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A new constitutive equation for elastoviscoplastic fluid flows

Pierre Saramito a

aLMC-IMAG, B.P. 53, 38041 Grenoble cedex 9, France

Abstract – From a thermodynamic theory, a new model for elastoviscoplastic fluid flow is presented.
It extends the Bingham viscoplastic model and the Oldroyd viscoelastic model. Fundamental flows are
studied: simple shear flow, uniaxial elongation and large amplitude oscillatory shear (LAOS). The com-
plex moduli (G′, G′′) are founded to be in qualitative agreement with experimental data for materials
that present microscopic network structures and large scale rearrangements.
Keywords – non-Newtonian fluid; viscoelasticity; viscoplasticity; constitutive equation.

1. Introduction

Various fluids of practical interest, such as foams, droplets in emulsions or red cells in blood, present a
viscoelastoplastic behavior : at low stress, the deformations are elastic and reversible while for a higher
stress, and after a yield stress value, the behavior is plastic and irreversible. Despite numerous experimen-
tal works and some proposition of models, there is not yet an available elastoviscoplastic model that is (i)
objective, i.e. independent of the observer, and that (ii) satisfies the second principle of thermodynamics.

The aim of the present article is to propose such a model. The first section presents the thermodynamical
framework, the second section explicits the constitutive equation and the third section develops the
complete set of equations governing such a flow. Finally, the last section studies its associated solution
on three simple flows: a simple shear flow, an uniaxial elongation and an oscillatory shear flow.

Three main dimensionless numbers appear : We, the Weissenberg number, that expresses memory effects
of the fluid, Bi, the Bingham number, that expresses the yield stress mechanism associated to plasticity,
and finally Re, the classical Reynolds number. The proposed model permits to recover the Bingham’s
viscoplastic model for We = 0, the Oldroyd’s viscoelastic model for Bi = 0, and the Navier-Stokes
equations for We = Bi = 0.

2. Thermodynamical framework

The state of the system is described by using two independent variables : the total deformation tensor ε
and an internal variable, the elastic deformation tensor εe. We have ε = εe + εm where εm represents
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the plastic deformation tensor. The generalized standard materials [3] are characterized by the existence
of a free energy function E and a potential of dissipation D, that are both convex functions of their
arguments. The proposed model that combines viscoelasticity and viscoplasticity, is represented by a
rheological scheme on Fig. 1 and writes:

E (ε, εe) = µ |εe|2 ,
D (ε̇, ε̇e) =ϕ ( ε̇ ) + ϕm (ε̇− ε̇e) (1)

where µ > 0 is the elasticity parameter and where |.| denotes the matrix norm, defined by a double

contraction of indices : |εe|2 = εe : εe. The functions ϕ and ϕm are expressed by :

ϕ (ε̇) =







η | ε̇ |2 when tr ε̇ = 0

+∞ otherwise
ϕm (ε̇m) =







ηm |ε̇m|2 + τ0 |ε̇m| when tr ε̇m = 0

+∞ otherwise
(2)

The ϕ function expresses the incompressible viscous
ε

εe εm

ϕ

µ ϕm

Figure 1. The rheological model.

behavior at macroscopic level and is associated to a
macroscopic viscosity η > 0 while the ϕm function ex-
presses the viscoplastic behavior at microscopic level,
by using a microscopic viscosity ηm > 0, acting on
continuous modification of the network links. and also
a yield stress value τ0 ≥ 0. When the stress becomes
higher than this value, some topological modifications
appear in the network of contacts. This model satis-
fies the second principle of thermodynamics: in the
framework of generalized standard materials (cf. [3]
and also [11,2]), this property is a direct consequence
of the convexity of both E and D.

3. The constitutive law

Let Ω be a bounded domain of R
N , where N = 1, 2, 3. Since both ϕ and ϕm are non-linear and non-

differentiable, the following manipulations involve subdifferential calculus from convex analysis. The ma-
terial constitutive laws write:

σtot ∈
∂E
∂ε

+
∂D
∂ε̇

and 0 ∈ ∂E
∂εe

+
∂D
∂ε̇e

where σtot is the Cauchy’s stress tensor. Using definition (1) of E and D, we get:

σtot ∈ ∂ϕ (ε̇) + ∂ϕm (ε̇− ε̇e) and 0 ∈ 2µεe − ∂ϕm (ε̇− ε̇e) (3)

