-PaASS aP+Q;0—Q;d

A minor difference with the behavior of the choice operatourfd in CCS is that our
semantics gives precedence to the leftmost process (themigmiscent of the preemptive be-
havior oforElse). Another characteristic is related to the asynchronotige®f the calculus,
see rule ¢-0UT): since an output action can always interact with the emvirent, a choice
a.P+ Q may react at once and release the proag<$3.

Like in the example of the leader election problem, we carodaa choicgy.Py+--- +
Mn-Pn using an atomic block that will mediate the interaction wtitle actiongy, ..., . We
start by defining a straightforward encoding of input/odigetions into atomic actionga]] =
wt a and[[a]] = rda. Then the encoding of choice is the process

A

[Ma-PL+ -+ pn.Pa] = (atom([[pu]l.[Ki].end orElse --- orElse [n].[kn].end)
| Ka-[Pul [-+ [ka-[Pa]) \ka... \%kn

The principle of the encoding is essentially the same thaiunsolution to the leader
election problem. Actually, using the encoding for choiee, can rewrite our solution in the

following form: L; £ t.(win; | f) +Ioose.0. Using the rules in Table 2, it is easy to see that our
encoding of choice is compatible with rule-{NP), meaning that:

[aP+Ql;0 {a} — ({(end)oufayranssk bw | Ki[P] | ...) \°ke\ ...;0 {a}
— (ko |ke.[P]]...)\°ke\...;0
— ([[P]] | ...)\Okl\...;O'
where the processes in parallel witR] are harmless. In the next section, we define a weak
bisimulation equivalence-; that can be used to garbage collect harmless processes in the
sense that, e.dP | k.Q)\°k ~, P if P has no occurrences &f Hence, we could prove that

[a.P+Q];ow{a} —*~4 [P];0, which is enough to show that our encoding is correct with
respect to ruleg-INP). The same is true for ruleg{ouT) and (C-PASS).

Join Patterns. A multi-synchronizatior(a; x --- x an).P may be viewed as an extension of
input prefix in which communication requires a synchronaatvith then outputsag, ..., a,
at once. that is, we have the reduction:

(3-INP) (a1 X ---xa&y).P;ow{as,...,an} — P;o

This synchronization primitive is fundamental to the défam of the Gamma calculus of
Banatre and Le Métayer and of the Join calculus of FourneGorthier. It is easy to see that
the encoding of a multi-synchronization (input) is a simgpénsaction:

[(awx---xan).P] = (atom([as].--- .[an].[k].end) | k.[P]) \°k (wherek s fresh)

and that we havg(ay x -+ x ay).P] ;0w {ay,...,an} —* (0| [P]) \°k; 0, where the process
(0] [P]) \°k is behaviorally equivalent tfiP], that is:
[(agx -+ xan).P];oW{as,....an} —*~a [P];0

Based on this encoding, we can define two interesting dedpedators: a mixed version of
multi-synchronization(py x --- X pn).P, that mixes input and output actions; and a replicated
version, that is analogous to replicated input.

(atom([a]. - [yw].[K].end) |
(r [*r-aton([y].- - [ua]-[7].

k[P)\°k

[K].end) | «k.[P])\°r\°k

By looking at the possible reductions of these (derivedyatoes, we can define derived
reduction rules. Assumgis the log[[u]. - .[un]], we have a simulation result comparable to
the case for multi-synchronization, namely:

[(ka -+ X) P]

J.end)
[(b x -+ Ho).P] "

A

[(ML X - X k) .P];OWRD(S) —*~a [P];0WwWT ()
[#(pe X -+ X Hn).P];OWRD(3) —*~a [[*(Mr X -+ X kn).P] | [P];cWT ()

To obtain join-definitions, we only need to combine a seqeeat replicated multi-
synchronizations using the choice composition definedgutestly. (We also need hiding to

close the scope of the definition.) Actually, we can encodmewore flexible constructs mix-
ing choice and join-patterns. For the sake of simplicity,améy study examples of such oper-
ations. The first example is the (linear) join-pattéarx b).PA (a x).Q, that may fireP if the
outputs{a, b} are in the global state and otherwise fir® if {a,c} is in o (actually, real im-
plementations of join-calculus have a preemptive semaiffticpattern synchronization). The
second example is the derived operg®k b) + (b x ¢ x @).P, such thaP is fired if outputs
on{a,b} are available or if outputs ofh, c} are available (in which case an outputais also
generated). These examples can be easily interpretedatsingc transactions:

[(@axb).PA(axc).Q] = (atom([a].[b].[ki].end orElse

[a]l-[

[a])-[c]-[ke]l-end) | kP | k2.Q)\%k1\%ke
[(axb+bxcxa).P] £ (atom([a].[b].[K].end orElse

[b]-[c].- [a].[K].end) | k.P)\°k

Inthe next section we define the notion of bisimulation usgddasoning on the soundness
of our encodings. We also define an equivalence relationtéonia expressions that is useful
for reasoning on the behavior of atomic blocks.

4 Bisimulation Semantics

A first phase before obtaining a bisimulation equivalenctiglefine a Labeled Transition
System (LTS) for ACCS processes related to the reduction semantics.

Labeled Semantics of ACCS. Itis easy to derive labels from the reduction semanticsrgive
in Table 2. For instance, a reduction of the foPyo — P’;ow{a} is clearly anoutput transi-
tion and we could denote it using the transitf P, meaning that the effect of the transition
is to add a message arto the global state. We formalize the notion of label and transition.
Besides output actior® which corresponds to an application of ruleur), we also need
block actionswhich are multise{ay, ... ,an} corresponding to the commit of an atomic block,
that is to the deletion of a bunch of names from the globaéstatule (AT Ok). Block actions
include the usual labels found in LTS for CCS and are usedatmeling input and communi-
cation transitions: an input actioms which intuitively corresponds to rules\) and ReP),
is a shorthand for the (singleton) block actifay}; the silent actiort, which corresponds to
rule (com), is a shorthand for the empty block actiénin the following, we use the symbols
8,y,... to range over block actions apgy, ... to range over labelgy:=a | 8 | 1| a.

The labeled semantics forr&CS is the smallest relatid®P’ satisfying the two follow-
ing clauses:

1. we haveP%P’ if there is a state such thaP;0 — P';ow{a};
2. we haveP—P if there is a stat® such thaP;cw 6 — P';0.

Note that, in the case of the (derived) actignve obtain from clause 2 th&--P’ if there
is a stateg such thaP ;0 — P'; 0. As usual, silent actions label transitions that do not ryodi
the environment (in our case the global state) and so arsli@ito an outside observer. Unlike
CCS, the calculus has more examples of silent transitiom there internal synchronization,
e.g. the initiation and evolution of an atomic block, see mifps @TST) and ATPASS). Con-
sequently, a suitable (weak) equivalence foiCACS should not distinguish e.g. the processes

atom(retry), atom(end), (a.@) and0. The same is true with input transitions. For instance,
we expect to equate the procesagsandatom(rda.end).

Our labeled semantics forf&CS is not based on a set of transition rules, as it is usuraly t
case. Nonetheless, we can recover an axiomatic presentdttbe semantics using the tight
correspondence between labeled transitions and redsaiaracterized by Proposition 1.

