
Vehicle routing problems with alternative

paths: an application to on-demand

transportation a

Thierry Garaix a,c Christian Artigues b Dominique Feillet a

Didier Josselin c

aUniversité d’Avignon et des Pays de Vaucluse,
Laboratoire Informatique d’Avignon (EA 931), F-84911 Avignon, France.

bUniversité de Toulouse,
LAAS-CNRS, 7 Avenue du Colonel Roche 31077 Toulouse, France.

cUniversité d’Avignon et des Pays de Vaucluse,
UMR ESPACE 6012 CNRS, F-84911 Avignon, France.

Abstract

The class of vehicle routing problems involves the optimization of freight or passen-
ger transportation activities. These problems are generally treated via the repre-
sentation of the road network as a weighted complete graph. Each arc of the graph
represents the shortest route for a possible origin-destination connection. Several
attributes can be defined for one arc (travel time, travel cost . . .), but the short-
est route modeled by this arc is computed according to a single criterion, generally
travel time. Consequently, some alternative routes proposing a different compromise
between the attributes of the arcs are discarded from the solution space. We pro-
pose to consider these alternative routes and to evaluate their impact on solution
algorithms and solution values through a multigraph representation of the road net-
work. We point out the difficulties brought by this representation for general vehicle
routing problems, which drives us to introduce the so-called fixed sequence arc se-
lection problem (FSASP). We propose a dynamic programming solution method for
this problem. In the context of an on-demand transportation (ODT) problem, we
then propose a simple insertion algorithm based on iterative FSASP solving and a
branch-and-price exact method. Computational experiments on modified instances
from the literature and on realistic data issued from an ODT system in the French
Doubs Central area underline the cost savings brought by the proposed methods
using the multigraph model.

Key words: vehicle routing, multigraph, shortest path problem with resource
constraints, dynamic programming, on-demand transportation, dial-a-ride
problem.

Preprint submitted to Elsevier 14 May 2009

1 Introduction

The class of vehicle routing problems has drawn many researchers’ and indus-
trial practitioners’ attention during the last decades. These problems involve
the optimization of freight or passenger transportation activities. They are
generally treated via the representation of the road network as a weighted
complete graph, constructed as follows. The vertex set is the set of origin or
destination points. Arcs represent shortest paths between pairs of vertices.
Several attributes can be defined for one arc (travel time, travel cost . . .), but
the shortest path implied by this arc is computed according to a single crite-
rion, generally travel time. Consequently, some alternative paths proposing a
different compromise between these attributes are discarded from the solution
space, as illustrated in Figure 1. In the remainder of this paper, we call road-

road network working graph

A

3

2
1

B C

D

E

A

3

2
1

C

D

paths from 1 to 2 (D); (E); (A,C); (B,C) (D); (A,C)

paths from 1 to 3 (A); (B) (A)

paths from 3 to 2 (C) (C)

Fig. 1. Simple graph construction

paths, the paths of the original road network so as to distinguish them from
the paths relative to the new graph (working graph in the figure).

Not considering alternative paths can be disadvantageous in many situations.
A typical example is provided by On-Demand Transportation (ODT) systems.
In such systems, transportation plans need to be computed, to satisfy point-to-
point transportation requests, according to some quality of service constraints
and/or objectives. Though the road-path retained between two (origin or des-
tination) customer locations is generally set as the min-time road-path, the
driver or the shipper might prefer a cheaper itinerary in case time is non-
critical. If the customer pays according to the distance (which is generally not
the case in ODT systems, but is true in taxis), avoiding fast but long-distance
sections could also be of interest (for the customer). Note that computing the
shortest path matrix according to distance instead of time could induce similar

Email address: thierry.garaix@univ-avignon.fr (Thierry Garaix).

2

drawbacks, for example considering sections with heavy traffic. Section 4 will
develop the example of an ODT system implemented in the Doubs Central
area in France.

In this work, we propose to represent the road network by a multigraph, so
that alternative routes are considered. Ideally, this approach would define one
arc between two vertices for each Pareto optimal road-path according to arc
attributes in the road network. Any good road-path would then be captured
in the graph. In practice, one could prefer just to consider a reasonable set of
arcs between two vertices.

At least two other situations would deserve to be further explored, but will be
left as perspectives here. A first situation would be the case of a traveler having
several transportation modes at his disposal (foot, metro, tramway, bus . . .)
and having to decide how to combine them to reach some destination. If trans-
portation modes can be competitive for the same piece of trip, the multigraph
representation appears to be well-suited as long as the schedule of facilities
can be neglected (as it is often the case for a tramway or a metro for example,
but not for a train). Several papers deal with multimodal transportation in
the literature (Horn, 2002 and 2003; Bielli et al., 2006). However, to the best
of our knowledge, they all consider a single-request. Hence, the problem is to
determine an optimal (or a set of optimal) trip from an origin to a destination
in a multigraph, where arcs correspond to different transportation modes and
nodes to interchange points. A second situation would be met by a touristic
traveler. One might then have some clearly identified destination points and
different possibilities (with different duration and touristic interests) of link-
ing these points. Actually, having a multigraph representation makes sense as
soon as several attributes are defined on arcs.

Although original, the use of a multigraph representation in the context of
vehicle routing is not entirely new. A recent work by Baldacci et al. (2006)
introduces a similar representation to solve the so-called Multiple Disposal Fa-

cilities and Multiple Inventory Locations Rollon-Rolloff Vehicle Routing Prob-

lem. The topic is to transport trailers between customers, disposal facilities
and inventory locations. In this context, the multigraph dimension stems from
the enumeration a priori of valid sequences of movements between customers.
An exact solution method based on a Set Partitioning formulation and a so-
phisticated iterative bounding procedure is proposed.

In this paper, our first objective is to evaluate the tractability and the interest
of the multigraph representation. Our second objective is to propose an effi-
cient vehicle routing solution scheme for an actual ODT system. We describe
the multigraph representation in Section 2. Section 3 focuses on the new dif-
ficulties it implies for general vehicle routing problem solving and proposes a
dynamic programming solution method for the underlying fixed sequence arc

3

selection problem. In the context of a practical ODT system, Section 4 presents
an insertion heuristic and an exact branch-and-price method and evaluates
their results on modified instances from the literature and on real-life data
issued from an ODT system in the French Doubs Central area. Concluding
remarks are drawn in Section 5.

