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Pierre Nolin

École Normale Supérieure and Université Paris-Sud

Abstract

We study gradient percolation for site percolation on the triangular
lattice. This is a percolation model where the percolation probability
depends linearly on the location of the site. We prove the results
predicted by physicists for this model. More precisely, we describe the
fluctuations of the interfaces around their (straight) scaling limits, the
expected and typical lengths of these interfaces. These results build
on the recent results for critical percolation on this lattice by Smirnov,
Lawler, Schramm and Werner, and on the hyperscaling ideas developed
by Kesten.

1 Introduction

We study some aspects of “gradient percolation”. This is a model of inho-
mogeneous site percolation where the probability for each site to be occupied
varies along some fixed direction, for instance the y-axis in the plane. It has
been introduced by physicists (see [21, 22]) who argued that this is one of
the cases in which one can actually “see” some aspects of critical percolation
in real life.

Since we will be concentrating on the triangular planar lattice anyway,
let us briefly describe the model in this particular case, even if it makes
sense for other lattices and dimensions.

Recall that if one colors each cell of a honeycomb lattice independently
in black or white with respective probability p and 1−p, then when p > 1/2
there is an infinite connected component of black cells, and when p < 1/2
there is an infinite connected component of white cells. The number 1/2
is called the critical probability of this homogeneous percolation model :
the particular value p = 1/2 gives rise to critical percolation. This model
has recently received a lot of attention, which has led among others to the
computation of the “critical exponents” (see [27]).
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Suppose now that a large integer N is given. We now consider an in-
homogeneous percolation model, where each cell z is colored in black and
white independently, but with a probability that depends on z. More pre-
cisely, a cell z with y-coordinate equal to y(z) ∈ [0, N ] will be colored in
black with probability p(z) = y/N (when y < 0, we take p(z) = 0 and when
y > N , we take p(z) = 1). It is then easy to see that there almost surely is
a (unique) infinite black connected component (that contains the half space
{y > 1}) and a unique white connected component (containing the half-
space {y < 0}). Furthermore, the uppermost boundary of this white cluster
and the lower boundary of the black cluster coincide. This separating curve
is called the “percolation front”.

Intuitively, it is quite clear what happens when N is large. The percola-
tion front will tend to be localized near the line {y/N = 1/2}. Furthermore,
since at this level, the percolation is close to critical, the fine structure of
the percolation front will be described in terms of critical percolation and
its critical exponents.

Let us now briefly describe the main results of the present paper. Sup-
pose that we restrict ourselves to a strip of height N and of length ℓN . Then,
as N → ∞ (provided ℓN goes to infinity too – not too fast but not too slowly
– for instance ℓN = N is OK for what follows), one can with high probability
still define “the” percolation front separating the two “giant components”.
We call RN the front, and TN its length (i.e. number of steps). We shall
see that for each positive δ, when N → ∞, and with high probability:

• The front will remain in the strip of width N4/7+δ near the line {y =
N/2}.

• The front will not remain in the strip of width N4/7−δ near the line
{y = N/2}.

• The expected length tN = E[TN ] of the front satisfies N3/7−δℓN ≤
tN ≤ N3/7+δℓN .

• TN is close to its expected value, i.e. TN/tN is close to 1.

The proofs of these results build on the following mathematical results
and ideas : Kesten’s hyperscaling relations [16], Smirnov’s conformal invari-
ance result [26], and the computation of the critical exponents for SLE6

by Lawler, Schramm and Werner [18]. More precisely, we shall use directly
results of the latter two papers, and develop further some ideas introduced
in the first one.
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Figure 1: A simulation for N = 50 and ℓN = 100

These results had been conjectured by Sapoval et al. in [21, 22] and also
raised in the percolation survey paper by Beffara and Sidoravicius in the
Encyclopedia for mathematical physics [2].

In fact, it is rather easy to simulate gradient percolation. It has turned
out to be an efficient practical tool to obtain numerical estimates for the
critical probability of percolation on various lattices (by using the mean
height of the front in order to approximate pc, see e.g. [23, 24]), for instance
square lattice, and it has also been one of the first ways to get numerical
evidence for values of the critical exponents of critical percolation (that
then supported the conjectures based on Coulomb gas and conformal field
theory).

Let us stress the fact that the anisotropy of this model yields that despite
the fact that the front converges to a straight line in the fine mesh limit (i.e.
a curve of dimension one), its length for a lattice approximation of mesh-
size δ (in a rhombus) behaves roughly like δ−3/7 (i.e. it has δ−10/7 steps).
Here, the critical exponents do not correspond to a fractal dimension for the
limiting object.

2 Preliminaries for (standard) percolation

We recall in this section some known facts concerning percolation (not gra-
dient percolation) that we will use later on.
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2.1 Setting

The setting in this paper will be site percolation in two dimensions on the
triangular lattice. We will represent it as usual as a random (black or white)
coloring of the faces of the hexagonal lattice. It has been proved by Harry
Kesten [12] and it is by now a classical fact that for this model, the critical
probability is pc = 1/2 and that there is almost surely no infinite cluster
when the percolation parameter is taken to be 1/2. The reason why we focus
here on this lattice is that it is (at present) the only one for which conformal
invariance in the scaling limit has been proved (Smirnov [26]). Conformal
invariance combined with the study of SLE by Lawler, Schramm and Werner
[17, 18] entails the exact value of the so-called “critical exponents” that
will be instrumental in our considerations. For some other lattices, some
inequalities have been proved, that should imply weaker but nevertheless
interesting statements, but we will not develop this aspect in the present
paper.

The percolation parameter will be denoted by p : each site is occu-
pied with probability p, and vacant otherwise, independently of each other.
The corresponding probability measure on the set of configurations will be
referred to as Pp, and Ep will be the expectation. We will use oblique coor-
dinates, with the origin in 0 and the basis given by 1 and eiπ/3 (in complex
notation). The parallelogram of vertices aj +bke

iπ/3 (j, k = 1, 2) will thus be
denoted by [a1, a2] × [b1, b2], and we will often use S(n) = [−n, n] × [−n, n]
and refer to it as the “box of size n”.

For two positive functions f and g, f ≍ g means that there exist two
positive and finite constants C1 and C2 such that C1g ≤ f ≤ C2g (so
that their ratio is bounded away from 0 and +∞), and f ≈ g means that
log f/log g → 1 (when p → 1/2 or when n → ∞, which will be clear from
the context).