Proposition 1. Consider two processes P and Q. The following implicatioegae:

(com) if P—>P’ and Q—’% then P| Q5P | Q’

(PAR) if P—»P’ then P Q—P' | Q and Q] PXQ | P;

(HID) if PSP and the name a does not appear in p they! B—»P’\”

(HIDOUT) if P—>P’ then P\"a—P' \"1a;

(HIDAT) if P—>P’ and p= 6w {a™}, where a is a name that does not appear in the ldhel
then P\”*ma—>P’\”

Proof. In each case, we have a transition of the fadP'. By definition, there are states
ando’ such thaP; o — P’;d’. The property is obtained by a simple induction on this réidac
(a case analysis on the last reduction rule is enough). a

We define additional transition relations used in the reohairof the paper. As usual, we
denote by¢> theweak transition relationthat is the reflexive and transitive closureof We
denote byé the relation= 5 =. If sis a sequence of labels. .., we denote—> the
relatlon such tha@->P’ if and only if there is a proces3 such thaP—>Q andQ . pr (and
= isthe identity relation whenis the empty sequenoa) We also defme a weak versieh
of this relation in the same way. Lastly, we dendtethe relation? ... 2, the composition
of n copies of3.

Asynchronous Bisimulation for Processes and Expressiong&quipped with a labeled tran-
sition system, we can define the traditional (weak) b|S|rmmﬂaeqU|vaIencex between pro-
cesses. This is the largest equivalerceuch that ifP% Q andP-5P thenQ2Q andP'g Q.
Weak bisimulation can be used to prove interesting equieae between processes. For in-
stance, we can prove thé | a) \"a~ P\""'a. Nonetheless, a series of equivalence laws are
not valid for~. For instanceatom(rd a.end) % a.0, meaning that, whereas there are no con-
text that separates the two processes, it is possible ttheeptesence of an atomic block. Also,
the usualsynchronous lavis not valid:a.a % 0. To overcome these limitations, we define a
weakasynchronous bisimulatiomelation, denotedz,, in the style of [1].

Definition 1 (weak asynchronous bisimulation).A symmetric relatiorg is a weak asyn-
chronous bisimulation if wheneve®gQ then the following holds:

. if P—»P’ then there is Qsuch that Q' and P Q';
_if P2P then there is a process’@nd a block actiony such that Q:>Q’ and (P |

|_|aey\9) (Q ||_|ae (8\y))

We denote withz, the largest weak asynchronous bisimulation.

AssumeP ~, Q andP--P, the (derived) case for silent action entails that ther@ iand
6 such thatQ:9>Q’ andP’ | [aco@~a Q. If 6 is the silent actionp = { }, we recover the
usual condition for bisimulation, that 8=Q andP’ ~, Q'. If 8 is an input actionf = {a},
we recover the definition of asynchronous bisimulation §f Que to the presence of block
actionsy, the definition of=z; is slightly more complicated than in [1], but it is also more
compact (we only have two cases) and more symmetric. Hereeexpect to be able to reuse

10

known methods and tools for proving the equivalencenE& S processes. Another indication
that~, is a good choice for reasoning about processes is that itasigraence. The proof is
reported in Appendix A.

Theorem 1. Weak asynchronous bisimulaties, is a congruence.

We need to define a specific equivalence relation to reasorramséctions. Indeed,
the obvious choice that equates two expressignand N if atom(M) a5 atom(N) does
not lead to a congruence. For instance, we h@ga.wt a.end) equivalent toend while
atom(rda.wt a.end orElse wt b.end) %, atom(end orElse wt b.end). The first transac-
tion may output a message bnwhile the second always end silently.

We define an equivalence relation between atomic expressipand aweak atomic pre-
order 3, that relates two expressions if they end (or abort) for #raes states. We also ask
that equivalent expressions should perform the same cbamgt¢he global state when they
end. We say that two logd &' have same effects, denotdd=¢ & if 6\ RD(d) WWT (0) =
0\ RD(&)WwT (&). We say thatM Jg N if and only if either (1)(N)g:e = (retry)qs:
or (2) (N)g:e = (end)g 5 and (M)ge = (end)q.y. Similarly, we haveM g N if and only
if either (1) (M)g;e = (retry)ss and (N)ge = (retry)gy; Of (2) (M)ge = (end)qs and
(N)g;e = (end)g g With d =5 &'.

Definition 2 (weak atomic equivalence)Two atomic expressions W™ are equivalent, de-
noted M= N, if and only if Mg N for every states. Similarly, we have Md N if and only if
M g N for every states.

While the definition ofd and= depend on a universal quantification over states, testag th
equivalence of two expressions is not expensive. First,ameely on a monotonicity property
of reduction: ifo C ¢’ then for allM the effect of(M), 5 is included in those ofM)y 5.
Moreover, we define a normal form for expressions later in hiction (see Proposition 2)
that greatly simplifies the comparison of expressions. Aeoindication that- is a good
choice of equivalence for atomic expressions is that it isregeuence. The proof is reported
in Appendix A.

Theorem 2. Weak atomic equivalence is a congruence.

Dining Philosopher. In this example we give yet another solution to the well-knadining
philosopher problem. We use atomic blocks of actions inrff@émentation of the system and
we show that the obtained process behaves as its specificattbout using backtracking and
without falling into situations of deadlock. Suppose to ééaur philosopherd,= {0,1,2,3}

is the considered set of indexes. In what follows we wiitéor the sum modulo 4. Suppose
t is a set of indexes corresponding to thinking philosoph&hdéch are ready to eat; anel
corresponds to eating philosophers, which are ready tdtir is the specification of the
system, witt Ue=1,tNne=0and there isn't € | such that,i+1ce.

e = Yigtli-Ruize-i
+ Yi—o1ite—0} T-(&-P—isi + €&42.R_(i12)i+2)
+ Yliet|i-Litideir2ce) T- 8 -Rieui

The system specification will never fall into deadlocks aneré can be at most two eating
philosophers (with indexdsandi + 2). The actions of eating and thinking of the philosopher
i, andt;, can be observed as inputs.

11

A philosopheD;, fori € I, can be implemented as follows:
D 2 atom(rdCi_1.rdC.end). g .1 .(C_1|T).

Proces®d; attempts to get the chopsticks, on his right and left, by gisin atomic block for
readingci_1 andg;. If the commit of the atomic block can not be performed theleast one
of its neighborsp;_; or Dj,1 is already eating, because at least one of the chopsticlat is n
available, thu®; will retry to get both chopsticks. Otherwise he can eat, theisvill acquire
the chopsticks and eat by inputtirg After eating, he can decide to start thinking, thus he
readg;, and after that he releases both chopsticks.

The global system is given by the parallel composition ofthidosopheD; and the output
of the four chopsticks, which are hidden to observers

D £ (Dg|D1|D2|D3| | €1 | & |T3) \°Co,Ca, Co, Ca.

In what follows we show tha®.p ~5 D holds. Before we need to define a useful abbrevia-
tion. Supposé, B,C, D, E C {0, 1, 2, 3}, are sets of indexes such that BUC = {0, 1, 2, 3},
ANB=ANC=BNC=0andDUE C {0, 1, 2, 3} with DNE = 0. We defineD{A;B;C; D;E}
as follows:

D{A'B;C;D;E} = (Mjieay Di| Myicey @- 6 (611)
| Myiecy ti-(C=11T)
| Myieny @) \'cili € E\%ci|i € D.

That is a system where the philosopheraiare in the initial state; philosophersiare ready
to eat (they have already acquired the chopsticks); phillosis inC are ready to think (they
have already eaten); indexeddtorrespond to available chopsticks not yet outputted Xede
in E correspond to chopsticks outputted, thus chopsticks Hrabe taken by some philosopher
for eating.