2 Multigraph representation

Let G0 = (V0, A0) be the graph induced by a road network. An arc of A0

typically represents a link between two crossroads or a portion of road having
consistent characteristics (slope, direction, sinuosity . . .). G0 has the advan-
tage to offer a complete and precise description of the physical layout, but can
reach a size detrimental to the efficient execution of routing optimization pro-
cedures. We consider here that each arc (i, j) ∈ A0 is characterized by R + 1
attributes (R ≥ 1): dij(0), . . . , dij(R). Attributes can indifferently represent
duration, distance, cost, interest, roughness, etc.

Let us assume that we are interested here in some vehicle routing problem.
For sake of generality, we do not define it precisely at this point, while an
application to an on-demand transportation system is described in Section 4.
Let us name key-locations the set of all locations of G0 playing a special role
in the problem: vehicle depots, customer locations, origin and destination of
transportation requests . . . Let V ⊂ V0 be the set of all key-locations. For
(i, j) ∈ V × V , let Pij be the set of all Pareto optimal paths, in G0, from i
to j, considering the R + 1 criteria. We introduce the multigraph G = (V, A).
For each couple of vertices (i, j) ∈ V × V and each road-path P e

ij ∈ Pij

(1 ≤ e ≤ |Pij |), we introduce an arc (i, j)e ∈ A. Arc (i, j)e is then characterized
by resource consumption levels de

ij(0), . . . , de
ij(R).

Note that sets Pij are possibly of very large size. A first difficulty with the
multigraph representation is to compute these sets. The problems to solve
are Multicriteria Shortest Path Problems. A variety of algorithms based on
dynamic programming (Warburton, 1987; Guerriero and Musmanno, 2001;
Skriver and Andersen, 2000) are available in the literature (see also Ehrgott
and Gandibleux, 2000, for a survey). These methods are robust and can handle
several types of objective functions like min-sum or max-min. This robustness
is interesting in our situation, where we might have to deal with various types
of attributes. Theoretically, computing sets Pij can be very time-consuming,
especially when R is large. However, one can expect to have R = 1 or R = 2 in
most practical cases. Also, attributes like time, distance and cost are generally
closely correlated, which can drastically limit the number of Pareto optimal
paths. Finally, in case of ODT systems, sets Pij are going to be computed
only once, prior to the optimization. In the following, we assume that the

4

construction of these sets could be carried out using any kind of method (e.g.,
exact solution approach, heuristic, decision support system . . .).

3 Route optimization in a multigraph

Vehicle routing problems generally address three types of decisions:

• assignment decisions, allocating key-locations to vehicles;
• sequencing decisions, defining the key location visit order for each vehicle;
• scheduling decisions, determining a timetable for the visit of the assigned

key-locations for each vehicle.

Once assignment and sequencing decisions are fixed, it is generally trivial
to deduce timetables for a standard min-sum criterion. With the multigraph
representation, this property does not hold. Indeed, one has to determine
which arc to use between two consecutive key-locations of the sequence. As
shown below, this problem, which we call Fixed Sequence Arc Selection Prob-

lem (FSASP), is NP-hard. Section 3.1 discusses the complexity of the FSASP
and describes an efficient pseudo-polynomial solution algorithm based on dy-
namic programming. Section 3.2 shortly discusses the impact of the multigraph
representation on standard solution schemes. This discussion will be continued
further and illustrated with the case of an ODT system in Section 4.

3.1 Fixed Sequence Arc Selection Problem

Let us call linear multigraph a connected acyclic directed graph such that a
vertex has at most one predecessor and one successor. A linear multigraph
represents a fixed sequence (i0, . . . , iN) (see Figure 2). Let GFS = (VFS, AFS)
be a linear multigraph obtained from G, with VFS = {i0, . . . , iN} ⊂ V and

with arcs (in−1, in)e for 1 ≤ n ≤ N and 1 ≤ e ≤
∣

∣

∣Pin−1in

∣

∣

∣. Let consider
R + 1 attributes 0, . . . , R as defined in Section 2, with attribute 0 corre-
sponding to the arc cost involved in the objective function. An upper bound
Qr is defined for 1 ≤ r ≤ R. The FSASP amounts to select a set of arcs
(i0, i1)

e1 , (i1, i2)
e2 , . . . , (iN−1, iN)eN such that

∑N
n=1 den

in−1in
(0) is minimized and

upper bounds Qr are satisfied for 1 ≤ r ≤ R.

i i i i i1 2 3 40

Fig. 2. Structure of a linear multigraph

For the sake of clarity, we only consider cumulative attributes here. Results
can easily be extended to other types of attributes, like min-max ones. The

5

problem can then be stated as the following integer linear program:

(FSASP)

min
N

∑

n=1

|Pin−1in |
∑

e=1

de
in−1in

(0)ye
in−1in

(1)

subject to

N
∑

n=1

|Pin−1in |
∑

e=1

de
in−1in

(r)ye
in−1in

≤ Qr ∀r = 1, . . . , R (2)

|Pin−1in |
∑

e=1

ye
in−1in

= 1 ∀n = 1, . . . , N (3)

ye
in−1in

∈ {0, 1} ∀n = 1, . . . , N, ∀e = 1, . . . ,
∣

∣

∣Pin−1in

∣

∣

∣ (4)

Binary decision variables ye
in−1in

represent the selection of arcs (in−1, in)e. Ob-
jective function (1) (to be minimized) is the total cost (attribute 0) of selected
arcs. Upper bounds on attributes are handled by constraints (2). Constraints
(3) impose that exactly one arc is selected between two consecutive vertices.