The combination of the two previous relations leads to σtot − 2µεe ∈ ∂ϕ(ε̇). Then, by using expression
(A.3) of ∂ϕ from the technical annex, and by introducing the pressure field p, we get the following
expression of the total stress tensor: σtot = −p.I + 2ηε̇+ 2µεe when tr(ε̇) = 0. Then, the second relation
in (3) is equivalent to ε̇− ε̇e ∈ ∂ϕ∗

m (2µεe) where ϕ∗
m is the dual of ϕm. Let us introduce the elastic stress

tensor τ = 2µεe. The expression (A.2) of ∂ϕ∗
m in annex yields:

λτ̇ + max

(

0,
|τd| − τ0

|τd|

)

τ = 2ηmε̇ (4)
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where λ = ηm/µ is the relaxation time and τd = τ − 1
N tr(τ) I denotes the deviatoric part of τ .

4. The system of equations

Since the material is considered in large deformations, we choose to use the Eulerian mathematical
framework, more suitable for fluids flows computations. We assume that ε̇ = D(v) =

(

∇v + ∇vT
)

/2 is
the rate of deformation, while the material derivative τ̇ of tensor τ in the Eulerian framework is expressed

by the Gordon-Schowalter’s derivative :
2

τ= ∂τ
∂t + v.∇τ + τW (v) −W (v)τ − a (τD(v) +D(v)τ) where

W (v) =
(

∇v −∇vT
)

/2 is the vorticity tensor. The material parameter a ∈ [−1, 1] is associated to the
Gordon-Schowalter’s derivative. When a = 0 we obtain the Jaumann derivative of tensors, while a = 1
and a = −1 are associated to the upper and the lower convected derivatives, respectively.

The elastoviscoplastic fluid is then described by a set of three equations associated to three unknowns (τ,v, p):
the differential equation (4) is completed with the conservation of momentum and mass:



























λ
2

τ + max

(

0,
|τd| − τ0

|τd|

)

τ − 2ηmD(v) = 0

ρ

(

∂v

∂t
+ v.∇v

)

− div (−pI + 2ηD(v) + τ) = f

div v = 0

where ρ denotes the constant density and f a known external forces, such as the gravity. These equations
are completed by some suitable initial and boundaries conditions in order to close the system. For instance
the initial conditions τ(t=0) = τ0 and v(t=0) = v0 and the boundary condition v = vΓ on the boundary
∂Ω are convenient. The total Cauchy stress tensor writes σtot = −pI + 2ηD(v) + τ . Notice that when
τ0 = 0 the model reduces to the usual viscoelastic Oldroyd model [5,8] and when λ = 0 it reduces to
the viscoplastic Bingham model [1,7]. When both τ0 = 0 and λ = 0 the fluid is Newtonian and the set
of equations reduces to the classical Navier-Stokes equations associated to a total viscosity η0 = η + ηm.
Conversely, when both τ0 6= 0 and λ 6= 0 the fluid is elastoviscoplastic.

Dimensionless formulation – Let us introduce some classical dimensionless numbers:

We =
λU

L
, Bi =

τ0L

η0U
and Re =

ρUL

η0

where U and L are some characteristic velocity and length of the flow, respectively. We also use the
retardation parameter α = ηm/η0. The problem reduces to find some dimensionless fields, also denoted
by (τ,v, p) such that:



























We
2

τ + max

(

0,
|τd| −Bi

|τd|

)

τ − 2αD(v) = 0

Re

(

∂v

∂t
+ v.∇v

)

− div (−pI + 2(1− α)D(v) + τ) = f

div v = 0

(5)

where f denotes some known dimensionless vector field. These equations are completed by the initial and
boundaries conditions.
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5. Examples

5.1. Uniaxial elongation

The fluid is at the rest at t = 0 and a constant elongational rate ε̇0 is applied: the Weissenberg number
is We = λε̇0 and the Bingham number Bi = τ0/(η0ε̇0). All quantities presented in this paragraph are
dimensionless.

We = 0.75

We = 0.5

We = 0.25

τ11−τ22

t

(a)

10−1 100 101 102

100

102

104

ξ = 10−1

ξ = 10−2

ξ = 10−3

ξ = 10−4

ξ = 0τ11−τ22

t

(b)

10−1 100 101 102

100

102

104

Figure 2. Dimensionless first normal stress difference ψ = τ11 − τ22 for uniaxial elongation when Bi=1, a=1 and α=1: (a)
influence of We for ξ=0; (b) influence of ξ for We=0.75.