In the following 2 (S) represents the powerset®&fP.p& D where the weak asynchronous
bisimulationz_is defined as follows:

Po,D{1;0;0;1\SS})[Sc2(l)}

Pii,D{l —i;0; {i}; {i+1,i+2}\SS})[Se r({i+1,i+2})}

Pii, D{{i— Li+1}{i+2}:{i};0,0})}

Pi-tivaygiivey, D{{i = Li+ 150 {i.i+2};0,0})}

(&-Pi—ii +62.P(is2)42), D{{i = Li+ 1} {i +2,i};0,0;0}) [= 0,1}

(&.P—ii +ex2P_(i12:it2). D{{i — Lii+ 1} {i+2}:0;{i — 1,i}\ SS})
|Ser({i—1,i}),i=0,1}

U {((a-Ri+e2.P_(i2;it2),DH{i—1i+1,i+2}{i};0,{i+1,i+2}\SS})

|See({i+1,i+2}),i=0,1}.

& ={
U {
U {
U {
U {
U {

~ o~ ~~ o~~~ o~

On the Algebraic Structure of Transactions. The equivalence relations and=:5 can be
used to prove interesting laws of atomic expressions anckegees. We list some of these laws
in Table 4. Appropriate bisimulation relations which prdegs in Table 4 are reported in

12

Laws for atomic expressions:

[$

(comm) a.p.M B.a.M
(D1ST) o.(M orElse N) = (0.M) orElse (0.N)

(ASs) Mg orElse (Mp orElse M3) « (Mg orElse My) orElse M3

(IDEM) M orElseM = M
(ABSRT1) O.retry = retry
(ABSRT2) retry orElseM = M = M orElse retry
(ABSEND) end orElse M < end

Laws for processes:

(AsY) aa ~3 0
(A-ASY) atom(rda.wta.end) =4 0
(A-1) atom(rda.end) ~5 a.0

Table4. Algebraic Laws of Transactions.

Appendix B. Leta denotes the set of all atomic expressions. The behavides far atomic
expressions are particularly interesting since they ekaitich algebraic structure fov . For
instance, rulesgomMm) and (Q1ST) state that action prefix.M is a commutative operation that
distribute overorElse. We also have thai ,orElse,retry) is an idempotent semigroup
with left identity retry, rules @ss), (ABSRT2) and (DEM), and thaknd annihilatesi , rule
(ABSEND). Most of these laws appear in [19] but are not formally pohve

Actually, we can show that the structureaf is close to that of a bound join-semilattice.
We assume unary function symbal§) anda() for every namea (a terma(M) is intended
to represent a prefixt a.M) and use the symbols, 1,0 instead ofbrElse,end,retry. With
this presentation, the behavioral laws for atomic expogsare almost those of a semilattice.
By definition of 3, we have thaM LIM’ = M if and only if M O M’ and for allM,N we have
1JMUNIMIoO.

H(M)) = (M) p(MUN) = p(M)UP(N) (o) = 0
oOUM = M « MUO 1LUM =1

It is possible to prove other behavioral laws to support aterpretation obrElse has a
join. However some important properties are missing, mostliy, whileL! is associative, it
is not commutative. For instanca(b(1)) L1 1 while 1 = 1 Lia(b(1)), rule (ABSEND). This
observation could help improve the design of the transadtinguage: it will be interesting to
enrich the language so that we obtain a real lattice.

Normal Form for Transactions. Next, we show that it is possible to rearrange an atomic
expression (using behavioral laws) to put it into a simpemal form This procedure can be
understood as a kind of compilation that transform an exgiwa$/ into a simpler form.
Informally, an atomic expressioM is said to be innormal formif it does not contain
nestedorElse (all occurrences are at top level) and if there are no redurigi@nches. A re-
dundant branch is a sequence of actions that will never beuge@. For instance, the read
actions inrd a.end are included inrd a.rd b.end, then the second branch in the compo-

13

sition (rd a.end) orElse (rda.rdb.end) is redundant: obviously, ifd a.end fails then
rda.rdb.end cannot succeed. We overload the functions defined on loge/dteRD(M) for
the (multiset of) names occurring in read actioninWe definewT (M) similarly. In what
follows, we abbreviatéM orElse ... orElse Mp) with the expressiopli.;_,M;. We say that
an expressio is in normal formif it is of the form| |;c; ,K; where for all indexeg j € 1..n
we have: (1); is a sequence of action prefixasqj, .end; and (2)RD(Ki) £ RD(Kj)
for all i < j. Condition (1) requires the absence of nesteH1se and condition (2) prohibits
redundant branches (it also means that all branches, blaghene, has a read action). The
following proposition is proved in Appendix C.

Proposition 2. For every expression M there is a normal form 8tich that M= M’.

Our choice of using bisimulation for reasoning about atomr@insactions may appear arbi-
trary. We have already debated over the need to consideckasyrous bisimulatior:, instead
of (the simple) bisimulatior=. In the next section, we study a testing equivalence faC&S,
more particularly an asynchronous may testing semantis [1

5 May-testing semantics

Using a testing equivalence instead of bisimulation is gomes more convenient. Nonethe-
less, testing equivalences have the drawback that theiritiefi depends on a universal quan-
tification over arbitrarily many processes. We define a nesyirtg equivalence for BCCS
and give an alternative characterization using a traceeeguivalence. We also expose some
shortcomings of may testing related to the (folklore) fawtttit cannot distinguish the points
of choice in a process. Actually, we define for every atomaxklatom(M) a corresponding
process without transactions (but using choice) that issimgjuishable fromatom(M). The
results enunciated in this section are proved in Appendix D.

We define the notion of observers and successful compusatierobserver Gs a particu-
lar type of process which does not contain atomic blocks hatdan perform a distinct output
W (the success action). We denaotbsthe set of all observers. gomputatiorfrom a proces®
and an observe® is a sequence of transitions of the foRMO =P | O ... 5P | O ...,
which is either infinite or of finite size, say such thaf, | O, cannot evolve. A computation
from P | O is successfuif there is an index such thatO, has a success action, thaOg—.
In this case, we say th& may Q Two processes are may testing equivalent if they have the
same successful observers.

Definition 3 (may-testing preorder). Given two processes P and Q, we Writtglr%a Qif
for every observer O imbs we have P may O implies Q may O. We ug@y to denote the
equivalence obtained as the kernel of the preor&gan['ay.

Universal quantification on observers make it difficult torwavith the operational def-
inition of the may preorder. Following [7], we study a trdeased characterization for our
calculus. The following preorder over traces will be usedfefining the alternative character-
ization of the may-testing preorder.

In our setting, drace sis a sequence of actions ... u,. (We only consider output and
block actions and leave asideand input actions, which are derivable). We define a preorder
<o on traces as the smallest relation that satisfies the fallglaiws.

(TOl)s1 <o s1{a} (TO2) sisx{a}ss <o s1{a}sss
(TO3)s1s, o si{atas (TO4){as,....an} o==o {as}...{an}

14

Following the terminology of [7], (TO1), (TO2) and (TO3) aifee laws fordeletion
postponemergndannihilationof input action. We add rule (TO4) which allows to substitute
block actions with the corresponding sequences of inpuis. Simulation relation< is the
reflexive and transitive closure efg. The preorder is preserved by prefixing. We can now
define a preorder over processes.

Definition 4 (alternative preorder). For processes P and Q, we set@?m%yQ if for all weak
transition P=-P’ there is a trace’sand a process (such that §< s and G=Q'.

We now prove coincidence e&may and Emay. Some definitions and preliminary results
are needed. For every labelwe define the complemeptsuch that: the complement of an
output actiora is a block action{a} and the complement of a block acti¢my,...,an} is a
tracea; ...an. Foreverytrace= |y ... Uy, the cotrace =1 ..., is obtained by concatenating
the complements of the actions $n The following lemma relates the preorderwith the
operational semantics of processes.