We now recall some relevant results on critical percolation that we will
use in the present paper.

2.2 Arm exponents

We first briefly recall some facts concerning critical exponents for the exis-
tence of a certain number of “arms”. These exponents describe the asymp-
totic behavior of the probability of certain exceptional events :

Let us consider a fixed integer j ≥ 2. For each positive integers m ≤ n,
define the event Aj(m,n) that there exist j disjoint monochromatic paths
from ∂S(m) to ∂S(n) that are not all of the same color (each path is either
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0

S(n)

Figure 2: The triangular lattice, its associated basis and S(n)

completely open/occupied or completely closed/vacant, and there is at least
one vacant path, and one occupied path). As noticed in [1, 27], we could
also prescribe the cyclic order of the paths without changing the results that
we state below.

Combining the property of conformal invariance in the scaling limit (see
[26, 6]) with the study of SLE made by Lawler, Schramm and Werner [18],
it has been proved that :

Proposition 1 ([27]). For all fixed j ≥ 2, m ≥ j,

P1/2(A
j(m,n)) ≈ n−(j2−1)/12 (1)

when n → ∞.

In fact, we will use this result only for j = 2, 3 and 4. Let us just remark
that to derive these three exponents, it might be possible to bypass the use of
the rather involved results of Camia and Newman [6] as these are exponents
related to outer boundaries of clusters so that “universality”-based ideas
might just be enough.

The value of the related “one-arm” exponent is 5/48 and has been derived
in [20], but we shall not need it in the present paper.
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2.3 Behavior near criticality

In the seminal paper [16], Harry Kesten showed how the behavior of perco-
lation at its critical point was related to the asymptotic behavior of percola-
tion near its critical point, and derived the so-called hyperscaling relations
that link some of the previous arm exponents to other critical exponents
describing the behavior of connectivity probabilities near p = pc.

A key idea in his article is to use a certain “characteristic length” L(p)
defined in terms of crossing probabilities (sometimes referred to as “sponge-
crossing probabilities”). This idea was also used in papers concerning finite-
size scaling, e.g. [7, 8, 4, 5]).

Let us introduce some more notation. We will denote by CH([a1, a2] ×
[b1, b2]) (resp. CV ([a1, a2]× [b1, b2])) the event that there exists a horizontal
(resp. vertical) occupied crossing of the parallelogram [a1, a2]× [b1, b2], and
by C∗

H , C∗
V the same events with vacant crossings. So, we have for example

Pp(CH([a1, a2] × [b1, b2])) = 1 − Pp(C
∗
V ([a1, a2] × [b1, b2])) (2)

Consider now rhombi [0, n]× [0, n]. At p = 1/2, Pp(CH([0, n]× [0, n])) =
1/2. When p < 1/2 (sub-critical regime), this probability tends to 0 when
n goes to infinity, and it tends to 1 when p > 1/2 (super-critical regime).

We define a quantity that will roughly measure the scale up to which
these crossing probabilities remain bounded away from 0 and 1. For each
fixed ǫ0 > 0, we define

L(p, ǫ0) =

{

min{n s.t. Pp(CH([0, n] × [0, n])) ≤ ǫ0} when p < 1/2

min{n s.t. Pp(C
∗
H([0, n] × [0, n])) ≤ ǫ0} when p > 1/2

(3)

If we use the Russo-Seymour-Welsh theory (see e.g. [11, 13]), we see that
for each k ≥ 1, there exists some δk > 0 (depending only on ǫ0) such that

∀N ≤ L(p), Pp(CH([0, kN ] × [0, N ])) ≥ δk (4)

These estimates for crossing probabilities are then the basic building
blocks on which many further considerations are built. One of the main
results of Kesten’s paper [16] is for instance the following one-arm probability
estimate :

Pp[0 ∂S(n)] ≍ P1/2[0 ∂S(n))] (5)

for all n ≤ L(p) (uniformly in p). In Section 4.1 of the present paper, we
will derive the analogous result for “two-arm probabilities”.
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This result is basically saying that when n is not larger than L(p), things
can be compared to critical percolation. On the other hand, the definition
of L(p) shows that when n > L(p), the picture starts to look like super/sub-
critical percolation. For instance:

Lemma 2 (exponential decay with respect to n/L(p)). If ǫ0 has been
chosen sufficiently small, there exists a constant C > 0 such that for all n,
all p < 1/2,

Pp(CH([0, n] × [0, n])) ≤ Ce−n/L(p) (6)

Variants of this result are implicitly used or mentioned in Kesten’s paper
[16] or in other papers on finite-size scaling. We now give its proof, as it
just takes a couple of lines and clarifies things.

Proof. Observe first that for all integer n,

Pp(CH([0, 2n] × [0, 4n])) ≤ C ′[Pp(CH([0, n] × [0, 2n]))]2 (7)

with C ′ = 102 some universal constant. It suffices for that (see figure) to
divide the parallelogram [0, 2n]× [0, 4n] into 4 horizontal sub-parallelograms
[0, 2n]×[in, (i+1)n] (i = 0 . . . 3) and 6 vertical ones [in, (i+1)n]×[jn, (j+2)n]
(i = 0, 1, j = 0 . . . 2). Indeed, consider a horizontal crossing of the big
parallelogram : we can extract from it two pieces, one between its extremity
on the left side and its first intersection with the vertical median x = n, and
in the same way another one starting from the right side. These two sub-
paths both cross one of the sub-parallelograms “in the easy way” : as they
are disjoint by construction, the claim follows by using the BK inequality
([3, 11]).