We remark the FSASP corresponds exactly to the Multidimensional Multiple

Choice Knapsack Problem (MMKP), an NP-hard generalization of the Knap-

sack Problem (Kellerer et al., 2004), which proves that the FSASP is NP-hard.
The MMKP can be described as follows. A set of N classes of objects are de-
fined. Each object e in class n is characterized by R weights de

n(r) (1 ≤ r ≤ R)
and a cost de

n(0). A limit Qr is defined for each dimension r (1 ≤ r ≤ R). The
problem is to select exactly one object per class, while satisfying limits Qr and
minimizing the total cost of the objects selected.

Few papers dealing directly with the MMKP are available. One can men-
tion Hifi et al. (2006) and Akbar et al. (2004) that propose heuristic solution
schemes. An exact method based on branch-and-bound is proposed in Sbihi
(2003). Based on previous results on standard vehicle routing problems, we
propose to address the FSASP as a particular Shortest Path Problem with

Resource Constraints (SPPRC) (Beasley and Christofides, 1989). Resources
correspond to attributes; de

ij(r) indicates the level of consumption of resource
r when arc (i, j)e is traversed. The objective is to find a shortest path, con-
necting vertex i0 to vertex iN , while resource constraints are satisfied.

If we assume that only non-decreasing functions compute the cumulative re-
source consumptions, the SPPRC can be solved with dynamic programming

6

(Irnich and Desaulniers, 2005). One can expect most types of attributes (re-
sources) to comply with this assumption. This approach is thus consistent
with our objective of dealing with vehicle routing in general. The dynamic
programming algorithm, first proposed by Desrochers and Soumis (1988) for
the Shortest Path Problem with Time Windows, is an extension of the classi-
cal Bellman’s labelling algorithm. We propose below a simple variant for the
FSASP described by Algorithm 1.

The algorithm maintains a set of labels, each one corresponding to a partial
path issued from i0. More precisely , the algorithm runs in N iterations, each
iteration q ∈ {0, . . . , N − 1} being associated with a dominant label set Lq

such that each label l ∈ Lq represents a path from i0 to iq. Each label set Lq

is dominant in the sense that either there exists an optimal path l∗ from i0 to
iN having a subpath l ∈ Lq or there is no solution.

Each label l contains the cumulative consumption level l(r) for each resource
r at the end of the corresponding partial path. L0 is set to a unique label
l0 representing the partial path reduced to i0 with resource consumptions
l0(r) = 0, ∀r = 0, . . . , R. At iteration q, label set Lq+1 is computed from Lq

by extending each label l ∈ L(q) and by applying dominance rules to reduce
the cardinality of Lq+1. Extension of a label l ∈ Lq consists in creating a label
l′ for each outgoing arcs (iq, iq+1)

e of iq. Resource consumptions are updated
as follows: l′(r) = l(r)+de

q,q+1(r), ∀r = 0, . . . , R; l′ is discarded once there is a
resource r such that l′(r) > Qr or if it is dominated by another label of Lq+1.
Since all labels of Lq visit the same nodes from i0 to iq, a label l ∈ Lq dominates
another label l′ ∈ Lq if l(r) ≤ l′(r), ∀r = 0, . . . , R. At iteration N − 1, the
dominant set LN , which includes the optimal solution, is computed.

3,8

1
r

1
r

7,6

,

2,4

{7,6}

{3,8} {5,12}
{10,8}

{6,10}

{9,10}

infeasible

{labels}

i i i1 20

{0,0}

,r
0

3 2

< 11constraint

dominated

Fig. 3. Dynamic programming algorithm for FSASP

Note that unlike Bellman’s algorithm, that can be applied when no resource
is considered, each vertex of the graph can maintain a large number of labels
since the comparison of two labels takes into account their consumption level
for each resource. More precisely, we can compute an upper bound on the num-
ber of non-dominated labels in each set Lq. Indeed if resource consumptions
and availabilities are integer we have |Lq| ≤ Λ where Λ = Πr=1,...RQr is the
number of distinct consumption vectors. At each iteration q and for each label
l ∈ Lq, all the outgoing arcs of iq are enumerated. It follows that the three

7

Algorithm 1. Dynamic programming algorithm

Data: GFS = (VFS, AFS) a linear multigraph corresponding to sequence
i0, . . . , iN
Result: LN

initialization : L0 := 0R;
for: q = 0 to N − 1 do

foreach: label l ∈ Lq do
foreach: outgoing arc a from iq do

l′ := l extension from iq to iq+1 by a;
dominated := false;
foreach: label l′′ in Lq+1 do

if l′(r) ≤ l′′(r), ∀r = 0, . . . , R then
Lq+1 := Lq+1 \ {l

′′};
else if l′′(r) ≤ l′(r), ∀r = 0, . . . , R then

dominated := true;
break;

end
end
if dominated=false then

Lq+1 := Lq+1 ∪ {l′};
end

end
end

end

upper level loops are performed in O(|AFS|Λ). A label is extended in O(R).
Checking whether a label is dominated takes in turn O(Λ(R)) time. Conse-
quently the algorithm has a worst-case complexity of O(|AFS|Λ

2R). However,
when searching for the optimal arc set to be selected in the sequence, the
dynamic programming algorithm is applied on an acyclic graph of limited size
(one can expect that in most cases a vehicle route visits a relative small num-
ber of vertices), which helps finding optimal solutions efficiently (Irnich and
Desaulniers, 2005).

Figure 3 illustrates label extension and dominance rules on the example of a
FSASP with 3 vertices and 2 resources. In this figure, among the 4 possible
partial paths reaching i2, one is dominated and one is infeasible. The algorithm
would thus only consider the two remainder labels to continue the sequence.

Note that the SPPRC is very close to the Multicriteria Shortest Path Problem

discussed in Section 2 for the initial construction of G, resources standing for
criteria. As a matter of fact, we also use our dynamic programming algorithm
to build multigraphs in our computational experiments, either from standard
state-of-the-art benchmark instances or from geographic data (see Section 4.5).

8

3.2 Impact on solution approaches

Local search algorithms basically consist in repeatedly considering an incum-
bent solution, exploring a set of neighbour solutions and selecting a new in-
cumbent solution in this neighbourhood. In a simple descent algorithm, the
best neighbour solution is selected at each iteration until it does not improve
upon the incumbent solution. Several metaheuristic mechanisms can be added
to avoid being trapped into local optima. The multigraph representation does
not interfere with the local search scheme except for evaluating the feasibility
and the value of the solutions explored, which is exactly the purpose of the
FSASP.