Lemma 1. Assume that's< s and P2 P, then there is a process’Ruch that =P,

The next step is to define a special class of observers. Foy geees, we inductively
define an observer(s) € obsas follows:

A

o(e) 2w, o(@s2ao(s), o({a,....a}9)=([] &) | o(s

iel.n

The following property shows that the sequence of visibloas fromo (s) is related to
traces simulated by

Lemma 2. Consider two traces s and r. If there is a process Q such zﬂ(ayé %_V>Q then
r<s.

We can now prove a full abstraction theorem between mawgaﬁimay and the alternative
preorder may.

Theorem 3. For all processes P and Q, we have,EI?nayQ if and only if P<may Q.

Next, we show that may-testing semantics is not precisegintutell apart atomic trans-
actions from sequences of input actions. We consider aniaexpressiorM in normal form.
AssumeM = | |ic1 nMi, the following lemma state that the observing behavioMois ob-
tained by considering, for every brankh a transition labeled by the block action containing
RD(K;) followed by output transitions on the namesam (K;).

Lemma 3. Assume M= | |i.; ,Ki is an expression in normal form. For every index i in
{1,...,n} we haveatom(M);0; —* {(end)q;s[lm;0i where o; = RD(K;) = RD() and
WT (8) = WT (K;).

As a corollary of Lemma 3, we obtain that the possible behaviatom(M) can be de-
scribed a&tom(M)% I'Ibem(Ki)BfOf everyi € 1..n, whereg; is the multiseRD(K;) .

We now prove that for every atomic transactirom(M) there is a CCS procegM] that
is may-testing equivalent tdl. By CCS process, we intend a term of 8CS without atomic
transaction that may include occurrences of the choiceabpd? + Q. By Proposition 2, we
can assume tha is in normal form, that i$ =| |, ,Ki. The interpretation of a sequence of
actionskK = a(1.....0n.end is the proces§K] = ay.---.a.(b1 | --- | by) where{ay,...,a} =

15

RD(K) and{by,...,b} = wt (K). (In particular we havglend] = 0.) The translated oM,
denotedM], is the proces§Ki] + - - - + [[Kn]]. The following theorem proves that may-testing
semantics is not able to distinguish the behavior of an at@micess from the behavior of its
translation, which means that may-testing is blind to thespnce of transactions.

Proposition 3. For every expression M in normal form we haatsom(M)~may{[M]].

We observe that a procefid] is a choice between processes of the farfor ([T bi).
Therefore, using internal choice and a slightly more comeal encoding, it is possible to use
only input guarded choica P + b.Q in place of full choice in the definition dfM]].

6 Future and Related Works

There is a long history of works that try to formalize the no8 of transactions and atomicity,
and a variety of approaches to tackle this problem. We res@awe of these works that are the
most related to ours.

We can list several works that combine ACID transactionf wibcess calculi. Gorrieri et
al [18] have modeled concurrent systems with atomic behswising an extension of CCS.
They use a two-level transition systems (a high and a lowl)eviere high actions are de-
composed into atomic sequences of low actions. To enfootatign, atomic sequences must
go into a special invisible state during all their executi@ontrary to our model, this work
does not follow an optimistic approach: sequences are g@aequentially, without inter-
leaving with other actions, as though in a critical sectianother related calculus is RCCS,
a reversible version of CCS [15,16] based on an earlier natfgrocess calculus with back-
tracking [3]. In RCCS,each process has access to a log githsonization’s history and may
always wind back to a previous state. This calculus guaearitge ACD properties of trans-
actions (isolation is meaningless since RCCS do not useradgin@emory model). Finally, a
framework for specifying the semantics of transactionsnimbject calculus is given in [26].
The framework is parametrized by the definition of a trarisaal mechanism and allows the
study of multiple models, such as e.g. the usual lock-bapedoach. In this work, STM is
close to a model calledersioning semantics.ike in our approach, this model is based on the
use of logs and is characterized by an optimistic approa@reviog consistency is checked at
commit time. Fewer works consider behavioral equivalefieeransactions. A foundational
work is [5], that gives a theory of transactions specifyitgnaicity, isolation and durability in
the form of an equivalence relation on processes, but itigesno formal proof system.

Linked to the upsurge of works on Web Services (and on longinghWeb transactions),
a larger body of works is concerned with formaliziogmpensating transactionk this con-
text, each transactive block of actions is associated withrapensation (code) that has to be
run if a failure is detected. The purpose of compensationm ismtlo most of the visible actions
that have been performed and, in this case, atomicity,tisol@nd durability are obviously
violated. We give a brief survey of works that formalize cangable processes using process
calculi. These works are of two types: (hjeraction based compensatif$8,21], which are
extensions of process calculi (likeor join-calculus) for describing transactional choreegra
phies where composition take place dynamically and whege service describes its possible
interactions and compensations; (@mpensable flow compositif$11,12,13], where ad hoc
process algebras are designed from scratch to describeskibfe flow of control among ser-
vices. These calculi are oriented towards the orchestrafiservices and service failures. This
second approach is also followed in [2,4] where two framéwdor composing transactional
services are presented.

16

The study of ACCS is motivated by our objective to better understand theséics of the
STM model. Obtaining a suitable behavioral equivalenceafomic expression is a progress
for the verification of concurrent applications that use SHdwever, we can imagine using
our calculus for other purposes. An interesting problenoisiévelop an approach merging
atomic and compensating transactions. A first step in tmiexcton is to enrich our language
and allow the parallel composition of atomic expressiord thie nesting of transactions. We
are currently working on this problem. Another area for aesk stems from our observation
(see Section 4) that the algebraic structure of atomic esjas is lacking interesting property.
Indeed, it will be interesting to enrich the language of egsions in order to obtain a real
lattice. The addition of a symmetric choice operator fongtoexpressions may be a solution,
but it could introduce unwanted nondeterminism in the estidun of transactions.

References

1. R. Amadio, I. Castellani and D. Sangiorgi. On Bisimulatidor the Asynchronous-Calculus.The-
oretical Computer Sciencd95(2):291-324, 1998.
2. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull and M. NMacéutomatic Composition of
Transition-Based Web Services with MessagingPtac. of VLDB 2005.
3. J.A. Bergstra, A. Ponse and J.J. van Wamel. Process Ageitin Backtracking. IrProc. of REX
WorkshopLNCS 803, 1994.
4. S. Bhiri, O. Perrin and C. Godart. Ensuring Required FaiAtomicity of Composite Web Services.
In Proc. of WWWACM Press, 2005.
5. A.P. Black, V. Cremet, R. Guerraoui and M. Odersky. An Eiqueal Theory for Transactions. In
Proc. of FSTTCSLNCS 2914, 2003.
6. L. Bocchi, C. Laneve and G. Zavattaro. A Calculus for LongnRing Transactions. IRroc. of
FMOODS LNCS 2884, 2003.
7. M. Boreale, R. De Nicola and R. Pugliese. Trace and Te$fimgjvalence on Asynchronous Pro-
cesseslnformation and Computatiqri72(2): 139-164, 2002.
8. R. Bruni, H.C. Melgratti and U. Montanari. Nested ComnfitisMobile Calculi: extending Join. In
Proc. of IFIP TC$563-576, 2004.
9. R. Bruni, H.C. Melgratti and U. Montanari. Theoreticalurdations for Compensations in Flow
Composition Languages. Proc. of POPL. ACM Press, 209-220, 2005.
10. N. Busi, R. Gorrieri, G. Zavattaro. A Process Algebraiew of Linda Coordination Primitives.
Theoretical Computer Scienc#92(2):167-199, 1998.
11. M.J. Butler, C.A.R. Hoare and C. Ferreira. A Trace Seroarior Long-Running Transactions. In
Proc. of 25 Years Communicating Sequential Proced9e€S 3525, 2004.
12. M.J. Butler, C.A.R. Hoare and C. Ferreira. An Operatiddamantics for StAC, a Language for
Modeling Long Running Transactions. Rroc. of COORDINATIONLNCS 2949, 2004.
13. M.J. Butler, C. Ferreira and M.Y. Ng. Precise Modelingoimpensating Business Transactions and
its Application to BPEL. InJ. UCS 11:712-743, 2005.
14. T. Chothia and D. Duggan. Abstractions for Fault-Talef@lobal ComputingTheoretical Computer
Science322(3):567-613, 2004.
15. V. Danos and J. Krivine. Reversible Communicating Systén Proc. of CONCURLNCS 3170,
2004.
16. V. Danos and J. Krivine. Transactions in RCCSPinc. of CONCURLNCS 3653, 2005.
17. R. De Nicola and M.C.B. Hennessy. Testing Equivalenc€focessesTheoretical Computer Sci-
ence 34:83-133, 1984.
18. R. Gorrieri, S. Marchetti and U. Montanari?@CS: Atomic Actions for CCSTheoretical Computer
Science72(2-3):203-223, 1990.
19. T. Harris, S. Marlow, S.P. Jones and M. Herlihy. Complesaltemory Transactions. IRroc. of
PPOPR ACM Press, 48-60, 2005.