We then obtain by iterating :

C ′Pp(CH([0, 2kL(p)] × [0, 2k+1L(p)])) ≤ (C ′ǫ1)
2k

(8)

as soon as ǫ1 ≥ Pp(CH([0, L(p)] × [0, 2L(p)])).
Recall that by definition, Pp(CH([0, L(p)] × [0, L(p)])) ≤ ǫ0. Conse-

quently, the RSW theorem entails that for all fixed ǫ1 > 0, if we take
ǫ0 sufficiently small, we get automatically (and independently of p) that

Pp(CH([0, L(p)] × [0, 2L(p)])) ≤ ǫ1 (9)

We now choose ǫ1 = 1/(eC ′). For each integer n, we can define k = k(n)
such that 2k ≤ n/L(p) < 2k+1, and then,

Pp(CH([0, n] × [0, n])) ≤ Pp(CH([0, 2kL(p)] × [0, 2k+1L(p)]))

≤ e−2k
/C ′

≤ (e/C ′)e−n/L(p).
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Figure 3: A horizontal crossing of the parallelogram [0, 2n] × [0, 4n]

Combining the results of Kesten’s paper [16] (in particular remark fol-
lowing Lemma 8, p. 144-145) with the derivation of the arm estimates of
Proposition 1 (actually only the 4-arm exponent, counting points which are
pivotal for the existence of a crossing) leads to the following :

Proposition 3 ([16, 27]). When p → 1/2,

L(p) ≈ |p − 1/2|−4/3 (10)

Remark 4. It can be shown that for any fixed ǫ1 and ǫ2 with 0 < ǫ1, ǫ2 ≤ ǫ0,

L(p, ǫ1) ≍ L(p, ǫ2). (11)

Thus, the particular choice of ǫ0 is not really important here.

3 Localization of the front

3.1 Framework of gradient percolation

We will now define the model itself and fix some notation. The starting
point is still site percolation on the triangular lattice. We first consider a
strip SN of finite width 2N (we assume it to be even for simplicity), centered
around the x-axis, such that the y-coordinate varies between −N and N .
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This strip may for the moment be unbounded in one or both directions, and
we will denote its length by ℓN .

In this strip, we assume the parameter to decrease linearly according to
y, that is we choose it to be

p(y) = 1/2 − y/2N (12)

With this choice, all the sites on the bottom edge BN will be occupied
(p = 1), all the sites on the top edge TN vacant (p = 0). The corresponding
probability measure will be denoted by P.

When we perform such a percolation, two opposite regions appear. At
the bottom of SN , the parameter is close to 1, we are in a super-critical
region and most occupied sites are connected to the bottom edge. On the
contrary, we observe on the top a big cluster of vacant sites. The character-
istic phenomenon of this model is the existence of a “front”, a continuous
line touching in the same time the occupied sites connected (by an occupied
path) to the bottom of the strip, and the vacant sites connected to the top
(by a vacant path).

Definition 5. A front will be any interface γN (in the sense of a curve
formed by sides of the lattice hexagons) between an occupied crossing and a
vacant crossing.

When the length ℓN of the strip is finite, there is not necessarily a unique
front. For instance, there is a positive probability to observe two horizontal
crossings, one vacant and one occupied above it. If the strip is infinite, by
independence of the different columns there exists almost surely a column
on which all the sites, except the highest one, are occupied. In that case,
the front is unique and the result of an exploration path (starting from the
top of this random column).

However, for practical purposes, it will be more natural to consider finite
length strips. The argument above shows that on an infinite strip, excep-
tional events occur (the front touches the top and the bottom of the strip),
and we may expect them not to happen when the length ℓN is not too large
compared to N .

We now use the strip SN = [0, ℓN ] × [−N,N ]. We will often con-
sider sub-strips of this big strip. For sake of simplicity, the strip [0, ℓN ] ×
[−⌊Nα⌋, ⌊Nα⌋] will be written [±Nα].

3.2 Localization

We study now the convergence of the front when it is unique. Temporarily,
we will consider, instead of “the” front, the highest horizontal crossing, and

9



N

− N
l N

p = 0

p = 1/2

p = 1

p = 1/2 − y/2N

Figure 4: The strip where the percolation parameter p varies

we will denote it by RN . Note that the sites just above RN form a vacant
horizontal crossing of SN , so that the upper boundary ρN of RN is a front.
We shall see a little bit later that it is indeed the front (i.e. the only interface)
with high probability.

We a priori expect it to be close to the line {y = 0} corresponding to the
sites where p is critical. A hand-waiving argument goes as follows : if we
are at a distance approximately N4/7 of the line, say for instance above it,
the corresponding parameter will be about 1/2 + N−3/7 and the associated
characteristic length of order N4/7 too. Hence, the strip on which everything
looks like critical percolation has width of order N4/7, and outside of this
strip, one is in the super or sub-critical regime. This explains intuitively the
following result.

Theorem 6 (Localization).

• For all δ > 0, there exists a δ′ > 0 such that for all sufficiently large
N and all ℓN ≥ N4/7,

P(RN ⊆ [±N4/7−δ ]) ≤ e−Nδ′

(13)

• For all δ > 0, for all γ ≥ 1, there exists a δ′ > 0 such that for all

10



Figure 5: Localization of the front (2N = 500, ℓN = 1000)

sufficiently large N , and all N4/7 ≤ ℓN ≤ Nγ ,

P(RN * [±N4/7+δ ]) ≤ e−Nδ′

(14)

Proof. Let us first derive the statement concerning P(RN ⊆ [±N4/7−δ]).
For that purpose, consider disjoint rhombi of the form

[i, i+2N4/7−δ ]× [−N4/7−δ , N4/7−δ ] (i = 0, 2N4/7−δ +1, 4N4/7−δ +2 . . .)

We can take at least ℓN/3N4/7−δ such rhombi, and each of them possesses
(independently of the other ones) a vertical vacant crossing with probability
larger than

P1/2+N−3/7−δ/2

(

C∗
H([0, 2N4/7−δ ]2)

)

.

But
L(1/2 + N−3/7−δ/2) ≈ (N−3/7−δ/2)−4/3 ≈ N4/7+4δ/3,

hence
L(1/2 + N−3/7−δ/2) ≫ 2N4/7−δ ,

so that there exists a vertical vacant crossing with probability larger than
ǫ0. By independence, a “block” entailing that RN * [±N4/7−δ], will occur
with probability larger than

1 − (1 − ǫ0)
ℓN /3N4/7−δ

,

11



which proves the claim as ℓN ≥ N4/7 by assumption.

Let us now turn our attention to the quantity P(RN * [±N4/7+δ]).
Assume that RN is not entirely contained in the strip [±N4/7+δ ].

If at some point it is for example above this strip, we face the following
alternative :

• Either RN stays constantly above the strip [±N4/7+δ/2], i.e. in the
parallelogram [0, ℓN ]×[N4/7+δ/2, N ], where the percolation parameter
remains lower than 1/2−N−3/7+δ/4. As ℓN ≥ N4/7, this event occurs
with probability less than

P1/2−N−3/7+δ/4(CH([0, N4/7]2)).

