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Abstract: This paper presents a general methodology for identifying the dynamical
part of the continuous-time model of an articulated arm including flexibilities
dedicated to visual servoing. Based on this model, a H,, control law is designed
and implemented, allowing to reach high dynamics.
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1. INTRODUCTION

This paper! presents the application results of a
recently developed direct continuous-time model
identification approach to identify a flexible robot
arm for heart beating mouvement compensation.
Generally, robotic arms are designed as rigid in
order to be easily controllable. With the improve-
ments in real-time computation and the develop-
ment of control strategies allowing to efficiently
handle flexibilities, it is not necessary anymore
that the robots are rigid. This allows both to
reduce their cost and to spare space. Moreover
they become safier. This latter characteristic is
certainly the most important for emerging appli-
cation fields such as robotized surgery.

One emerging application in the medical domain
is compensation of physiological movements in the
context of robotic surgery (Ginhoux et al., 2005).
In this particular application, the robotic arm
must be light for safety reasons and the band-

1 This report is related to the paper presented at the 14th
IFAC Symposium on System Identification (SYSID’2006),
Newcastle (Australia), pp. 1264-1269, March 2006.

width must be high in order to follow properly
the heart movements. Furthermore, the working
configuration of the robot remains close to a nomi-
nal position that can be chosen in advance. Thus,
it is not necessary that the model accounts for
the nonlinearities due to a change of position.
Most approaches available for flexible arm control
rely on physical modeling. The traditional method
consists in deriving the dynamical model thanks
to the Euler-Lagrange equation with the assumed
mode method (see de Luca and Siciliano (1991) for
instance); the arm being torque controlled. The
main drawback of these methods is that the model
is hard to derive and can only be obtained with
reasonable time for few degrees of freedom (DOF').
Moreover, the parameters need to be estimated.
Besides, robotic systems generally include torque
and speed controllers implemented in the power
drives whose transfer functions are unknown. For
real-life applications, it is then crucial to be able
to identify the dynamical model through experi-
mental data.

System identification is an established field in the
area of systems analysis and control. Although



dynamical systems in the physical world are nor-
mally formulated in the continuous-time (CT)
domain, as differential equations, most system
identification schemes have been based in the past
on discrete-time (DT) models without concern
for the merits of the more natural continuous-
time models. Interest in CT approaches to system
identification has however been growing in the last
fifteen years. Furthermore, some recent publica-
tions have drawn attention to difficulties that can
be encountered when utilizing DT estimation al-
gorithms under conditions that are non-standard,
such as rapidly sampled data and systems with
widely different natural frequencies (Garnier et
al., 2003), (Ljung, 2003).

In this paper, we use a recently proposed identi-
fication method (Huselstein et al., 2004) for mul-
tiple input single output (MISO) continuous-time
linear systems described by multiple CT trans-
fer functions with different denominators. This
approach is based on the Simplified Refined In-
strumental Variable for Continuous-time systems,
denoted by SRIVC from hereon, which presents
the advantage of yielding asymptotically efficient
estimates in the presence of white measurement
noise. Another interesting advantage of using this
refined Instrument Variable (IV) method is that
a procedure based on the properties of the instru-
mental product matrix can be used for identifying
the model structure prior to parameter estima-
tion.

The main goal of this paper is therefore to present
the application results of this recently proposed
approach to identify a flexible robotic arm de-
signed for heart-beating tracking. The considered
methodology allows the model to include globally
all the dynamics of the system, including the joint
controllers. The obtained linear model is valid
around a nominal position of the robot and can be
recomputed easily as the camera is displaced. The
general context of visual servoing and the struc-
ture of the model are presented in Section 2. The
identification problem is then solved in Section 3.
Finally, the model is used for designing a H.,
controller and experimental results are presented
in Section 4.

2. ROBOTIC SETUP
2.1 A setup dedicated to heart tracking

The setup considered is a prototype serial robot
designed for heart beating movement compensa-
tion (see Figure 1). The arm has a light design
in order to reach high dynamics. Therefore, small
deflection may be expected during operation; the
corresponding flexibilities must be accounted for
in order to properly control the system.