However, one can be a little more clever than simply evaluating every neigh-
bour solution using the dynamic programming algorithm of Section 3.1. A
possibility would be to explore the whole neighbourhood and find the best
neighbour solution with one execution of the dynamic programming algorithm.
This possibility is illustrated for the request insertion operator in Section 4.3.2.

This latter operator is critical for inter-routes moves like relocate and exchange.
Cross-moves which plug subsequences or intra-route neighbourhood operators
(k-opt, Or-opt, . . .) are quite different. Exploring the whole neighbourhood
in one shot appears more tricky in these cases. One can however expect that
the size of these neighbourhoods will be limited, especially when resources are
very restrictive (e.g., tight time windows).

With regards to exact methods, using a multigraph representation increases
drastically the size of the solution space. Hence, one can conjecture that these
methods would fail to solve instances of a size that they would be able to
tackle with a simple graph representation. However, the basic principles of the
methods would not be changed. Linear relaxation can still be computed and
serve as a lower bound in a branch-and-bound method; one can expect most
of the valid inequalities to remain true. As we show in Section 4.4, for column
generation approaches, the multigraph representation has an impact on the
subproblem definition but a simple adaptation allows to solve it efficiently.

Concerning the branching scheme, usual branching decisions enforce or forbid
the use of an arc. With the multigraph representation, this policy can be
rather inefficient, as forbidding an arc is not as strong as in the simple graph
case. One might rather prefer to enforce or forbid the successor of a vertex,
i.e., enforce or forbid the complete set of arcs between two vertices. Indeed,
it can be simply seen that in a fractional solution at least one vertex has
two different successors. For instance, in column generation, binary decision
variables represent the selection of complete routes. And a fractional solution
with a single successor for every vertex would be a solution with identical

9

sequences using different subsets of arcs, which can easily be transformed into
an integer solution.

4 Application to the dial-a-ride problem

4.1 Practical motivation and related work

The motivation of this study stems from a multidisciplinary research project
dealing with on-demand transportation systems and their adequacy with new
mobility practices (Josselin and Genre-Grandpierre, 2005). We focus here on
the development of an ODT reservation software for the Doubs Central area
(France). An ODT system is a flexible transportation system intended to carry
out transportation requests via a fleet of vehicles under feasibility and oper-
ational constraints. Contrary to a traditional public transportation system,
routes are determined on a daily basis (or, at least, for a short time period),
according to the requests. A key issue for such systems is to find operational
solutions taking into account the possibly contradictory objectives of the in-
volved partners:

• for the Transportation Organizing Authorities: rationalize and make the
service attractive;

• for the conveyors (local taxi companies in the Doubs Central case): maximize
profits;

• for the possible subcontractors (hauliers): conquer new markets;
• for the passengers associations : improve quality of life and access to the

facilities.

In the ODT system considered here, each user issues a request defined by a
pick-up point (departure), a drop-off point (arrival), a number of passengers
and a latest drop-off time that cannot be exceeded. An acceptable quality of
service can be ensured by providing a guarantee on the maximum gap between
the pick-up time and that latest drop-off time. As specified subsequently, these
constraints can be expressed as time windows. The service is carried out by
local taxi companies. Consequently, the fleet is heterogeneous, of fixed size
and based in multiple depots. The cost for the authorities (paid to these taxi
companies) is proportional to the distance traveled plus a fixed cost for every
vehicle used. Our objective is to propose a transportation plan satisfying all
requests and minimizing this cost. A second objective is then to minimize the
time spent in vehicles by users. Defining the vehicle routing problem that way
permitted to satisfy the different partners involved in the system.

10

The interest of considering alternative paths here is to have the possibility
to propose less expensive paths (using e.g., short but slow sections), with an
equivalent quality of service. Also, this problem appears as a good test-bed
case to evaluate the methodological and the practical impacts of a multigraph
representation.

ODT systems have raised the interest of many researchers for a long time.
The underlying vehicle routing problem is generally identified as the Dial-

a-Ride Problem (DARP). The DARP is a special case of Pickup & Delivery

Problem with Time Windows (PDPTW), which consists in transporting goods
from collection to delivery points. The specificity of the DARP pertains to
the quality of service induced when carrying persons. Most of the work on the
DARP is issued from real-life applications. Passenger flows are often important
(up to thousands of people a day) even if most of the systems are reserved
for specific categories like disabled people (Toth et Vigo, 1997; Dumas et al.,
1989). For both reasons, the DARP has so far been mostly investigated with
heuristic approaches.

Insertion procedures are often applied to construct feasible solutions. They
are fast, robust and particularly adapted to dynamic situations. The insertion
procedure of Jaw et al. (1986) is a reference in the context of the DARP. It
deals with individual maximal ride time and time window constraints, and
instances with up to 2600 passengers and 20 vehicles. Requests are selected
and inserted with a best insertion policy in the increasing order of their earli-
est pick-up time. Madsen et al. (1995) and Coslovitch et al. (2006) adapt this
procedure to the dynamic case. Other insertion procedures are proposed by
Toth and Vigo (1996) and Diana and Dessouky (2004). The resultant solutions
are then generally improved using metaheuristics. Several evolved metaheuris-
tics have recently been proposed, but these procedures still have difficulties to
deal with complex side-constraints. Bent and Van Henteryck (2006) and Ropke
and Pisinger (2006) propose large neighbourhood search approaches, combined
with simulated annealing. Cordeau and Laporte (2003a) and Melachrinoudisa
et al. (2007) use tabu search. More recently, Xiang et al. (2006) solve with lo-
cal search a complex DARP including various customer’s and driver’s quality
of service constraints.

Another direction for solving the DARP is to take advantage of the natural
splitting of the problem into an assignment (clustering) and a sequencing
(routing) subproblems – which can also contain a scheduling subproblem to
determine service times.