Lemma 2 (of sub-exponential decay) entails that this quantity is less
than

Ce−N4/7/L(1/2−N−3/7+δ/4)

But (critical exponent for L)

L(1/2 − N−3/7+δ/4) ≈ (N−3/7+δ/4)−4/3 ≈ N4/7−4δ/3 ≪ N4/7−δ,

so that the obtained probability tends to 0 sub-exponentially fast.

• Either RN is in the strip [±N4/7+δ/2] at some point. In that case,
consider the following rhombi, located between the lines y = N4/7+δ/2
and y = N4/7+δ : [i, i+N4/7+δ/2]× [N4/7+δ/2, N4/7+δ ] (i = 0, 1, 2 . . .).
It is easy to see that RN will have to cross vertically or horizontally
one of them.

There are at most ℓN such rhombi, and they are in a zone for which
p ≤ 1/2−N−3/7+δ/4, a crossing thus occurs with probability less than

ℓNP1/2−N−3/7+δ/4(CH([0, N4/7+δ/2]2) ∪ CV ([0, N4/7+δ/2]2))

≤ 2ℓNP1/2−N−3/7+δ/4(CH([0, N4/7+δ/2]2))

≤ 2CℓNe−N4/7+δ/2L(1/2−N−3/7+δ/4)

by using once again Lemma 2.

As before,

L(1/2 − N−3/7+δ/4) ≈ (N−3/7+δ/4)−4/3 ≈ N4/7−4δ/3,

and ℓN does not grow too fast, so that the last probability tends to 0
sub-exponentially fast.

12
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4/7+δ

4/7+δ

Figure 6: RN crosses horizontally or vertically one of the small rhombi

If RN is below the strip at some point, the reasoning is the same : con-
sider instead the vacant crossing bordering RN . Hence, the final probability
just has to be multiplied by 2.

3.3 Uniqueness of the front

In the previous subsection, we have focused on the highest horizontal cross-
ing RN . Clearly, the results remain valid if we consider the lowest horizontal
vacant crossing R∗

N instead. Recall that RN is bordered above by a hori-
zontal vacant crossing, so that its upper boundary ρN is a front. Similarly,
R∗

N is bordered below by an occupied crossing, and its lower boundary ρ∗N
is a front too.

Note that ρ∗N is always below ρN . It is easy to see that uniqueness of the
front amounts to checking whether ρN and ρ∗N coincide. It is also equivalent
to verifying that RN is connected to the bottom BN by an occupied path
(or that R∗

N is connected to the top TN by a vacant path). We are now
going to prove that this indeed occurs with a very large probability.

Note that if one starts an exploration process from the top-left corner
of SN , one discovers the top-most occupied crossing without discovering the
status of the sites below it. This RSW-type observation will be essential in
our proof.

13



Proposition 7 (Uniqueness). Assume that ℓN ≥ N4/7+δ for some δ > 0.
Then, there is a δ′ > 0 (depending on δ) such that for all sufficiently large
N ,

P(ρN = ρ∗N ) ≥ 1 − e−Nδ′

(15)

Proof. As announced, we will work with RN . Our goal is to show that
the probability for RN not to be connected to BN is very small. For that
purpose, we first divide the strip SN into disjoint sub-strips (Si

N ) as follows.
For ǫ := δ/4, we choose N3ǫ/6 disjoint sub-strips of length 3N4/7+ǫ (not
necessarily covering entirely SN ) of the type

Si
N = [ni

N , ni
N + 3N4/7+ǫ] × [−N,N ] (i = 0, . . . , N3ǫ/6 − 1).

Consider one of these strips Si
N . RN crosses it horizontally, and remains

“below” its highest horizontal crossing, that we denote by ri
N . Consequently,

it will be sufficient to show that one of the ri
N ’s is connected to BN in Si

N .
We now fix an i, and we try to find a lower bound for the probability that

ri
N is connected to the bottom of Si

N by an occupied path that stays in that
sub-strip. Let us suppose for notational convenience that i = 0 and ni

N = 0.
Note first that with probability at least 1/2, there exists a vacant top-to-
bottom crossing of the rhombus [N4/7+ǫ, 2N4/7+ǫ]× [0, N4/7+ǫ] (percolation
is sub-critical in this region), so that a lowest point z on ri

N in the middle
part [N4/7+ǫ, 2N4/7+ǫ] × [−N,N ] of the strip lies below the x-axis with
probability at least 1/2 + o(1) (the localization result (Theorem 6) tells us
that ri

N remains below the height N4/7+ǫ with high probability).
Now, if we have explored this highest crossing of S0

N “from above”, we
have not yet discovered the status of the sites below it, so that we can apply
the FKG inequality for events involving only the state of these remaining
sites. We are now going to show that in the case where r0

N passes below the
x-axis, the conditional probability that it is connected to the bottom part of
the sub-strip by an occupied crossing is bounded from below by a quantity
of order N−2ǫ.

A way to prove this goes as follows. Let us first choose z, and define
the annulus S(z, 2N4/7−ǫ) \ S̊(z,N4/7−ǫ) around z. Since it is contained in
the region where p ≥ 1/2 − 2N−3/7−ǫ, and since the characteristic length
corresponding to this value of the parameter is of order

L(1/2 − 2N−3/7−ǫ) ≈ N4/7+4ǫ/3,

there is a probability at least δ4
4 (this is the constant coming from RSW-

theory) to observe an occupied circuit in this annulus.

14
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− N

4/7+ε

4/7+ε

Figure 7: Construction of an arm going out of [±N4/7+ǫ]

We now want to connect this circuit to the bottom boundary of the sub-
strip. Note that the part of the circuit that is below r0

N together with r0
N

contain an occupied circuit around the segment I = z+[−N4/7−ǫ, N4/7−ǫ]×
{−N4/7−ǫ}. We need the following simple lemma for critical percolation:

Lemma 8. Consider the rhombus [−N4/7+ǫ, N4/7+ǫ]×[−2N4/7+ǫ, 0] and the
sub-interval IN = [−N4/7−ǫ, N4/7−ǫ] × {0} on its top edge. Then the event
CIN

V ([−N4/7+ǫ, N4/7+ǫ] × [−2N4/7+ǫ, 0]) that there exists a vertical occupied
crossing connecting IN to the bottom edge has a probability at least

P1/2

[

CIN
V ([−N4/7+ǫ, N4/7+ǫ] × [−2N4/7+ǫ, 0])

]

≥
C

N2ǫ
(16)

for some universal constant C (depending neither on N nor on ǫ).