Lightweight links robot
(Harmonic Drive —
DC brusless)

High—speed camera
DALSA™ 500Hz (256x256)

End-effector instrument
with laser and LED

Target (organ surface)

Organ motion
simulator
(Pan-tilt robot)

Fig. 1. Experimental setup
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Fig. 2. Camera image of the visual task

A fixed high-speed camera (500 Hz) is used for
evaluating the position of the instrument with re-
spect to the organ and displacing it synchronously
with the organ surface. Assuming that these fea-
tures are placed at the surface of the organ and
on the instrument, the task can be achieved by
2D visual servoing (Corke, 1996).

The chosen strategy uses some degrees of freedom
for heart-movement compensation and preserves
the others available for the surgeon. Three de-
grees of freedom being enough for positioning
the instrument in front of a given point of the
organ at a given distance, only the first 3 DOF
need to be considered. The first DOF is prismatic
and orthogonal with respect to the axes of the
others DOF'; their dynamics are then completely
decoupled. In the paper is then considered the xy
positioning of the tip of the instrument using the 2
first rotoid DOF. The instrument being equipped
with a laser, the goal is to control the robot so that
the projection of the laser follows the movements
of the target within the highest bandwidth.

Before validating the approach on living animals,
the system must be evaluated in laboratory. For
this purpose, the organ is replaced by a simple 2-
DOF arm (pan-tilt) that emulates the movements
of the heart (organ motion simulator shown in



Figure 1). The image provided by the camera
is shown in Figure 2. The two DOF considered
in the paper are used to force the effector laser
spot follow the center of mass of the three visual
markers linked to the target i.e. F' = [Az Ayl is
controlled to zero.

2.2 Visual servoing

Let us consider the system composed of the robot,
the camera and the target. The input signal w is
composed of the speed references to the joint con-
trollers. The outputs are the joint position vector
q and vector F of coordinates of the features in the
image. 2D visual servoing consists in controlling u
so that I’ converges to a reference F'™*.

The camera being either fixed with respect to the
reference frame, either placed on the robot, F' can
be written as a function of ¢ through the geometric
model F' = F(«), which is a static relationship,
provided that the robot is rigid. Let us now con-
sider the particular case where the joints are speed
controlled and where the joint-speed dynamics
can be neglected (& = u), a linearized model
F = J(a)u can be obtained where the interaction
matrix J(«) is the Jacobian of F'(«). The classical
control strategy is therefore u = kJ(a)(F* — F)
where J' denotes the pseudo-inverse of J. The
system then exhibits first order behavior and the
dynamics can be arbitrarily tuned by the scalar
k, provided that the assumptions are true. If the
working area is small enough, J! does not need to
be reevaluated and can be estimated numerically
by small displacements around the central posi-
tion. Practically, the bandwidth is limited by the
neglected dynamics.

2.8 Accounting for the dynamics

Several contributions have already been proposed
in order to obtain high-speed visual servoing. Pa-
panikolopoulos et al. took into account the effects
of the latencies in the visual loop in a LQG control
strategy (Papanikolopoulos et al., 1993). Corke
and Good used a linearized model of the visual
loop involving delays but also the dynamics of the
manipulator to tune PID controllers with a pole-
placement technique (Corke and Good, 1996).
More recently, it was proposed to account for the
dynamics of the joint-speed control loop (Gangloff
and de Mathelin, 2003). In this framework, the
model can be written as:

F=Ja)a (1)
a=H(s)u (2)

where H(s) contains the dynamics of the joint
speed control loops; it is considered as a linear
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Fig. 3. Angular velocities and pseudo angular
velocities step responses

time-invariant system to be identified from mea-
surements of v and «. If the joint controllers are
well tuned, the non-diagonal terms in H(s) can be
neglected and each single transfer function H(s)
can be independently estimated by using tradi-
tional SISO system identification methods. As the
dynamic model is identified from measurements of
u and «, it does not account for all the dynamics
affecting the system such as segment deflexions.