The flow is tridimensional and the dimensionless velocity gradient writes ∇v = diag(1,−1/2,−1/2). The
problem reduces to find τ11, τ22 and τ33 such that











We
dτ11
dt

+ (κ− 2aWe)τ11 = 2α

We
dτkk

dt
+ (κ+ aWe)τkk = −α, k = 2, 3

with the initial condition τ(t=0) = 0 and where κ = max (0, 1−Bi/|τd|). As above, since τ(0) = 0 and
τ(t) is continuous, there exists t0 > 0 such that when t ∈ [0, t0] we have |τd| ≤ Bi and thus κ = 0: this is
the linear flow regime. The eigenvalues of the system are −2aWe and aWe. For t > t0, the case κ > 0
occurs. Since κ ≤ 1, when aWe > 1/2 the solution is no more bounded, as shown on Fig. 2.a that plots
the dimensionless first normal stress difference ψ = τ11 − τ22. This drawback is still true when Bi = 0,
i.e. for the Oldroyd viscoelastic model. In the context of viscoelastic models, some alternate constitutive
equations that extends the Oldroyd model has been proposed. Let us consider the following constitutive
equation:

We
2

τ + (1 + ξ tr τ) max

(

0,
|τd| −Bi

|τd|

)

τ − 2αD(v) = 0 (6)

where ξ ≥ 0 is a new material parameter. For Bi = 0 we obtain the viscoelastic Phan-Thien and Tanner
model (see e.g. [6,9]). For ξ = 0 we obtain the previous elastoviscoplastic model (5) while for any ξ > 0
the solution remains bounded, as shown on Fig. 2.b for We = 0.75.
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5.2. Simple shear flow

The fluid is at the rest at t = 0 and a constant shear rate γ̇0 is applied: the Weissenberg number is
We = λγ̇0 and the Bingham number Bi = τ0/(η0γ̇0).

τ12

τ11 − τ22

t

(a)

10−1 100 101 102
10−2

10−1

100

101

τ12

τ11 − τ22

t

(b)

10−1 100 101 102
10−2

10−1

100

101

τ12

τ11 − τ22

t

(c)

0 10 20 30

−1

0

2

Figure 3. Simple shear flow for We = 1 and α = 8/9: (a) a = 1 and Bi = 1; (b) a = 0 and Bi = 1; (c) a = 0 and Bi = 2.

The flow is bidimensional and the dimensionless velocity gradient is constant: ∇v = ([0, 1]; [0, 0]). The
problem reduces to find τ11, τ22 and τ12, from R

+ to R, such that

We
d

dt











τ11

τ22

τ12











+We











0 0 −(1 + a)

0 0 1 − a
1 − a

2
−1 + a

2
0





















τ11

τ22

τ12











+ κ











τ11

τ22

τ12











=











0

0

α











(7)

with the initial condition τ(0) = 0 and where κ = max (0, 1−Bi/|τd|) and |τd|2 = (1/2) (τ11 − τ22)
2

+ 2τ2
12.

Let ψ = τ11 − τ22 be the dimensionless normal stress difference. Then τ11 =
1 + a

2
ψ and τ22 = −1 − a

2
ψ.

The solution (τ12, ψ) is represented on Fig. 3. Since τ(0) = 0 and τ(t) is continuous, there exists t0 > 0
such that when t ∈ [0, t0] we have |τd| ≤ Bi and thus κ = 0: this is the linear flow regime. The eigenvalues
of the system are 0 and ±i

√
1 − a2. At t = t0, |τd| reaches Bi. Then, for t > t0, the non-linear factor

κ > 0 occurs: the corresponding term amortizes the grown of the solution, that remains bounded. When
a = 1 (see Fig. 3.a, where τ22 = 0) and when |a| < 1 and Bi (see Fig. 3.b, where τ22 = −τ11) is small
enough, the solution tends to a constant. Remark the overshoot of the solution when |a| < 10 (Fig. 3.b).
When |a| < 1 and Bi becomes large, instabilities appear, while the solution remains bounded (Fig. 3.c).