Proof. Consider the parallelogram [0, N4/7+ǫ]× [−2N4/7+ǫ, 0], and cover its
top edge by less than N2ǫ intervals Ij

N = [n′j
N −N4/7−ǫ, n′j

N + N4/7−ǫ]× {0}
of length 2N4/7−ǫ. We know from RSW theorem that there exists a vertical
occupied crossing with probability at least δ2 > 0, so that

δ2 ≤
∑

j

P1/2

[

C
Ij
N

V ([0, N4/7+ǫ] × [−2N4/7+ǫ, 0])
]

15
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Figure 8: Existence of an arm from IN to the bottom side

But for each j,

P1/2

[

C
Ij
N

V ([0, N4/7+ǫ] × [−2N4/7+ǫ, 0])
]

≤ P1/2

[

C
Ij
N

V ([n′j
N − N4/7+ǫ, n′j

N + N4/7+ǫ] × [−2N4/7+ǫ, 0])
]

= P1/2

[

CIN
V ([−N4/7+ǫ, N4/7+ǫ] × [−2N4/7+ǫ, 0])

]

by translation invariance. Hence

δ2 ≤ N2ǫ × P1/2

[

CIN
V ([−N4/7+ǫ, N4/7+ǫ] × [−2N4/7+ǫ, 0])

]

,

which completes the proof. Note that a repeated application of the RSW
theorem (log(N2ǫ) times) would have given a lower bound of the type N−kǫ

that would have been also sufficient for our purpose here.

Putting the pieces together, with the help also of the FKG inequality,
we get that for each i ≤ N3ǫ/6− 1, on the event that RN remains localized,
the probability that it is connected to the bottom part of the strip in the
sub-strip Si

N is bounded from below by C ′/N2ǫ independently for each i.
The proposition then follows readily : indeed, RN is connected to BN with
probability at least

1 − (1 − C ′N−2ǫ)N
3ǫ/6 ≥ 1 − e−Nǫ′

(17)

for some positive ǫ′.

Remark 9. The previous results suggest to make some restrictions about the
length ℓN of the strip. In the following, we will thus assume that ℓN = o(Nγ)

16



for some γ ≥ 1 (to ensure convergence), and that there exists a δ > 0 such
that ℓN ≥ N4/7+δ (to ensure uniqueness). This second hypothesis entails
that the event corresponding to uniqueness has a probability tending to 1
sub-exponentially fast, so that we can restrict to it.

From now on, we will simply refer to the front and denote it by FN ,
which means that we will implicitly neglect the error term in the estimates
that we derive.

4 Length of the front

We would like now to study the length TN of the front i.e. its number
of edges. For that purpose, we will need a two-arm probability estimate.
Unless otherwise stated, the expression “two arms” refers to two arms of
opposite color.

We will often have to count edges rather than sites. Since we are mostly
interested in rough estimates, we will then just use the fact that number
of edges and number of corresponding sites are comparable (i.e. up to a
multiplicative factor of 6). To simplify notations, it will be convenient to
associate to each edge e one of its two neighboring sites xe, which we do
arbitrarily and once for all.

4.1 Two-arm estimates

We are now going to derive the analog of (5) in the case of two arms and
for non-constant p. The goal is to show roughly that

Pp[A2(2, n)] ≍ P1/2[A2(2, n)] (n ≤ L(p))

In fact, for our purpose, we will have to consider, instead of Pp, product
measures P ′ with associated parameters p′(v) which may depend on the site
v but remain between p and 1 − p (we will simply say that P ′ is “between
p and 1 − p”). The present situation is a little more complicated than
for the one-arm estimate, because of the lack of monotonicity (A2 events
correspond to the combination of one path of each type, so that they are
neither increasing nor decreasing).

For a parallelogram R containing 0 in its interior, we denote by Γ2(0, R)
the event that there exist an occupied path r1 and a vacant path r2 from
0 to the boundary ∂R of R (this is the analog to Γ(0, R) in Kesten’s paper
[16], that corresponds to the existence of 4 arms alternatively occupied and
vacant). Let us now state and prove the result:

17



Lemma 10. Uniformly in p, P̂ between p and 1 − p, n ≤ L(p), we have

P̂ [Γ2(0, S(n))] ≍ P1/2[Γ2(0, S(n))] (18)

Proof. This proof is an adaptation of the proof of Theorem 1 in Kesten’s
paper [16]. We first recall some estimates contained in this paper, and then
we adapt the original proof for 1 arm to the case of 2 arms. Note that
Lemma 8 in [16] is the “four-arm” version of this two-arm result.

Let us first introduce the events that we use throughout the proof. All
of them are exact analogs of events defined in Kesten’s paper [16].

• In the case of 1 arm, we do not lose much (a factor 4) by imposing
the extremity to be on a specified edge. Here we impose the occupied
arm to arrive on the bottom edge and the vacant arm on the top edge.
This event is denoted by Ω2(0, R).

• This event is a bit difficult to extend, so we may want to add further-
more “security strips”. This leads to the definition of the event ∆2,
analog of the event ∆ (in the case of 4 arms). Albeit more restrictive,
this event has a probability that remains comparable to Ω2(0, R).

We consider thus the two horizontal strips

A(1, k) := [−2k−1, 2k−1] × [−2k,−2k−1]

A(2, k) := [−2k−1, 2k−1] × [2k−1, 2k]

and we define for a site v in S(2k−1),

∆2(v, S(2k)) = {Γ2(v, S(2k)) occurs, with ri∩(S(2k)\S̊(2k−1)) ⊆
A(i, k) and there exist two horizontal crossings, one occupied of
A(1, k) and one vacant of A(2, k)}.

• We define similarly for a parallelogram R contained in the interior of
S(2k):

Γ̃2(S(2k), R) = {There exist an occupied path r1 and a vacant
path r2 from ∂R to the bottom and top edges respectively of
S(2k), which are (with the exception of their extremities on ∂R)
contained in S(2k) \ R}.

and for a site v in S(2k−1), j ≤ k − 2, the following strips (centered
on v):

Ã(1, j) := [v(1) − 2j , v(1) + 2j ] × [v(2) − 2j+1, v(2) − 2j ]

18
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Figure 9: Definition of the event ∆2

Ã(2, j) := [v(1) − 2j , v(1) + 2j ] × [v(2) + 2j , v(2) + 2j+1]

and then

∆̃2(S(2k), S(v, 2j)) = {Γ̃2(S(2k), S(v, 2j)) occurs, with associated
paths ri satisfying ri ∩ (S(v, 2j+1) \ S̊(v, 2j)) ⊆ Ã(i, j), and there
exist two horizontal crossings, one occupied of Ã(1, j) and one
vacant of Ã(2, j)}.