More recently, this previous method was gener-
alized. It was shown in (Cuvillon et al., 2004)
that the previous model (1,2) can account for all
the dynamics provided that (i.) the DOF of the
robot equals the DOF of the task and (ii.) H(s) is
identified from u and F'; & being computed from
& = J~1F. In this particular case, & does not cor-
respond anymore to the joint position but includes
fictitious displacements due to the deformations;
let us call it pseudo angular position. The obtained
model H (s) is different from the one obtained with
the previous method as soon as flexibilities are
effective. This approach has already been used
to design multivariable controllers (Cuvillon et
al., 2005). In this latter paper, each SISO model
was identified independently leading to a final
MIMO model of high order. The present paper fo-
cuses on the identification problem and shows how
the use of a recent MISO identification method
can help in obtaining a good controller. Notice
that H(s) is independent from the camera. In the
case of a camera displacement, it is only necessary
to estimate the corresponding interaction matrix
J that can be done easily before operation.

In order to evaluate the difference between the two
models previously mentioned, the step responses
of the angular velocities and pseudo-angular ve-
locities are given in Figure 3. The four curves
represent the angular velocities of the two joints
for step excitation respectively on uy (left hand
side) and ug (right hand side). The angular veloci-



ties are computed by differentiation of the angular
positions a1, as sampled at 500 Hz. The pseudo-
angular velocities are computed via & = J —1p
F being computed by differentiation and J being
estimated from small displacements. One can no-
tice that the responses of the actual angular veloc-
ities (in dashed) are well damped and decoupled
whereas the pseudo-angular velocities (in plain),
estimated from the feature velocities in the image
are not well damped and not so well decoupled.
The challenge presented in the paper consists in
identifying a linear model corresponding to the
pseudo-angular velocities.

3. CT MODEL IDENTIFICATION OF THE
ROBOT FLEXIBILITIES

In this section, the application results of one
particularly successful and recently developed
stochastic identification method (Huselstein et
al., 2004) are presented. This IV type of approach
not only ensures that the estimate converges to
statistically optimum values in the case of additive
white noise, it also generates information on the
parametric error covariance matrix which can be
used in an associated procedure to identify the
orders of the component transfer function models.
The proposed estimation scheme is available in the
CONTSID? toolbox.

The recently proposed version of the optimal
SRIVC method for multiple input single output
systems where the characteristic polynomials of
the CT transfer functions associated with each in-
put are not constrained to be identical (Huselstein
et al., 2004) is used here to estimate all transfer
functions G;;(s) defined in:

() - (0 &) () o

with :

3.1 Experiment design

Excitation signals are defined in order to sensitive
at best the bandwidth of the process while re-
specting the working constraints. The inputs are
therefore chosen as uncorrelated Pseudo Random
Binary Signals (PRBS) of maximum length with
suitable magnitude to stay around the operating
point for estimating a linear model. Portions of
experimental input-output signals are displayed in
Figure 4. The sampling time is set to 2 ms. Each
experiment lasts around 10 s. Several data sets

2 see http://www.cran.uhp-nancy.fr/contsid/
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Fig. 4. Portion of the raw input-output data used
for model identification

corresponding to different PRBS are collected.
One of the data sets is used for model order se-
lection and parameter estimation while the other
data set are reserved for model validation only.

3.2 Model order selection

The model order selection procedure presented
in (Huselstein et al., 2004) is used to determine
the transfer function orders of the flexible robot
arm model. For each output, a large number of
models are estimated for a wide range of model
orders. The best 10 model structures for each
output are given in Table 1. Here, the first two
columns specify the numerator orders for each
transfer function; the third and fourth column
report the denominator orders and the fifth and
sixth column are both model order selection cri-
teria: YIC (Young’s Information criteria, see e.g.
Young (2002)) and R2 is the well-known coef-
ficient of determination based on the simulation
error, defined as
52
R:Z=1- ag (5)

where 62, 62 denote respectively the variance

of the measured output and the variance of the
simulation error. R2. is a measure of how well
the model output explains to the system output
and will be close to 1 in low noise situations.
However, R% tends to overestimate the model
orders. The Young’s Information Criterion (YIC')
is more complex and provides a measure of how
well the parameters are defined statistically: the
more negative the Y IC, the better the definition.
However it may lead to underestimate the model
orders. Both criteria are inspected to find the
orders for which RZ is sufficiently high to indicate
a good explanation of the data and the YIC is
sufficiently negative to indicate well defined pa-
rameter estimates. Model structures that respect