Notice that the dimensionless steady shear viscosity ηs/η0 coincide with σ12 = 1−α+τ12 the dimensionless
shear stress. When the solution becomes stationary, let us observe the dimensionless steady shear viscosity
ηs/η0 as a function of We on Fig. 4. The material presents a shear thinning character. For large We,
the shear viscosity tends to a plateau when ξ = 0 (Fig. 4.a) and decreases monotonically when ξ > 0
(Fig. 4.b). This shear thinning behavior is more pronounced when Bi increases: the value of Bi controls
the plateau at small values of We.
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Bi = 0

Bi = 1

Bi = 2

Bi = 4

(a)ηs/η0

We

10−2 10−1 100 101 102

100

101

Bi = 0

Bi = 1

Bi = 2

Bi = 4

(b)ηs/η0

We

10−2 10−1 100 101 102

100

101

Figure 4. Shear viscosity for a = 1, α = 1 and (a) ξ = 0; (b) ξ = 0.015.

5.3. Periodic shear flow

An oscillatory shear flow is applied: the imposed shear strain is γ0 sin(ωt) and the shear rate becomes
γ0ω cos(ωt). The Weissenberg number is defined by We = λω and the Bingham number by Bi =
τ0/(η0γ0ω).

The flow is bidimensional and the velocity gradient is periodic: ∇v(t) = ([0, cos t]; [0, 0]). The problem
reduces to find τ11, τ22 and τ12, from R

+ to R, such that






























We
d

dt











τ11

τ22

τ12











+ F(t, τ) =











0

0

α cos t











in ]0, 2π[

τ(0) = τ(2π)

(8)

where

F(t, τ) = We cos(t)Aa











τ11

τ22

τ12











+ κ











τ11

τ22

τ12











and κ = max (0, 1−Bi/|τd|) and |τd|2 = (1/2) (τ11 − τ22)
2

+ 2τ2
12.

5.3.1. The solution for Bi = 0

The case Bi = 0 is asymptotically reached when the amplitude γ0 becomes large. The material behaves
as a viscoelastic fluid and the system reduces to:
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





















We
dτ11
dt

−We(1 + a) cos(t)τ12 + τ11 = 0

We
dτ22
dt

+We(1 − a) cos(t)τ12 + τ22 = 0

We
dτ12
dt

+
We cos(t)

2
((1 − a)τ11 − (1 + a)τ22) + τ12 = α cos(t)

together with periodic boundary condition τ(0) = τ(2π). By introducing the first normal stress difference
ψ = τ11 − τ22, the system can be rewritten in a more compact form:



































We
dψ

dt
+ ψ = 2We cos(t)τ12

We
dτ12
dt

+ τ12 = α cos(t) − We(1 − a2) cos(t)

2
ψ

ψ(0) = ψ(2π) and τ12(0) = τ12(2π)

τ11 =
1 + a

2
ψ and τ22 = −1− a

2
ψ

When a = ±1 the system admits an explicit solution:

ψ(t) =
αWe

(1 +We2)(1 + 4We2)

(

(1 + 2We2) cos(2t) + 3We sin(2t) + 1 + 4We2
)

(9)

τ12(t) =
α

1 +We2
(cos(t) +We sin(t)) (10)

Otherwise, when |a| < 1, the solution has no explicit form to our knowledge.

5.3.2. The solution for large Bi

The case Bi→ +∞ is reached when the amplitude γ0 becomes small. The material behaves as an elastic
solid. Moreover, there exists a finite value Bic > 0 such that when Bi > Bic then the solution satisfies
|τd| < Bi. In that case, the system reduces to:























We
dτ11
dt

−We(1 + a) cos(t)τ12 = 0

We
dτ22
dt

+We(1 − a) cos(t)τ12 = 0

We
dτ12
dt

+
We cos(t)

2
((1 − a)τ11 − (1 + a)τ22) = α cos(t)

together with the periodic boundary condition τ(0) = τ(2π). Let ψ = τ11 − τ22. Combining the previous
equations, we get



































We
dψ

dt
= 2We cos(t)τ12

We
dτ12
dt

= α cos(t) − We(1 − a2) cos(t)

2
ψ

ψ(0) = ψ(2π) and τ12(0) = τ12(2π)

τ11 =
1 + a

2
ψ and τ22 = −1− a

2
ψ

When a = ±1 the solution is known explicitly:
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ψ(t) =
α(c− cos(2t))

2We
(11)

τ12(t) =
α sin(t)

We
(12)

where c is an arbitrary constant. In that case |τd(t)| is maximum for t = π/2 when c ≥ 0 and t = −π/2
when c ≤ 0. We have:

max
t∈[0,2π]

|τd(t)| =
α

2
√

2We
((1 + |c|)2 + 16)1/2

Let

Bic :=

√

17

8

α

We

Then, when Bi ≥ Bic, there exists a periodic solution τ(t) for all t in [0, 2π] such that |τd(t)| ≤ Bi in
[0, 2π] and this solution is expressed by (11)-(12).