Let us now state the estimates that we will use. We will not prove
them, since these are exact analogs for 2 arms of results stated for 4 arms in
Kesten’s paper [16], except that we generalize the condition “between p and
1/2” to “between p and 1− p”. This generalization can be done as the only
tool used in the proofs is Russo-Seymour-Welsh theorem (we also implicitly
use the symmetry, which implies that L(p) = L(1− p)). In the following, P̂
denotes any product measure “between p and 1 − p”.

(1) Extension of ∆2 : There exists a constant C1 < ∞ such that

P̂ (∆2(0, S(2k))) ≤ C1P̂ (∆2(0, S(2k+1))) (19)

for all 2k ≤ L(p).
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(2) Comparison of Γ2 and ∆2 (analog of Lemma 4 in [16]) : There
exists a constant C2 < ∞ such that

P̂ (Γ2(0, S(2k))) ≤ C2P̂ (∆2(0, S(2k))) (20)

for all 2k ≤ L(p).

(3) Comparison of Γ̃2 and ∆̃2 (analog of Lemma 5 in [16]) : There
exists a constant C3 < ∞ such that

P̂ (Γ̃2(S(2k), S(2j))) ≤ C3P̂ (∆̃2(S(2k), S(2j))) (21)

for all 2k ≤ L(p) and j ≤ k − 2.

These prerequisites being recalled, we are now able to turn to the proof
itself. For that purpose, we will have to adapt Kesten’s original proof. Recall
that we consider a parameter p, a measure P̂ between p and 1 − p and an
integer n ≤ L(p). The parameters of P̂ will be denoted by p(v).

1st step : We first notice that we can replace Γ2(0, S(n)) by Ω2(0, S(2k)),
with k such that 2k ≤ n < 2k+1. Indeed, the previous results entail

P̂ (Γ2(0, S(n))) ≥ P̂ (Γ2(0, S(2k+1))) ≥ P̂ (∆2(0, S(2k+1)))

≥ C−1
1 P̂ (∆2(0, S(2k)))

≥ C−1
2 C−1

1 P̂ (Γ2(0, S(2k))) ≥ C−1
2 C−1

1 P̂ (Ω2(0, S(2k)))

and

P̂ (Ω2(0, S(2k))) ≥ P̂ (∆2(0, S(2k)))

≥ C−1
2 P̂ (Γ2(0, S(2k))) ≥ C−1

2 P̂ (Γ2(0, S(n)))

2nd step : We would like now to use Russo’s formula, but for technical
reasons which will become clear in the next step, this will work nicely only
for the points that are not too close to the boundary. We therefore first have
to see how the change of p(v) for the points that are close to the boundary
affects the probabilities that we investigate. More precisely, we start with
P1/2 and change 1/2 p(v) only in S(2k) \S(2k−3). The resulting measure

P̃ is between p and 1 − p : so,

P1/2(Ω2(0, S(2k))) ≍ P1/2(∆2(0, S(2k))) ≍ P1/2(∆2(0, S(2k−3)))
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thanks to (19), and similarly

P̃ (Ω2(0, S(2k))) ≍ P̃ (∆2(0, S(2k−3))),

which allows us to conclude, since P1/2(∆2(0, S(2k−3))) = P̃ (∆2(0, S(2k−3)))
by definition.

3rd step : In order to handle the sites v located in S(2k−3), we will apply
a generalization of Russo’s formula to the family of measures (P̂t)t∈[0,1] with
parameters

p(v, t) = tp(v) + (1 − t)/2,

which corresponds to a linear interpolation between 1/2 p(v) in S(2k−3).
The event Ω2(0, S(2k)) can be written as the intersection of A2(0, S(2k)) =
{There exists an occupied path from 0 to the bottom side of ∂S(2k)} and
B2(0, S(2k)) = {There exists a vacant path from 0 to the top side of S(2k)}.
These two events are respectively increasing and decreasing, and in that
case, d

dt P̂t(A2 ∩ B2) can be expressed as (see Lemma 1 in [16]):

∑

v∈S(2k−3)

dp(v, t)

dt

[

P̂t(v is pivotal for A2, but not for B2, and B2 occurs)

− P̂t(v is pivotal for B2, but not for A2, and A2 occurs)
]

A vertex v ∈ S(2k−3) is pivotal for A2 iff there exists a path containing
v, all sites of which, except v, are vacant, and separating 0 from the bottom
side of S(2k). In the case of 1 arm, Kesten used a vacant loop around the
origin, here the path can have its extremities on the boundary. This will
not change the computations, since we still have 4 arms locally, that we will
sum in the same way.

Actually, we must also assume that k ≥ 7 and put apart the vertices
which are too close to the origin, for instance those in S(16). For these
sites,

P̂t(v is pivotal for A2, but not for B2, and B2 occurs) ≤ C5P̂t(Ω2(0, S(2k)))

for some universal constant C5.
We now associate to each site v ∈ S(2k−3) \ S(16) a parallelogram R(v)

such that 0 /∈ R(v), so that we make appear four arms locally (we explain
how to choose these parallelograms later):

P̂t(v is pivotal for A2, but not for B2, and B2 occurs)

≤ P̂t

[

Γ2(0, R(v)) ∩ Γ(v,R(v)) ∩ Γ̃2(S(2k), R(v))
]

= P̂t[Γ2(0, R(v))]P̂t[Γ(v,R(v))]P̂t[Γ̃2(S(2k), R(v))]
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by independence (these events depending on sites in disjoint sets).
As for the choice of the parallelograms R(v), we can take them like in

Kesten’s paper (see [16] p. 117). As noticed in this paper, the precise
choice is not really important. On one hand, we have to ensure that the
four arms are not too small. For that purpose, the distances between v and
each of the sides of R(v) must be comparable to the distance between 0
and v. On the other hand, the paths outside R(v), respectively between 0
and ∂R, and between ∂R and ∂S(2k), must not be too short. For the sake
of completeness, let us just recall briefly how Kesten chooses these R(v).
Consider v = (v1, v2) /∈ S(16). If |v1| ≤ |v2| ≤ 2k−3 and 16 ≤ 2j+1 < v2 ≤
2j+2, take l1 and l2 such that

l12
j−2 < v1 ≤ (l1 + 1)2j−2 and l22

j−2 < v2 ≤ (l2 + 1)2j−2,

and define

R(v) = [(l1 − 2)2j−2, (l1 + 2)2j−2] × [l22
j−2 − 2j , l22

j−2 + 2j ].