17

20.

21.

22.

23.
24.

25.

26.

M. Herlihy, J.E. Moss. Transactional Memory: Architget Support for Lock-Free Data Structures
In Proc. of International Symposium on Computer Architectti893.

C. Laneve and G. Zavattaro. Foundations of Web TramsectilnProc. of FoOSSaC3.NCS 3441,
2005.

R. Milner. Calculi for Synchrony and Asynchronylheoretical Computer Scienc25:267-310,
1983.

R. Milner. A Calculus of Communicating Systems. Springerlag, 1982.

C. Palamidessi. Comparing the Expressive Power of timelBgnous and the Asynchronous pi-
calculus. Mathematical Structures in Computer Sciencg)12003.

N. Shavit and D. Touitou. Software Transactional Memdry Proc. of Principles of Distributed
Computing ACM Press, 1995.

J. Vitek, S. Jagannathan, A. Welc and A.L. Hosking. A saimdramework for Designer Transac-
tions. InProc. of ESOPLNCS 2986, 2004.

18

A Proofs of Section 4

Before proving the validity of Theorem 1 and Theorem 2, it éc@ssary to present some
preliminary results.

The following proposition reminds an important propertyasi/nchronous calculi: no be-
havior causally depends on the execution of output actiBetation~ stands for the usual
strong bisimulation relation (see e.qg. [23)]).

Proposition Al PP implies P~ P'|a.

Proof. By observing that outputs are non-blocking actions, a blétatrong bisimulation can
be defined. 0

As direct consequences of the previous proposition, wehgegsults enunciated in the fol-
lowing lemma: (1) output actions can always be delayed apd @&amond property involving
outputs.

Lemma Al Let u be a generic action (p=b| 0] 1):
1. P2 5P implies RS AP ; similarly P2 P implies RS A P/; -
2. PP and PLPY imply that there is a P such that ptpr and P'2P”; similarly
P-2P and PE-P” imply that there is a P such that P£-P” and P'-2P”.
Proof. By Proposition Al. a
The following propositions enunciate two relevant projasrof the hiding operator.
Proposition A2 (P|a) \"b~, (P\"b|3) ifa#b.
Proof. By Proposition 1 f1D), and definition ofth. O
Proposition A3 (P|a)\"a~, P\ a.
Proof. It is enough to note thgP|a) \"a—P\"t1a, Proposition 1 GIDAT). 0

In the following propositions we prove that, and= are closed under contexts; as a
consequence we obtain that both are congruences.

Proposition A4 P ~, Q impliesva: a.P~5a.Q.

Proof. It is enough to show that the relaticn =~, U{(a.P,a.Q)} is a weak asynchronous
bisimulation. O

Proposition A5 P =, Q impliesva: xa.P~; xa.Q.
Proof. It is enough to show that the relation

% ={(([]P"|*aP),([1Q"*aQ)) [N >0, (R, Q) e~a}

whereP" is a shorthand for the parallel compositionrotopies ofP and[]; P stands for
Pi|---|Pnl-- -, is a weak asynchronous bisimulation up~to

19

The proof proceeds as usual, by showing that every transdfothe left term can be
matched by a transition of the right one (and vice-versal, the pair composed by the ar-
rival processes is iR . The proof is straightforward by a simple case analysisaiditions,
as defined in Proposition 1. The most involved case is whemaramication occurs between
two subprocesses, let's sRyandP. Suppos@jiﬂf andeiP'Q. This means that, by Propo-
sition 1 (Com):

|_|P”'|*aP |‘|F>”'|F>nJ IR PI P *aP) =Ry

By Pk ~; Qx we know thale:Q((with P, ~a Q. We distinguish the following cases fQy:
Q;j=Qj: in this caseQ) ~a P| and, by Proposition 1qom):
(M +aQ=([] o QP IQF Q) k| *aQ) =Re
i)k

and(Rl, Ro) € ® by definition of .
Q,éQ’ this means that, by Proposition BAR):

(1Q" 1 *aQ=2('1Q '|Qj| aQ) =R.
i I#]

and we have to show th& | |'|b€95 ~a Rz. We distinguish two cases:
ac 6: from Pj ~, Qj we obtain thatj | [yep\ab ~a Q;. Moreover, remembering that
P: ~a Q,, we have (by definition oR):

) =1 _ —)
(M1 PP PR P] BIFK <aP)& ([QMQP Q¥ H1Q |Qkl +aQ)

ik beo\a i£],k

buta =, a, thus we also have (again by definitiono)

N —1 -1 = = 1
(1 PYIR" IR¥IP| [] bIRal+aP)x |'|Q Qe T1QjQkla| xaQ)

i#].k beb\a

by Proposition A1a|Q, ~ Q, thus

i phi—i -1 R n-fl
(I_|Pin|PjJ | P |Pj{||_Lb|P|2|*aP |_|Q Q' "1Qj*aqQ).
i#].k be 1#]

a¢ 0: from Pj ~5 Q; we obtain thaf | [Toceb ~a Q; |2. Moreover, remembering that
P ~a Qi, we have (by definition oR):

) =1 —_ =] =
(] P IR P 1|F1-||'Lb|Pa|*a.P>x<|'| M QR IQ) Al +aQ)
i)k be i)k

by Proposition A1a|Q, ~ Q, thus

i i—1 o1 Rhip N1 o
([RMIP" 1P P []BIR +aP)® ~ ([]QM Q) |Qj] +aQ).
I g St

20

Proposition A6 P =, Q impliesVR: P|R~5 Q|R.
Proof. The proof proceeds by showing that the relation

R ={(PIRQIR)[(P.Q) €~a}

is a weak asynchronous bisimulation upto
SupposeP| RYS by applying Proposition 1, we can distinguish the follog/icases ob-
tained by applying Proposition PAR) or (COM):