5.3.3. The solution for Bi ∈ ]0, Bic[

Problem (8) is approximated by using a centered second order scheme:






























We

2∆t











τn+1
11 − τn−1

11

τn+1
22 − τn−1

22

τn+1
12 − τn−1

12











+ F(tn, τ
n) =











0

0

α cos tn











τ0 = τN

(13)

with tn = 2πn/N , n = 0 . . .N , ∆t = 2π/N and τn ≈ τ(tn). This is a N by N non-linear system of
equations that we solve by using a non-linear Gauss-Seidel iterative algorithm. We use N = 1000 points
in the [0, 2π] interval, and iterations are stopped when the maximal residual term in the discrete non-
linear problem (13) becomes lower than 10−12. Fig. 5 shows the solution τ12 and τ11 (while τ22 = 0) for
a = 1, Bi = 3, α = 1 ξ = 0, and We = 0.1, 0.05 and 0.025. When a = 0 the components τ12 and τ11 are
comparable up to a slight variation, while τ22 = −τ11, and the corresponding solution is not represented.

5.3.4. Fourier analysis

The solution σ12 = (1 − α)γ̇ + τ12 expands as:

σ12(t) =
∑

k≥1

ak sin(kt) + bk cos(kt)

where the coefficients are expressed by:

ak =
1

π

∫ 2π

0

σ12(t) sin(kt) dt and bk =
1

π

∫ 2π

0

σ12(t) cos(kt) dt

When the response is linear we have ak = bk = 0 for all k ≥ 2. There are two cases when this situation
occurs: when Bi = 0 while the material behaves as a viscoelastic fluid, and when Bi → +∞ while its
behaves as an elastic solid. Otherwise, only odd harmonics appear. In [4], the authors propose large
amplitude oscillatory shear as a way to classify complex fluids. Following this approach, we observe on
Fig. 7 that the third harmonic contributes of about 20% of the first harmonic, and higher harmonics decay
very fast. See also [12, p. 74] for a comparable observation, based on a comparison between experimental
data on a linear hight-density polyethylene melt and several theoretical models. See also Fig. 11 in [4]
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We = 1/10
We = 1/20
We = 1/40

t

τ12(t)

Bi

0 π 2π

-1

0

1

We = 1/10
We = 1/20
We = 1/40

t

(τ11 − au22)(t)

We

0 π 2π
0

10

20

Figure 5. Periodic shear flow: influence of We = 0.1, 0.05, 0.025 for ξ=0 : (top) τ12/Bi; (bottom) τ11/We.

for a similar observation based on experimental data for a xanthan gum solution. Therefore, the moduli
obtained from the first harmonic via Fourier transformation analysis are not substantially different from
the moduli calculated neglecting higher harmonics, as in the linear regime. By extension to the linear
regimes, let us introduce the in-phase moduli G′ and the out-of-phase moduli G′′: there are related to
the first Fourier coefficients by G′ = a1 and G′′ = b1. When Bi ≥ Bic, the material behaves as an elastic
solid, the regime is linear and the solution is independent of Bi. The corresponding values of G′ and G′′

are denoted by G′
e and G′′

e . When a = ±1, from (12), we have

G′
e = α/We and G′′

e = 1 − α
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We = 1/10
We = 1/20
We = 1/40

γ(t)

τ12(t)

Bi

-1 0 1

-1

0

1

We = 1/10
We = 1/20
We = 1/40

γ̇(t)

τ12(t)

Bi

-1 0 1

-1

0

1

Figure 6. Lissajous plots: influence of We = 0.1, 0.05, 0.025 for ξ = 0 : (left) τ12/Bi versus γ(t) = sin(t) ; (right) τ12/Bi
versus γ̇(t) = cos(t).
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Figure 7. Periodic shear flow: intensities of the harmonics normalized by the intensity of the fundamental frequency:
We = 1/40, Bi = 3, a = 1 and α = 8/9.