This structure can be used in decomposition schemes. Several branch-and-price
approaches have been developed successfully (Dumas et al., 1989 and 1991;
Savelsbergh and Sol, 1998; Ropke, 2005). Another possibility is to solve sequen-
tially the two subproblems. The clustering phase has been addressed efficiently

11

with genetic algorithms (Rekiek et al., 2006 and Jørgensen et al., 2007) and
simulated annealing (Li and Lim, 2001; Colorni et al., 1996). The routing phase
amounts to solving a single vehicle DARP. Sexton and Bodin (1985a,b) pro-
pose a Bender’s decomposition where the slave problem is scheduling. Other
authors generally use local or tabu search for heuristics and dynamic program-
ming for exact methods.

Finally, several efficient branch-and-cut methods have recently been devel-
oped. This kind of approach is known as the most successful for the TSP
(Gutin and Punnen, 2002). Lu and Dessouky (2004) and Cordeau (2006) solve
small instances (less than 50 requests). Ropke et al. (2007) tackle instances
with hundreds of passengers, with new models and new valid inequalities.

The interested reader may find a more detailed state-of-the-art review on this
subject in Cordeau and Laporte (2003 and 2007). Desaulniers et al. (2002)
and Crainic and Laporte (1998) present more general information on Pickup

& Delivery Problems and other vehicle routing problems. In view of the im-
portance of insertion and branch-and-price methods for the solution of the
DARP, we consider these approaches for the examination of the multigraph
representation in this paper.

4.2 Problem Formulation

The problem is to serve a set R of requests with a heterogeneous fleet K of
vehicles, where K is composed of subsets Kv of vehicles of identical type 1

v ∈ VT . A request r is defined by its pick-up point r+, its drop-off point r−, a
positive number of passengers to transport lr+, a latest drop-off time Br− and
the maximum gap δr to respect between Br− and the actual pick-up time. Each
vehicle k is characterized by its capacity Ck, starting and arrival depots ok and
mk, and a fixed cost pck incurred when the vehicle is used. In the remaining
of this section, we note lr− = −lr+ and lok

= lmk
= 0, for each request r and

vehicle k. Moreover, a pick-up or a drop-off point is called a service. Besides
the characteristics defined above, a service i has a non-negative duration si.

Let G = (V, A) be a directed graph. V includes two nodes per request, one for
each service r+ and r−, plus two depot nodes per vehicle (starting and arrival
depots). An arc (i, j)e ∈ A is a road-path linking node i to node j. A cost
de

ij(0), a load de
ij(1) = lj and a duration de

ij(2) are associated with arc (i, j)e.
Arcs with index e = 0 represent min-time road-paths.

The latest drop-off and maximum gap constraints can be expressed as time

1 Vehicles are said of identical type if they share the same characteristics, including
depots.

12

windows, as can be seen in equations (5)-(7):

Br+ =Br− − d0
r+r−(2) − sr+ (5)

Ar+ =Br− − δr − sr+ (6)

Ar− =Ar+ + sr+ + d0
r+r−(2) (7)

where Ai is the earliest starting time for service i and Bi the latest start-
ing time. This remark permits to replace the gap constraint (concerning two
services) with time window constraints [Ai, Bi] defined for every service i in-
dependently.

The part of a solution relative to a single vehicle is called a route. It is called
a sequence, if the service times are not fixed, i.e., only the vehicle assignment
and the order of realization of the services are known. To construct the routing
planning, one has to assign one vehicle per request, to sequence the services
and to fix service starting times Ti. The latter corresponds to the arc selection
problem induced by the multigraph representation.

The problem can be modeled as follows. We introduce binary decision variables
xk

ije, with xk
ije = 1 if arc (i, j)e is used by vehicle k, xk

ije = 0 otherwise. Decision
variables Li indicate the number of passengers in the vehicle after service i is
achieved. The model is then:

min
∑

k∈K

∑

(i,j)e∈A

xk
ijed

e
ij(0) +

∑

k∈K

∑

(ok,i)e∈A\{(ok ,mk)e}

pckx
k
okie (8)

subject to

∑

k∈K

∑

(r+,j)e∈A

xk
r+je = 1 ∀r ∈ R, (9)

∑

(ok ,j)e∈A

xk
okje = 1 ∀k ∈ K, (10)

∑

(r+,j)e∈A

xk
r+je −

∑

(j,r−)e∈A

xk
jr−e = 0 ∀k ∈ K, ∀r ∈ R, (11)

∑

(i,j)e∈A

xk
ije −

∑

(j,i)e∈A

xk
jie = 0 ∀k ∈ K, ∀j ∈ V, (12)

xk
ije

(

Ti + si + de
ij(2) − Tj

)

≤ 0 ∀k ∈ K, ∀ (i, j)e ∈ A, (13)

Ai ≤ Ti ≤ Bi ∀k ∈ K, ∀i ∈ V, (14)

Tr+ + sr+ + d0
r+r−(2) ≤ Tr− ∀k ∈ K, ∀r ∈ R, (15)

xk
ije

(

Li + de
ij(1) − Lj

)

= 0 ∀k ∈ K, ∀ (i, j)e ∈ A, (16)

Lr+

∑

(r+,j)e∈A

xk
r+je ≤ Ck ∀k ∈ K, ∀r ∈ R, (17)

13

xk
i+j−e = 0 ∀k ∈ K,

(

i+, j−
)e

∈ A : de
i+j−(2) = 0,(18)

xk
ije ∈ {0, 1} ∀k ∈ K, ∀ (i, j)e ∈ A. (19)

with xk
okr−e = xk

r+mke = 0; xk
ioke = 0 for all i 6= mk; xk

mkie = 0 for all i 6= ok;
Lok

= Lmk
= de

mkok
(0) = de

mkok
(1) = de

imk
(1) = de

oki(1) = 0; Aok
= Amk

= −∞
and Bok

= Bmk
= ∞.

Objective function (8) involves minimization of the cumulative cost of the
selected arcs plus the total fixed cost of the employed vehicles.