RYR: S=P|R; by Proposition 1 ¢AR), Q|R>Q|R and(P|R)% (Q|R)) by definition of
R;
PAP: p=aandS=P |R. By P =, Qwe haveQ=2Q' with P’ s, Q. By Proposition 1
6 (PAR), Q|R2Q/|Rand (P’ |R)% (Q'|R) by definition Ofﬂ%,}
P—P: u=06 and S= P |R By P ~, Q we have Q=Q and (P'|[ace03) ~a
(Q/l Haee\e’ E). o
By Proposition 1 AR), Q|R=Q'|[Rand (P'| [acg\0@|R) & (Q'| [ace\e @l R) follows
, from (P/u_laee/\ea) ~a (Q'| Mace\e @) and definition OfR ;
P=P andR=R: p=t1andS= P |R. P ~, Q impliesQ=Q andP’ ~,; Q. By Proposi-
{ayon 1 (COI\Q), Q|R= Q'|R and, by definition oz , (P'|R)% (Q |R);
P—P andR=R: p=1andS=P'|R. P ~, Q implies thatQ=Q'. We consider the fol-
lowing cases by distinguishing the possible value8:of
6 = {a}: inthis case?’ ~, Q. By Proposition 1 ¢om), Q|R=- Q'|R and, by definition
of®, (P'|R)& (Q|R); ~
otherwise: Q|R=-Q'|R by Proposition 1 #AR); we have to prove thé®’ |R | [Tpcob ~
Q' |R. We distinguish the following cases:
ac 6: fromP ~, Qwe obtainP’ | [pceab~a Q' by definition of% :

P b|R~Q|R
beb\a

and by Proposition AIR ~ R |3, thus
PIR|[1b~~aQ|R;
1
a¢ 0: from P ~, Qwe obtainP’ | [pee b ~a Q' |3, by definition of% :
P 1b|R~aQ|a|R
1

and by Proposition AIR ~ R |3, thus
1

Proposition A7 P =, Q impliesva,n>0: P\"a~,Q\"a.
Proof. The proof proceeds by showing that the relation:
. _ : ,-
% ={(F\"™a,Q;\"a)|n>0, (P.Q) e~a, PR, Q5Q;}

is a weak asynchronous bisimulation up~doWe distinguish the following cases:

21

(HID) R\ a—>P’\“+' a is denved byP—>P|’, if a not appears in. By Lemma Al (1),
P—>P—>P implies P—>P’—>P’ From P~;0Q We obtainQ= Q' with P’ ~, Q and by
Q—>QJ and Lemma Al (2)Q’—>Q’- and Q,éQ’, by Proposition 1 D), QJ \"*l
a:>Q’ \"*1 a. Finally, (P \""' a)%. (Q’ \" a) because oP’ ~, Q, P2 =P, Q’El Qj and
def|n|t|on of R ;

(HIDAT): B \™ aiP’ \" a is_derived byP—»P’ W|th & =6wa” andn = n+i—

m. By Lemma Al), P—>P3>P’ implies P—>P’—>P’ By P =, Q, Ql>Q’ with

(P'| Moey\or b) ~a (Q] Mbeor\y b). Suppose/ = ywa™ and, without loss of generality,
thatm > m. We can rewrite?’ | [Toey\o0 asP’'| @™ | [oeyiob and Q' | Mpeeny b as
Q| Mbes\yb, thus

P'1a"™ 1D~ (@] [] D)

bey\6 beb\y
Moreover, by Lemma Al (29:V>Q’ andQ‘in imply QjéQ’j andQ’i i» by Propo-
sition 1 (HIDAT), Qj \™ a-Q \"* i~ a,
We have to relate the proces$¥3™"'~™al [pey 0 b andQ; \" =" | Mpegyb.
By Proposition 1 §ipOUT), (P'| @™ ™ | Moeypeb) \™ ™ a=(P/| Mbeypeb) \""Ma and
(Q | Mbeory) \"™ a=(Q | Mbee\yd) \"~™ a; thus from (P'| @™ | pey0b) ~a
(Q'| Mbeo\yb) we obtain ((F| nbey\eB) \"Hfma) (@] Mbearyb) \™1~™ a), that is

P/ \MH—Ma| Mbey gbh~ =% ~ ~ Q] \nti-nt g nbee\y by Proposition A2.
(HIDOUT): P\ a—P \”+'+1a is derived byP%P/; P = B, 1 and by definition ofr we
have(P 1\ *1a)% (Qj \"" a). O

Proposition A8 Suppos@ =rda ora =wta. If M= N thena.M = a.N.

Proof. Consider the case = rd a. It suffices to show thatk C+, where

R = {((rda.M)g;, (rda.N)ge), ((retry)se, (retry)ae) }U
{{M)g:raa.8 (N)giraad) | (M) (a5, (N)o\(a);5) €2,
(M)o\japie = (M')g\(a1;5 @A (N) g faye = (N') o\ {2} }-
Note thatM = N impliesd =g (4 &', thusrda.d =g rda.¥'. O
Proposition A9 If M1 = N; and Mp = N> then My orElse Mz == Nj orElse Na.

Proof. It suffices to show that C=, where

R = {((M1 orElse M2)g:¢, (N1 orElse No)ge)}
U {((AorElse B),(C orElse D))‘ (M1)ge = A, (M2)g:e = B, (N1)g:e = C,
(N2)g:e = D, (A,C) €=, (B,D) €=}
U {(B,D)[(M1)gr;e = (retry)ors, (N1)gie = (retry)gs, (M2)are = B,
(N2)ge = D, (B,D) €=}
U {((end)o//;eg, (end)o//;&) ‘ (M1)gre = (end)o//;& (N1)gre = (end)ou;&}.

Note thatVlj = N;, fori = 1,2, ensures that, in case of successful termination, thétireslogs
have the same effects. O

22

Weak atomic bisimulation entails weak asynchronous bikitran, but the inverse does
not hold. E.gatom(rda.wta.end) ~; atom(end) butrda.wt a.end # end.
Proposition A10 M = N impliesatom(M) /23 atom(N).
Proof. By contr?gmtion suppose thatom(M) 4 atom(N). This means that tFtlDe% igdesuch
thatatom(M)===-P, with P = [ycwr (5 b, and for everyy such thattom(N) Q, with
Q= nbeWT b we hanP| |-|b€ (RD(®)\RD(S)?éa (Q| nbe (RD(8)\RD(&))b) This means that

a

there is ana such that(P| [Mbe(ro(5)\ro(8)) b)—> and (Q| Mbe(ro(8)\ro(&) /—» (or vice
versa).

By rules @TPAsS) and @TOK% e}ggd definition o, atom(M)L()P implies that there
is ao such thai{M)g:e = (end)q: 5—>P By definition of= there is @” such tha{N)g.¢ =
(end)g.57, With 8 =5 &, that iso'\ RD(3) W WT (6Q ,,g\ RD(8") WwrT (&"). Thus by rules
(ATPASS) and (ATOK) and Proposmon htom Q with Q Moewr () b.

Suppose = [Npewr (5 b—>, this means thaae WT (3). Fromo \ RD(8) WWT (8) = 0\
RD(8")WwWT (d") we thairWT (8) =wT(d")WRD(8)\RD(8"), hence 0Q = [pewr (&) b3

or nbe RD(d)\RD(J")) b—a’

Supposeae (RD(6”) \ RD(9)), thenwT (8”) = wT (d) WwRD(8") \ RD(d) implies that
acwt(d), thatisQ>.

In both cases we have a contradiction because we have assuimsd

(QI Moe(ro(3)\ro(57) D) A O
We can now prove the main results of Section 4.

Theorem Al (Theorem 1) Weak asynchronous bisimulaties is a congruence.
Proof. The result follows by Propositions A4-A10. a
Theorem A2 (Theorem 2) Weak atomic bisimulatioe: is a congruence.