If v2 < 0, take the image of R((v1,−v2)) by the symmetry with respect to
the x-axis. Finally, if |v2| < |v1|, simply exchange the roles of the first and
second coordinates.

Note that these parallelograms possess by construction the following
property : if j is such that 2j+1 < d(v, 0) ≤ 2j+2, then R(v) is included in
S̊(2j+3) \ S(2j). Consequently,

P̂t(v is pivotal for A2, but not for B2, and B2 occurs)

≤ P̂t[Γ2(0, S(2j))]P̂t[Γ(v,R(v))]P̂t[Γ̃2(S(2k), S(2j+3))]

Now, by joining the two terms P̂t[Γ2(0, S(2j))] and P̂t[Γ̃2(S(2k), S(2j+3))],
we can make appear P̂t[Ω2(0, S(2k))] : indeed, we get easily from Russo-
Seymour-Welsh theorem (see Lemma 6 in [16])

δ2
16P̂t[∆2(0, S(2j))]P̂t[∆̃2(S(2k), S(2j+3))] ≤ P̂t[∆2(0, S(2k))]

for all 2k ≤ L(p) and j ≤ k − 5 (here a slight generalization of the FKG
inequality is needed (see for instance Lemma 3 in [16]), invoking zones where
“everything is monotonous”).

We obtain then from

P̂t[∆2(0, S(2j))] ≥ C−1
2 P̂t[Γ2(0, S(2j))]
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(which follows from (20)), and

P̂t[∆̃2(S(2k), S(2j+3))] ≥ C−1
3 P̂t[Γ̃2(S(2k), S(2j+3))]

(using (21)), that

P̂t[Γ2(0, S(2j))]P̂t[Γ̃2(S(2k), S(2j+3))] ≤ C4P̂t[∆2(0, S(2k))]

≤ C4P̂t[Ω2(0, S(2k))]

Now, dividing by this last term will make appear its logarithmic derivative
in the left-hand side :

d

dt
log
[

P̂t(Ω2(0, S(2k)))
]

≤ C6

∑

v∈S(2k−3)\S(16)

∣

∣

∣

∣

dp(v, t)

dt

∣

∣

∣

∣

P̂t[Γ(v,R(v))] + C5

∑

v∈S(16)

∣

∣

∣

∣

dp(v, t)

dt

∣

∣

∣

∣

Finally, the first term that we obtain (the sum encoding the existence of 4
arms locally) is exactly the same as in Kesten’s paper [16] (end of the proof
of Theorem 1 p. 140), and its integral between 0 and 1 is bounded by some
universal constant C7 :

∫ 1

0

(

∑

v∈S(2k−3)\S(16)

∣

∣

∣

∣

dp(v, t)

dt

∣

∣

∣

∣

P̂t[Γ(v,R(v))]

)

dt ≤ C7

The desired conclusion then follows.

4.2 Expected length of the front

With this result established, we are now able to study properties of the
front in the “critical strip”. We have the following estimate concerning the
expectation of TN :

Proposition 11. For all δ > 0, we have for N sufficiently large:

N3/7−δℓN ≤ E[TN ] ≤ N3/7+δℓN (22)

Proof. Throughout the proof, we will use the fact that

E[TN ] =
∑

e⊆SN

P(e ∈ FN ) (23)
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We consider first the upper bound. Take ǫ = δ/4 : we have

E[TN ] ≤ 6|SN | × P(FN * [±N4/7+ǫ]) +
∑

e⊆[±N4/7+ǫ]

P(e ∈ FN )

and it follows from localization and the fact that |SN | = (2N+1)×(ℓN +1) =
o(Nγ+1), that the first term tends to 0 sub-exponentially fast. We can thus
restrict the summation to the vertices in the strip [±N4/7+ǫ].

But for e ⊆ [±N4/7+ǫ],

P(e ∈ FN ) ≤ P[2 arms xe  ∂S(xe, N
4/7−2ǫ)]

and as S(xe, N
4/7−2ǫ) ⊆ [±2N4/7+ǫ], the parameter in this box remains in

the range [1/2 ± 2N−3/7+ǫ]. The associated characteristic length being

L(1/2 ± 2N4/7+ǫ) ≈ N4/7−4ǫ/3 ≫ N4/7−2ǫ,

we get

P[2 arms xe  ∂S(xe, N
4/7−2ǫ)]

≍ P1/2[2 arms xe  ∂S(xe, N
4/7−2ǫ)]

≈ (N4/7−2ǫ)−1/4 (by using the 2-arm exponent)

≪ N−1/7+ǫ

Now we just have to sum this inequality to get the desired result : for N
large enough,

∑

e⊆[±N4/7+ǫ]

P(e ∈ FN ) ≤ 6(2N4/7+ǫ + 1)(ℓN + 1) × N−1/7+ǫ

≤ N3/7+δℓN

Let us turn now to the lower bound. We restrict to the edges e in the
strip [2N4/7+ǫ, ℓN − 2N4/7+ǫ]× [±N4/7−ǫ], with ǫ = δ/6. For such edges, we
would like to estimate the probability of having two arms, one occupied to
BN and one vacant to TN , we will so use the event ∆2 rather than Γ2.