Constraints (9) enforce that exactly one vehicle passes through exactly one
arc (r+, j)e for each request r. This coresponds to the fact that each pick-up
request must be fulfilled by exactly one vehicle. Constraints (10) ensure that
vehicles leave their starting depot exactly once, possibly for a dummy run to
their arrival depot. Constraints (11) state that, for each request r, the drop-
off service has to be performed by the same vehicle as the pick-up service.
Constraints (12) are standard flow conservation constraints. Constraints (13)
enforce the precedence constraint between the service time of two nodes vis-
ited consecutively by the same vehicle. Constraints (14) are the time window
constraints (see equations (5)-(7)). Constraints (15) enforce, for each request,
precedence between the pick-up and the drop-off services. Constraints (16)
express the load conservation at each service, respectively. Constraints (17)
ensure that a vehicle leaving a pick-up service has the required capacity. On
the same station, pick-ups occur after drop-offs (constraints (18)). Note that
non-linear constraints (13) and (16) and (17) could be presented as linear con-
straints at the expense of “big M” coefficients. Since we do not use directly
the model to solve the problem or even its linear relaxation, the non-linear
model was chosen for the sake of clarity.

The objective function was defined in accordance with the Doubs Central
Transportation Organizing Authorities so as to minimize, as a main objective,
the cost incurred while making the service more attractive via a secondary
hierarchical objective. This secondary objective is the minimization of the
time lost by users. We express that as the sum of the gaps between the latest
drop-off times and the actual pick-up times (see equation (20)).

min
∑

r∈R

(Br− − Tr+) (20)

This optimization does not change the fixed sequences (xk
ije variables) com-

puted first. In addition, we consider the following constraint on service times:
a vehicle is allowed to wait at a stop only after a drop-off followed by a pick-up.
Adding this constraint to the model (8-19) preserves its optimal value.

14

4.3 Insertion heuristic

We propose a five-step insertion-based heuristic illustrated in Figure 4.

(1) The first step is a greedy insertion procedure which aims at constructing
vehicle sequences satisfying all requests.

(2) A descent method, based on removals and insertions, is used in the second
step to improve the set of sequences.

(3) In the third step, the greedy insertion procedure is called again with a
different request order based on marginal costs.

(4) The descent method of Step 2 is used once more at the fourth step on
the solution obtained at Step 3.

(5) The sequences are scheduled (time-stamped), and the routes obtained,
during Step 5.

Sort the requests according
to the initial order

Sort the requests according
to the decreasing marginal costs

Descent method

iter=iter+1

iter=0

iter=2 ?

Compute marginal costs

Scheduling method
Yes

No

complete solution

sequence solution

request list

improved sequence solution

Greedy insertion

Fig. 4. The five-step insertion-based heuristic

The main objective is tackled during steps 1 to 4 while the secondary objective
is ignored. Step 5 optimizes the secondary objective while keeping the best
value found for the main one. Section 4.3.1 presents more precisely the different
steps of the algorithm. Section 4.3.2 details the request insertion mechanism
as a special FSASP problem.

15

4.3.1 The five-step approach

4.3.1.1 Greedy insertion procedure Empty sequences are initially as-
sociated with each vehicle. The requests are then inserted one by one into the
sequences, according to a predetermined order. The least-cost insertion is se-
lected. Insertion is “greedy” in the sense that the relative order of the already
inserted requests is preserved. However, the arc selection between successive
stops is re-optimized. Insertion can indeed force to use faster but more expen-
sive arcs. Least-cost insertion thus means in this context that the insertion
chosen is the one that provides a feasible sequence and a provisional related
arc selection with a minimal cost. The determination of the optimal set of arcs
is a NP-hard problem as a variant of the FSASP with 3 attributes, time, cost
and capacity (see Section 3.1). The model and the method proposed to solve
it are detailed in Section 4.3.2.

For the first call to this phase, an initial order of requests is defined on in-
creasing values of the earliest pick-up time. The order used for the second call
to this phase (Step 3 of the 5-step heuristic) relies on a marginal cost mech-
anism. This cost is calculated by removing the request temporarily and by
evaluating the corresponding profit, which requires solving an FSASP on the
new sequence. The order is then defined as the decreasing order of marginal
costs, so that the most expensive requests are inserted first.

4.3.1.2 Descent method The descent method considers the set of com-
puted sequences and tries to move requests. Requests are removed and rein-
serted with a least-cost policy. A first time, we select all the requests according
to the order used to build the solution. Then, we select each request to remove
and reinsert randomly until no more improvement is possible. Insertions still
imply to solve a FSASP as explained in Section 4.3.2. Evaluating the cost of
a sequence after the removal of a request also implies arc re-oprimization.

4.3.1.3 Scheduling (time-stamping) At the end of Step 4, a set of se-
quences is available. The optimal selection of arcs for these sequences is given,
with the guarantee that a feasible schedule exists. The first hierarchical level
of the objective function is then fixed. We denote S one of these sequences.
We optimize service times according to the second hierarchical level for S, i.e.,
minimize the sum of the gaps between latest drop-off times (Br−) and pick-up
times (Tr+). This amounts to maximize the following objective (21) since the
latest drop-off times are constant:

max
∑

r∈S

Tr+ (21)

16

Since arcs are fixed, we are in a classical context without multiple arcs to
consider. Many contributions deal with this problem and different objective
functions. Sexton and Bodin (1985a) minimize a weighted sum of drop-off time
deviation and ride time. Desrosiers et al. (1995) generalize it to convex penalty
cost functions and Ahuja et al. (2002) formulate and solve the scheduling
problem with soft time windows as the convex cost dual network flow problem.
In our special case, we describe a very simple adhoc procedure computing an
optimal solution.

The recursion procedure described through formula (22-23), calculates the
so-called Latest Pick-Up Earliest Drop-Off Solution. The first iteration (22)
computes the latest feasible service times that characterize the Latest Schedul-

ing Solution. (i, j)e denotes without any ambiguity the selected arc between i
and j. For the sake of simplicity, we consider here that sequence S is sequence
{1, . . . , |S|}. By construction, we state easily that this schedule is optimal for
the secondary criterion.