Proof. The result follows by Propositions A8 and A9. a

B Proofs of laws in Table 4

Laws in Table 4 are proved, as usual, by showing appropriatmblation relations. In the
following casesk. is the proposed bisimulation. In what followsz o means that the nanee
does not appear io anda" € 0 means thag contains copies ofa.

(comm) a.a’.M = a’.a.M: Supposet = rda anda’ = rd b (the other cases are similar.)

R = {((rda.rdb.M)o;s,(rdb.rda.M)g;s)}
U {((rdb.M)giraa; (rda.M)g;zab), ((M")s:raa rab.5: (M”)girab raa.5)
|a",b™ e o, n,m> 0, (M)g\ (ab}:e = (M")o\[ab}:5}
U {((retry)se, (retry)qe) o}
U {((retry)ae, (rda.M)g.rab), ((retry)se, (retry)o;zan),
la¢ o,b™€ 0, m> 0}

U {((rdb-M)o;rdm (retry)oe), ((retry)oraa, (retry)oe)
la"co,b¢o,n>0}.

23

(D1ST) a.(M orElse N) = (0.M) orElse (a.N): SupposeM’ = rd a.(M orElse N) and
N’ = (rda.M) orElse (rda.N).

R = {(M)gge, (N)gg), (M)ge, (rda.M)g;e orElse (rda.N)g;e)}
U {((retry)oe, (retry)o;e orElse (rda.N)gg),
((retry)gs, (rda.M)ge orElse (retry)g:e),
((retry)ge, (retry)ge orElse (retry)ge), ((retry)ge, (retry)oe)
|a¢ o}
U {((M orElse N)gzqa, (M)g;raa orElse (N)g;zaa),
((M)g:e,(M)g:raa orElse (rda.N)ge), (M)g:e, (rda.M)ge orElse (N)graa)
|a" € o,n> 0}
U {
U {
U {
U {

(ASS) M1 orElse (M2 orElse M3) = (Mg orElse My) orElse Mg:

AorElse (N)graa,AorElse (rda.N)ge)

(M)giraa = A, @" €0, n> 0}
(M)g:raa orElse B, (rda.M)ge orElse B) | (N)graa = B,a" €0, n> O}
AorElse B,AorElse B)|(M)gzaa = A, (N)graa = B, @" € 0,n > 0}

~ o~ o~ o~

C,C) | (M)O';rda = (retry)o;é, (N)O';rda = C7 an co,n> O} .

® = {((M1 orElse (M orElse M3))gse, ((M1 orElse M2) orElse M3)g;),
((M1)g;e orElse (M2 orElse M3)ge, (M1 orElse My)g;e orElse (M3)gy) }
U {(AorElse (BorElseC),(AorElse B) orElse C),
(A orElse (M2 orElse M3)g, (A orElse (M2)g:e) orElse (M3)g:e),
((M1)g:¢ orElse ((M2)ge orElse C), (M1 orElse My)ge orElse C),
((M1)g:¢ orElse (B orElse (M3)ge),((M1)ge orElse B) orElse (M3)ge)
‘(Ml)c;s = A, (M2)g;e = B, (M3)g;e = C}
U {((M2 orElse M3)g':¢, (M2)g:e orElse (M3)gr:e), (D orElse E),D orElse E)
|(M1)gre = (retry)grs, (M2)oe = D, (Ma)gie = E}
U {(F, F)‘ (M1)gre = (retry)gs, (M2)gre = (retry)gry, (M3a)gre = F} .

(ABSRT1) 0.retry = retry: suppose =rda:

R = {((rda.retry)ge, (retry)se)}
U {((retry)oiraa, (retry)ce)|a” € 0, n > 0}
U {((retry)os, (retry)oe)lad o} .

24

(ABSRT2) retry orElse M =M « M orElse retry:

retry orElse M)ge, (M)g) }
retry)ge orElse A A), (A,A)‘ (M)gie = A}

(M orElse retry)gs, (M)o;s)}

end)g;5, (end)g; B)I(M)o;s = (end)o;5}

((
((
((
U {(AorElse (retry)ge,A)|(M)ge = A}
U {((
U {((retry)oe (retry)as)|(M)oe = (retry)os}

={(
u{
= {
{
{
{

(ABSEND) end orElse M = end:

R = {((end orElse M)gs, (end)gs), ((end)g:, (end)o;s)}
U {((end)ge orElse A, (end)g) |(M)ge = A} .
(AsY) aar,0:
% ={(aa0),(aa),(0,0)} .

(A-ASY) atom(rda.wta.end) a5 0:

R = {(atom(rda.wt a.end),0), ({(rda.wt a.end)o;s[}rda_wta,end,O)}
U {(ﬂ(Wt a-end)d;rdal}rda.wta.endy0)7 (ﬂ(end)o;rda.wta|}rda.wta.end70)‘an S 07 n> O}
U {(ﬂ(retry)o;sl}rda.wta.end70), (a,a), (0, 0)‘a§é O'} .

(A-1) atom(rda.end) ~; &

R = {(atom(rda.end),a), (ﬂ(rda-end)c;sﬂrda.enma)}
U {({I(end)d;rdal}rda.end;a), (0, 0)‘an co,n> O}

U {({(retry)oelraacna,d)|a¢ o} .

C Proof of Prposition 2

In this section we show that laws in Table 4 can be used foriediting redundant branches
from an atomic expression and obtaining an equivalent espwa in normal form (see proof
of Proposition 2.) Some preliminary results are needed.

The next proposition states thatkf’s reads includ&K’s thenK’ is bigger tharK in our
weak atomic preorder.

Proposition C1 Suppose K= A;.--- A, and K = By.--- .By, with A,B;j ::=rdaluta. If
RD(K) C RD(K’) then KO K'.

Proof. It is enough to observe that {(K)g¢ = (end)s:5 thenrRD(K’) C o (rules (ARDOK)
and (ARDF)); thusrRD(K) C g, and by (ARPOK) we get(K)g:e = (end)q.5. O

25

As a consequence of the previous proposition, we obtainithah orElse expression,
a redundant branch, that is a branch which includes the &faaisleast one of its preceding
branches, can be eliminated.

Proposition C2 Consider the expressiong K..,K, where, for i=1,...,n, K is of the form
Ao A, with A; i=rdalwta. If RD(Kj) € RD(Kn), for a j suchthab < j <n, then

K1 orElse --- orElse Ky_1 orElse Ky = Kj orElse --- orElse K,_1 .

Proof. The proof proceeds by using Proposition C1, the fact khatM’ = M if and only if
M 3O M’ (see pag. 13) andrElse’s rules in Table 3. O

As previously said, the proof of the following theorem shaawtto apply rules in Table 4
for rearranging an atomic expression into an equivalenfmnermal form.

Proposition C3 (Proposition 2) For every expression M there is an expressignifvhormal
form such that M=~ M.