Take j such that N4/7−ǫ < 2j ≤ 2N4/7−ǫ : the probability of having two
arms, one occupied to the bottom of ∂S(xe, N

4/7−ǫ), and one vacant to the
top, is at least

P(∆2(xe, S(xe, 2
j))) ≍ P(Γ2(xe, S(xe, 2

j)))
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Since we stay in the strip [±3N4/7−ǫ], of associated characteristic length
L(1/2 ± 3N−3/7−ǫ) ≈ N4/7+4ǫ/3, we get that this probability is of the same
order as

P1/2(Γ2(xe, S(xe, 2
j))) ≈ (2j)−1/4 (2-arm exponent) (24)

which (for N sufficiently large) is greater than

(N4/7−ǫ)−1/4 ≫ N−1/7 (25)

We now have to join these two paths to the boundaries of the strip. By
the same reasoning as for the existence of FN , on the top edge of [0, N4/7+ǫ]2,
there is a sub-interval I of length 2j such that there exists an occupied
vertical crossing from I to the bottom edge with probability at least

P1/2

[

CI
V ([0, N4/7+ǫ]2)

]

≥ N−2ǫ/4 (26)

which implies that we can construct two arms going out of the strip [±N4/7+ǫ]
with probability at least N−1/7−5ǫ (for N large enough). Then, we just have
to use the fact that in that case, the probability of not being connected to
the top and to the bottom tends to 0 sub-exponentially fast. The conclusion
follows, by summing the lower bound over all edges e in the strip [±N4/7−ǫ].

4.3 Convergence in L
2

Here everything happens in the strip [±N4/7], and it is possible to determine
whether or not an edge e is on the front on a vicinity of order N4/7 (with
probability very close to 1). Distant points will thus be almost completely
decorrelated, and there is a phenomenon of “averaging”. More precisely, we
get the following bound on Var[TN ]:

Proposition 12. For each δ > 0, we have for N sufficiently large:

Var[TN ] ≤ N11/7+δℓN (27)

By combining this result to the estimates on E[TN ] of the previous sub-
section, we immediately get that if ℓN ≥ N5/7+δ for some δ > 0, then

Var[TN ] = o(E[TN ]2) (28)

and consequently
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Theorem 13. If for some δ > 0, ℓN ≥ N5/7+δ, then

TN

E[TN ]
−→ 1 in L2, when N → ∞ (29)

Remark 14. On each vertical line, amongst the (about) N4/7 edges which
lay in the critical strip, approximately N3/7 of them will be on the front, that
is one over N1/7. If we take ℓN to be equal to N , we get E[TN ] ∼ N10/7,
and this exponent can indeed be observed numerically.

Proof. For an edge e, the event “e ∈ FN” will be denoted by Fe. Using the
expression

TN =
∑

IFe (30)

we get

Var[TN ] =
∑

e,f

[P(Fe ∩ Ff ) − P(Fe)P(Ff )] (31)

First, notice that we can restrict the summation to the edges e, f ⊆
[±N4/7+δ ] : like before, the remaining term tends to 0 sub-exponentially
fast.

The idea is to replace Fe by an event F̃e which depends only on sites in a
box around e of size N4/7+δ, and such that P(Fe∆F̃e) → 0 sub-exponentially
fast. To construct such an event, we simply invoke the result of uniqueness,
which implies that we can take

F̃e := { 2 arms e top and bottom sides of ∂S(xe, N
4/7+δ) } (32)

We have thus

Var[TN ] =
∑

e

∑

f

[

P(F̃e ∩ F̃f ) − P(F̃e)P(F̃f )
]

+ ǫN

with an error term ǫN tending to 0 sub-exponentially fast.
Now, for an edge e, there are at most 6(2N4/7+δ + 1)2 edges f for which

the two associated boxes intersect, and in that case,

P(F̃e ∩ F̃f ) − P(F̃e)P(F̃f ) ≤ P(F̃e) ≤ N−1/7+δ

for N large enough (we use the 2-arm exponent in the box S(xe, N
4/7−2δ)).

We deduce from it

Var[TN ] ≤
∑

e

[6(2N4/7+δ + 1)2 × N−1/7+δ] + ǫN
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and finally

Var[TN ] ≤ [6(2N4/7+δ + 1)(ℓN + 1)] × [6(2N4/7+δ + 1)2N−1/7+δ ] + ǫN

≪ N11/7+5δℓN

Remark 15. Recall that for ordinary percolation, it is still an open problem
to show that the typical length of an interface is comparable to its expected
length. Here, things are easier because localization of the front implies a
faster decorrelation.

5 Outer boundary

In a similar way, we can also compute the length UN of the outer boundary
of FN . We now have to count the number of 3-arm points. There is no
extra difficulty to adapt Kesten’s result : being pivotal still leads to 4 arms
locally, and the summation can be conducted identically.

Proposition 16. For all δ > 0, we have for N sufficiently large:

N4/21−δℓN ≤ E[UN ] ≤ N4/21+δℓN (33)

The upper bound can be treated in the same way, but for the lower
bound, we have to be a little more careful : we have to ensure that we
can extend the two arms of the same type “disjointly”. It can be done by
using the fact that we can impose an occupied crossing in a N4/7+ǫ×N4/7+ǫ

rhombus to arrive in a “corner” of size N4/7−ǫ with probability at least N−kǫ

for some constant k (for instance applying the RSW result log N2ǫ times).
The decorrelation arguments that we used for the length of the front can

also be applied to the outer boundary, entailing convergence in L2 if ℓN is
not too small.

Proposition 17. For each δ > 0, we have for N sufficiently large:

Var[UN ] ≤ N4/3+δℓN (34)

Hence, if for some δ > 0, ℓN ≥ N20/21+δ, then

UN

E[UN ]
−→ 1 in L2, when N → ∞ (35)

Note that when ℓN = N , then this result implies that UN is of the order
of N25/21 with high probability.
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6 Open questions

We have used here the logarithmic equivalence of Proposition 1, that has
been proved in [27]. It is in fact conjectured that this equivalence holds up to
multiplicative constants. For instance, the stronger assumption P1/2(A

4
n) ≍

n−5/4 would lead to L(p) ≍ |p − 1/2|−4/3, which would make it possible to
derive a sharper description of the front (in most constructions, only one
application of the RSW theorem would be sufficient).

One of the major issues would be to describe (if it exists) the scaling limit
of the front, once properly renormalized. We could first argue as follows : in
each of the sub-strips [±N4/7−δ ], everything “looks like criticality”, so the
front will look the same as the border of a cluster in critical percolation, i.e.
a SLE6.

The problem here is that we do not know how the front “bounces”, that
is to say what happens when we are at a distance approximately N4/7 of the
critical line. In fact, the front could be linked to the kind of objects F. Camia,
L. Fontes and C. Newman have recently constructed for percolation near
criticality, of parameter p = 1/2+ λδ3/4, λ being (possibly) inhomogeneous.
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