T|S| := B|S|; Ti := min
{

Bi, Bi+1 − de
i,i+1(2) − si

}

∀i = |S| − 1, . . . , 1; (22)

Ti := max
{

Ai, Ti−1 + si−1 + de
i−1,i(2)

}

∀i a drop-off. (23)

The Latest Pick-Up Earliest Drop-Off Solutions respecting these operational
constraints form a dominant set for the routing problem and the scheduling
problem.

4.3.2 Request insertion in a sequence

The insertion of a request r in a sequence (Step 1 and Step 3 of the 5-step
heuristic) basically relies on the solution of a FSASP (see Section 3.1) in an
augmented graph. Let us consider the acyclic multigraph G1 = (V1, A1) where
vertices are depots, pick-up and drop-off nodes of the sequence plus one vertex
for r+ and r− at each insertion position (r is the request we have to insert). A1

contains every arc respecting the sequence order (Figure 5). Initial constraints
or constraints induced by the sequence structure can immediately reduce the
number of insertion positions.

Finding the best insertion position for r is equivalent to finding the min-cost
path, satisfying all constraints on attributes (time and capacity) and visiting
exactly one vertex representing r+ and one representing r− in this order. We
model this problem as a SPPRC and solve it through dynamic programming
with the following particularities. The label lb associated with a partial path
is defined with a level of consumption for each resource (time T lb and load
Llb), a cost C lb, and a final vertex i, plus the request resource Rlb for the

17

i i i i i1 2 3 40G :
1

r+ r+ r+

r− r− r−

r+ insertion positions:

r− insertion positions:

Fig. 5. Request insertion in a sequence – multigraph construction

new request. The rules of consumption and violation of resources T , L, C for
extension of a label lb at a node i through arc (i, j)e are summarized in Table
1 (with the resulting label being lb′). The rules for resource R are summarized
in Table 2 depending on the destination vertex. The Rlb starting level at the
depot is set to 0.

resource value constraint

T lb′ max
{

T lb + de
ij(2), Aj

}

≤ Bj

Llb′ Llb + de
ij(1) ≤ Ck

C lb′ C lb + de
ij(0) to minimize

Table 1
Extension functions for resources T , L and C

arc (i, j) (i, r+) (i, r−) (i, depot)

value of Rlb′ Rlb Rlb + 1 Rlb + 1 Rlb

constraint − = 1 = 2 = 2

Table 2
Extension function for resource R

These rules forbid that drop-off occurs before pick-up and imply that each
of the two services is inserted exactly once. Labels are generated traversing
the sequence and considering all the outgoing arcs for every vertex. Labels
violating constraints are deleted.

The dominance rule works as follow. lb1 dominates lb2 if equations (24) are
valid.

C lb1 ≤ C lb2; T lb1 ≤ T lb2 ; (Rlb1 = Rlb2 or Rlb1 = 2) (24)

This condition also controls the loads Llb1 and Llb2 as we show in Table 3. The
load of lb1 never exceeds the load of lb2 if the constraint on R is satisfied.

In addition, when the sum of the new request load and the maximal load in the
sequence does not exceed the vehicle capacity, the case Rlb1 = 1 and Rlb2 = 0

18

Rlb1\Rlb2 0 1 2

0 Llb1 = Llb2 Llb1 ≤ Llb2 Llb1 = Llb2

1 Llb1 ≥ Llb2 Llb1 = Llb2 Llb1 ≥ Llb2

2 Llb1 = Llb2 Llb1 ≤ Llb2 Llb1 = Llb2

Table 3
Constraints on loads of two comparable labels

can be ignored yielding a stronger dominance rule (25).

C lb1 ≤ C lb2; T lb1 ≤ T lb2 ; Rlb1 ≥ Rlb2 (25)

We discussed the complexity of the Algorithm 1 in Section 3.1. If we assume
that service times have integer values, we obtain for an insertion in G1 a
worst-case complexity of O(|A1| × (max1≤i≤N {Bi})

2). We deduce a worst-
case complexity of O(|R||A| × (max1≤i≤N {Bi})

2) for the complete insertion
procedure.

Once the best insertion is found, a basic constraint propagation procedure
on time windows is applied to improve the efficiency of further insertions.
The Latest Scheduling Solution (described in Section 4.3.1.3, equation (22))
computed with min-time arcs (e = 0) gives new bounds Bi and the Earli-

est Scheduling Solution – obtained by a symmetric construction – gives new
bounds Ai. This update is made traversing the sequence twice (one time in
each direction) in O(|V1|). All feasible solutions are preserved.

4.4 Exact method

In this section, we present a branch-and-price exact solution procedure for the
considered DARP. This scheme was first introduced for the DARP in Dumas
et al. (1989). The adaptation to the multigraph case is described subsequently.
The reader is referred to Desaulniers et al. (2005) for more details on column
generation techniques.

Let Ωv be the set of possible time-stamped routes for a vehicle of type v ∈ VT
carrying out at most once each potential transportation request, satisfying the
time windows and capacity constraints. Let Ω =

⋃

v∈VT Ωv = {ω1, . . . , ω|Ω|}
be the complete set of possible routes (identical routes assigned to different
vehicle types are considered different). Let bvn = 1 if route ωn ∈ Ωv, bvn = 0
otherwise. Let arn = 1 if route ωn ∈ Ω carries out request r, arn = 0 otherwise.
Let c1

n be the total costs generated by route ωn ∈ Ω. The DARP can be stated

19

as follows:

min
∑

ωn∈Ω

c1
nλn (26)

subject to

∑

ωn∈Ω

arnλn = 1 ∀r ∈ R, (27)

∑

ωn∈Ω

bvnλn ≤ |Kv| ∀v ∈ VT , (28)

λn integer ∀ωn ∈ Ω. (29)

The decision variables λn indicate whether route ωn ∈ Ω is used or not. Objec-
tive function (26) corresponds to objective function (8) in the compact model.
Constraints (27) ensure that each request is carried out exactly once. Con-
straint (28) limits the number of vehicles of type v used to |Kv|. We denote
by πr the dual variable associated with constraint (27) for request r and by
µv the dual variable associated with constraint (28) for vehicle type v.

Solving the linear relaxation of model (26)-(29) necessitates the use of a col-
umn generation technique, due to the size of Ω. In the following, we call Master
Problem (MP) the linear relaxation of model (26)-(29).