Proof. The proof proceeds by induction on the structur&/of

M =end: M’ =M = end;
M =retry: M’ =M = retry;
M = a.N: by induction hypothesis, there is &hin normal form such tha¥l -~ N’. By Propo-
sition A8,a.N =« a.N’, thus by choosingyl’ = a.N’ we obtainM = M’;
M = N orElse N’: by induction hypothesis, there aNy andN}, in normal form, such that
N == Ng andN’ == N{. By Proposition A9M = N orElse N’ «» Ng orElse Nj. We choose
M’ by considering the following cases:
— if No = retry we chooseM’ = N;, because, byABSRT), retry orElse Ny = Ng;
— if Ng = Np, orElse ... orElse Np, and N} = N61 orElse - orElse Ném, con-
siderP = {jlke {1,...,n} : RD(Np,) C RD(N(')J_)}. If P = 0 this means thaM’ =
No orElse Nj is in normal form.
Otherwise, suppode={j1,..., ji } with ji < jw fori < w; by applying Proposition C2
and A9 and Ass) at every step, we have

26

No orElse Ny
« (by removingN()jl)
No orElse N} orElse --- orElse N, orElseN) orElse --- orElse N}

01 011—1 Ojl+1 Om
N i /
« (by removmgNojz)
Ng orElse N orElse --- orElse N, orElseN) orElse---

01 0j;-1 0jy+1

!/ ! !/
orElse NOJ,T1 orElse NOj2+1 orElse --- orElse NOm

« (by removingN()js)

« (by removingN()jl)
No orElse Nj orElse --- orElse N orElseNj orElse---
1 -1 g +1
! i !
orElse NOJ,T1 orElse NOj2+1 orElse --- orElse N0j|—1
orElse Nj orElse --- orElse N;
ji+1 m

= M’ (thatis in normal form.)

In every caseM’ = Np orElse Nj, thusM =« M’ O

D Proofs of Section 5

Legmma D1 (Lemma 1) Assume that's< s and P2P/, then there is a process’Buch that
P=P".

Proof. 8 < smeanss' <{ s, for somen > 0. The proof proceeds by induction anForn =0
we haves = .. Suppose > 0 ands 58*1 s’ <o s. The result follows by induction hypothesis
if we show thatP=-. We proceed by distinguishing the possible casesfety s according to
laws (TO1)-(TOA4).

(TO1) &' =rr" ands=r{a}r’, thuss’ =rr’ ands_rar’ P |mpI|esPéP1:>P2:> and by
Proposition A1P; ~ P |3, that ISP:>P2| a:> hencePi>

(TOZ) s =l a}r_and s=r{a}lr’, thus & = rlar’ and S = ralr’ P |mpILes
P:>Pl:§?2:>P3:> and by Proposition AT, ~ P, |3, that ISP:>P2| a:>P3| a:>P3:>
henceP=; <

(T03) s =rr and s = r{ajar, thus & = r’ and s = raf{a}r’. P= implies
PéPléPZ:Pgé hence by Proposition ARy ~ P, |3, that isP, can synchronize with
aandP=P, la= P3:> that |sP:>

(TO4) ¢' ={a;}---{a,} ands= {ay,---,an}, or viceversa; in this case= g’ by definition
of -. a

Lemma D2 (Lemma 2) Consider two traces s and r. If there is a process Q such that
0(s)==Qthenr<s.

27

Proof. The proof proceeds by induction en

s=ag: 0(s)=a.0()ando(s)== impliest = ar’ such thao (s)ﬁo (s’)r;. By induction

hypothesist’ < &, hence by prefixing, =ar <as =s,
s={ay,---,an}s: 0(s) = (Macfay, a1 @) | 0(S). We haveo (522, we can distinguish the
following cases depending an -
@ ¢ T by induction hypothesisp ()= impliesr < s and by (TO1),r < § <
{aa}--{an}so==0{ay, - ,an}s =5
ag, - a@, erfrfo_rv\{a;l,--- .8, } €{ag,---,an}: in this caser = &, - -Ti@, ki1 and
0(s)==2L By induction hypothesis; -+ f 1 < S

r

ro{a, }---rfai, e

= Aai}-{arrega (by (TO2)

=< Aay}--{a s (by induction and prefixing

= {a}---{an}s (by (TO1) and (TO2)
o==o{a1---an}s (by (TO4))

= 5

F=T1---Txand O(S’)M for {a&,,---,a&} C{a1,---,an}: by induction

T
hypothesisriaj; - - - 1@, ree1 = S and:

r = rq---rg
= nf{aja;-ndagarne (by (TO3)
= A{at-A{adnar - i@ (by (TO2))
= A{a,}--{a&js (by induction
= {a} - {an}so (by (TO1) and (TO2)
o==o{a1---an}s (by (TO4))
= S

The proof of the full-abstraction theorem is standard (sge[€]).
Theorem D1 (Theorem 3) For all processes P and Q, EmayQ if and only if P<may Q.

Proof. =: Supposé® <mayQ andP may Ofor any observe® we have to show th& may O
P may Omeans thaP | O=, that is there exists a trassuch thaP=- ando=.p LmayQ
implies that there exists < ssuch thaQé. g < simpliessw =< sw. By Lemma D1 and
o= we get thaD=X . Hence, fromQ=- we obtainQ| 0=, that isQ may O(P Ema).

<« SupposeP Ema Q and P=., we have to show that there exisfs< s such that(5:>.
FromP= and g(s)% we haveP| 0 (s)=, that isP mayo§v§v). HenceQ mayo (s), that
is Q|£(s)§'>. Thus, there exists' such thatQ=- ando(s)=, and, by Lemma D2 and

0(s)= we haves < s, that isP <may Q. o

28

Lemma D3 (Lemma 3) Assume M= | |ic; K is an expression in normal form. For every
indexiin{1,...,n} we haveatom(M);0; —* {(end)q;.5[lm ; 0i wherea; = RD(Kj) = RD(9d)
andwT (8) = wT (K;).

Proof. By definition of normal form. a

Corollary D1 Assume M= | Jic; ,Kiis an expressmn in normal form. The possible behavior
of atom(M) can be described astom(M)= [Mbewr (r;) b for every i€ 1..n whereg; is the
multisetrRD(K;).

Proof. By Lemma D3, rule £TOk) and definition ot O

We can prove now the main result of Section 5, that is that teating semantics is not
able to distinguish the behavior of an atomic expressiomfitte behavior of the corresponding
CCS process.

Theorem D2 (Theorem 3) For every expression M in normal form we have

atom(M)~may[M

Proof. The proof proceeds by using the alternative preorder idstédhe may preorder; in
what follows it is shown that:

1. atom(M) <may [M]};
2. [M]] €mayatom(M).

Remember tha¥l is in normal-form, thusvl = OrElsg_;
two points are shown in what follows.

..... nKi and[M] = Yi=1,.,

1. For proving thadtom(M) < may[[M]], we have to show thatssuch thattom(M)= there
existss < ssuch thafM]=-. We distinguish the following cases far
s=¢g: in this case we can choose= &;
s=0g;, ---&, with | > 0: by Corollary D1, thereis @< {1,...,n} such thad = RD(K;),

RD(KJ) o
atom(M)—=ag | - |am:>

with {a;,, -, &, }C {at, -+ ,am} =Wt (Kj).
SupposerD(K;j) = {by,---,bx}. By definition, [Kj]] = bs.--- . bx.(az| --- |am) with
{a1,- s ,8m} = WT (Kj). That is, if we choose theth summands ofM], we have
[M]= with 8 = {by} - {bu}ay, &, and by (TO4¥o= =0
2. For proving thaf{M] <mayatom(M), we have to show thats such thaf]M]= there

existss < ssuch thattom(M)=>. We distinguish the following cases far

s= {bl}---{bg}: s contains only input actions, thus we can choasSe- € < s and
atom(M)=;

s={b1}---{bc}ai---amwith m>0: in this case there is g € {1,...,n} such that
[[K,-]]:S>, {by,---,b} = RD(Kj) and {ay,--- ,am} € WT (Kj) (by definition of [-]}).
Supposes = RD(Kj), by Lemma D3,atom(M);0 = {(endD)q@)[}M with RD(0) =
RD(K;) andwrT (8) = wT (K;j). This means tha&tom(M): |‘|aEWT ;)& that
is (by (TO4)) there is as’ = RD(0)az---@no==0 {b1}---{bk}az-- = s such
thatatom(M)=>. O

29