Output 1, ay

mi1 mia nii nis YIC RQT
1 1 5 2 -8.033 0.721
1 2 5 2 -8.033 0.721
3 1 4 2 -7.624 0.727
4 1 4 2 -7.624 0.727
3 2 4 2 -7.624 0.727
4 2 4 2 -7.624 0.727
3 1 4 4 -7.473* 0.772
4 1 4 4 -7.473 0.772
1 1 2 2 -7.200 0.691
2 1 2 2 -7.200 0.691
Output 2, a2
ma1 Moz n21 Na22 YIC R2
1 1 4 2 -9.609 0.833
1 2 4 2 -9.609 0.833
1 3 4 4 -9.267" 0.870
1 4 4 4 -9.267 0.870
1 2 4 4 -9.237 0.862
2 3 4 4 -7.081 0.882
2 4 4 4 -7.081 0.882
2 2 4 4 -7.063 0.874
1 1 4 5 -6.905 0.873
1 2 4 5 -6.670 0.879

Table 1. Best 10 model structures ac-

cording to YIC and R%
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Fig. 5. Cross-validation results
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the above condition have finally been selected and

are referenced by ‘*’ in Table 1.

3.3 Cross-validation results

To evaluate the quality of the estimated transfer
function models, a cross-validation procedure has
been applied to data that were not used to build
the model. Cross-validation results are plotted in
Figure 5, where it may be observed that there
is a satisfactory reproduction of the two output
behavior by the transfer function matrix model.

The CT model identification approach exploited
here provides a reduced-order differential equation
model with stochastically defined parameters (the
parameter estimates and their associated covari-
ance matrix) that can be used for process simula-

w 3 —= Wi(s) —,—»{z}
| : =z
| () |
| o Y |
= G(s) —»@ i
K(s) |

Fig. 6. Generalized plant with weighting function
diagram
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Fig. 7. Closed-loop transfer functions

tion purpose or can be the basis for control system
design as presented in the next section.

4. Ho, CONTROL

Based on the synthesis scheme presented in Figure
6 where the control scheme is augmented of
weighting functions Wi (s) and Wa(s), the Glover-
Doyle algorithm (Doyle et al., 1989) enables to
design a controller K(s) allowing to stabilize the
system and minimize Hy, norm of transfer T,
from w to z. The weighting functions are tuned in
order to shape the closed-loop transfer functions.
Indeed, 7(W; ' (jw)) and &(Wy '(jw)) are tem-
plates for respectively &(Tey, (jw)) and &(Tyw (jw))
in the frequency domain. Good tracking proper-
ties are conferred by lowering (7., (jw) in low
frequencies; robustness is conferred by lowering
7(Tyw(jw)) in high frequencies (roll-off effect).
Design is done in the CT domain based on the
identified CT-model. Frequency responses and
templates corresponding to the chosen weighting
functions are shown in Figure 7. The obtained
bandwidth (20 rad/s) is enough for tracking heart
beating effectively.

The DT controller for implementation is obtained
using the Tustin bilinear transform. Simulation
and experimental results in response to step per-
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turbations are given in Figure 8. The perturbation
signal is followed properly with good decoupling
between the two axis. Moreover, the model and
the experimental setup exhibit very close behav-
ior.

5. CONCLUSION

This paper has presented the application results of
a recently developed direct continuous-time model
identification approach to identify a flexible robot
arm for heart beating mouvement compensation.
The direct continuous-time approach has been
chosen here since it offer advantages over alter-
native discrete-time model identification methods
when applied to systems such as the flexible robot
arm, with widely separated modes and rapidly
sampled data. Moreover, the chosen identifica-
tion procedure directly provides a continuous-time
transfer function model which has been used to
design a H., controller directly in the continuous-
time domain. Based on the identified model, the
designed control could effectively handle the robot
flexibilities.
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