Conversely, when Bi vanishes, the material behaves as a viscoelastic fluid: the constitutive equation is
also linear and the solution is expressed by (10). The corresponding values of G′ and G′′ are denoted by
G′

el and G′′
el:

G′
ve =

αWe

1 +We2
and G′′

ve = 1 − αWe2

1 +We2

10



In the non-linear case, the moduli (G′, G′′) are computed by using the solution (τn)0≤n≤N of the approx-
imate problem (13):

G′ ≈ 2

N

N
∑

n=1

τn
12 sin(tn) and G′′ ≈ 1 − α+

2

N

N
∑

n=1

τn
12 cos(tn)

Fig. 8 plots G′ and G′′ versus the dimensionless number Bi−1 = γ0η0ω/τ0. This is a dimensionless
version of the moduli plots since most figures in the literature are based on the representation of the
moduli versus the amplitude γ0. Only G′′ shows an overshoot: this behavior matches the type III of the

We=1/10
We=1/20
We=1/40

G′

Bi−1

10−3 10−2 10−1 100 101 102
10−2

10−1

100

101

102

103

We=1/10
We=1/20
We=1/40

G′′

Bi−1

10−3 10−2 10−1 100 101 102
10−2

10−1

100

101

102

103

Figure 8. Periodic shear flow: moduli versus Bi−1 for a = 1: (left) G′; (right) G′′.

classification introduced in [4] when using large amplitude oscillatory shear: many materials that present
such a behavior are listed on page 61. See also Fig. 7.b of this reference for the (G′, G′′) plot of a xanthan
gum 4% solution. The micro-structure of this class of materials is characterized by a network of links that
develops some complex structures. When an external strain is imposed, the complex network structure
is destroyed by large deformation over a critical strain. In [10], based on a network model, the authors
explain the overshoot of G′′ in term of the balance between the formation and the destruction of the
network junctions.

Conclusion

A new model for elastoviscoplastic fluid flows that is objective and satisfies the second principle of
thermodynamics is proposed in (5). A variant of the constitutive equation is also introduced in (6) in
order to enforce finite extensional properties of the material. Large amplitude oscillatory shear (LAOS) has
been performed and complex moduli (G′, G′′) are qualitatively in good agreement with experimental data
for many materials that present microscopic complex network structures with large rearrangements. The
model is a good candidate for numerical simulation of elastoviscoplastic in multidimensional geometries:

11



future works will perform such computations and compare it with experimental data measurements on
complex geometries.
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Appendix A. Subdifferential calculus

A.1. The ϕm function – The subgradient ∂ϕm, as introduced in (2), is defined for any tensor D by:

∂ϕm(D) = {τ, τ : (H −D) ≤ ϕm(H) − ϕm(D), ∀H}
= {τ, jm(D) ≤ jm(H), ∀H with tr(H) = 0 and tr(D) = 0}

with the notation jτ (H) = ηm|H |2 + τ0|H | − τ : H . When the minimizer D of jτ over the kernel of the
trace operator Ker(tr) is non vanishing, it satisfies, from the theory of Lagrange multipliers:

∇jτ (D) − p.∇tr = 0 and tr(D) = 0

where p is the Lagrange multiplier. Then 2ηD + τ0
D
|D| − τ − p.I = 0 and tr(D) = 0. Thus the subgradi-

ent finally writes:

∂ϕ(D) =























{τ, |τd| ≤ τ0} when D = 0
{

τ, τ = −p.I + 2ηmD + τ0
D

|D|

}

when D 6= 0 and tr(D) = 0

∅ otherwise

(A.1)
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where τd denotes the deviatoric part of τ . The dual ϕ∗
m of ϕm is then characterized by the Fenchel

identity, that is, for any τ ∈ ∂ϕm(D), by ϕ∗
m(τ) = τ : D − ϕm(D). Moreover, τ ∈ ∂ϕm(D) is equivalent

toD ∈ ∂ϕ∗
m(τ). From τ+p.I = (2ηm+τ0/|D|)D we get |τd| = 2ηm|D|+τ0 and thus |D| = (|τd|−τ0)/(2ηm).

Finally:

∂ϕ∗
m(τ) =

{

D, D =
1

2ηm
max

(

0,
|τd| − τ0

|τd|

)

τd

}

(A.2)

A.2. The ϕ function – The function ϕ, as introduced in (2), is a particular case of ϕm with ηm := η and
τ0 := 0. From (A.1), the subgradient writes:

∂ϕ(D) =







{τ, τ = −p.I + 2ηD} when tr(D) = 0

∅ otherwise
(A.3)
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