Column generation is based on two components: a restricted master prob-
lem and one or more subproblems. The restricted master problem MP(Ω1)
is obtained from MP by considering only a subset Ω1 ⊂ Ω of variables. A
subproblem aims at adding progressively new potentially good columns to Ω1

until an optimality criterion is attained. One consider distinct subproblems
for each vehicle type.

Ω1 is initialized with a simple set of routes, for instances routes obtained by
the insertion heuristic of the Section 4.3. At each iteration of the algorithm,
MP(Ω1) is solved with the simplex method. A subproblem determines for a
specific vehicle type v whether some variables λn with ωn ∈ Ωv have a negative
reduced cost. This condition can easily be stated as:

c1
n −

∑

r∈R

arnπr − µv ≤ 0. (30)

One or several variables with negative reduced cost are then added to Ω1 and
the algorithm iterates until all subproblems fail to find new routes.

A subproblem, for a vehicle type v can be seen as an Elementary Shortest

Path Problem with Resource Constraints (ESPPRC) on graph G, aiming at

20

finding an elementary path of minimal cost subject to resource constraints
between the starting and arrival depots of vehicle type v. The path has to
be elementary in the sense that requests should not be carried out more that
once. Resources and cost are defined with the following |R| + 3 attributes:
resources L and T for the load and time consumption, cost C, one resource
for every request telling about the presence of the request in the path.

Extension functions and violation rules on attributes L, T and C are defined
exactly as explained in Table 1, except that cost matrix de

ij(0) is changed to
matrix dre

ij(0) defined as explained below:

dre
ij(0) = de

ij(0) −

πr if j is the pick-up service of a request r,

µv if j is the depot for vehicles of type v,

0 otherwise.

(31)

With this new definition of arc costs, the cost of a path corresponds to the
reduced cost value for this path.

Extension functions and violation rules on the |R| other attributes also behave
as explained in Table 2, except that value 0 is authorized when extending the
label to the depot (see Table 4). Indeed, a request does not necessarily belong
to the solution, contrary to the situation of Section 4.3.2. In Table 4, Rlb

represents the value of the resource for a label lb and Rlb′ the value of this
resource for the label lb′ obtained after extension, depending on the type of
arc used for the extension.

arc (i, j) (i, r+) (i, r−) (i, depot)

value of Rlb′ Rlb Rlb + 1 Rlb + 1 Rlb

constraint − = 1 = 2 ∈ {0, 2}

Table 4
Extension function for the resource R associated to request r

The dominance rule works as follow. lb1 dominates lb2 if equations (32) are
valid, where labels lb1 and lb2 represent two paths from the depot to the same
current ending vertex i. Label lb2 is penalized if it is more expensive and longer
(in duration) than lb1 and if it has to close an opened request which is not
opened for lb1. Rules on request resources include rule on loads.

C lb1 ≤ C lb2 ; T lb1 ≤ T lb2 ; Llb1 ≤ Llb2 ;

Rlb1
r = 0 or Rlb2

r = 1 or (Rlb1
r = 2 and r ∈ Unreachable(lb2)) ∀r = 1, . . . , |R|

(32)

21

The formula (33) defines the set of unreachable requests for a label lb ending
in vertex i.

Unreachable(lb) = {r ∈ R : Rlb
r > 0} ∪ {r ∈ R : T lb + Tir+ + Tr+r− > Br−}(33)

The ESPPRC is solved through a dynamic programming approach, as pro-
posed in Feillet et al. (2004). Note that the presence of multiple arcs between
pairs of vertices only implies to extend every label along each one of these
arcs (resulting in one label per arc). Note also that this algorithm can be seen
as an extension of Algorithm 1 presented in Section 3.1, allowing the solution
of the problem in a acyclic graph. The single modification needed compared
to Algorithm 1 is that the main loop is repeated until every label has been
extended (keeping that labels are extended only once). The subproblems are
not necesseraly solved to optimality. The purpose is to find out routes with
negative reduced cost and therefore we stop when we compute enough such
routes.

The branching scheme consists, as described in Section 3.2, in enforcing or
forbidding the complete set of arcs between two vertices. These constraints
are easy to handle at the master problem level by removing incorrect columns
and are classically transferred to the subproblem by removing appropriate
arcs. Note that the scheduling procedure (the fifth step of the heuristic) can
still be applied to improve the solution in the ODT context.

4.5 Results

Due to many variants of DARP that can be considered, finding benchmark
instances for these problems is not an easy task. Actually, no benchmark
corresponds exactly to our situation, even with a simple graph representation.

We generated 24 benchmark instances from geographical data of Doubs Cen-
tral (using IGN 2 maps) and estimated flows of population. Flows were gen-
erated according to 4 scenarii: a random flow, a convergent flow, an extrem
convergent flow and a multiconvergent flow denoted ‘rand’, ‘conv’, ‘econv’ and
‘mconv’, respectively. For each scenario, 6 instances with 25, 50 and 100 re-
quests were generated. The maximum gap between the latest drop-off time
and the actual pick-up time (Br− − Tr+) is 1.5 or 1.3 times longer than the
min-time path (in the road network). The fleet is heterogeneous and corre-
sponds to taxi companies with 8 depots. All vehicles are 6-seater similar cars
are charging a fixed cost pck = 10.

2 Institut Géographique National

22

We also have new instances derived from the literature. Cordeau generated two
series (‘a’ and ‘b’) of random Euclidean (on a [20x20] square) DARP instances,
described in Cordeau (2006). The instances are named as xy z where x is either
a or b, y is the number of available vehicles (the fleet is homogeneous at a single
depot) and z is the number of transportation requests. In the first set (‘a’), the
vehicle capacity is 3 and there is only 1 passenger per request. In the second
set (‘b’), requests concern up to 6 passengers and the vehicle capacity is also
6. Each instance has a planning horizon, a common maximal individual ride
time and a common time windows size. The pick-up time window is known
for half of the requests, the inbound requests. The outbound requests impose a
time window on the drop-off time. Since all requests have the same maximal
individual ride time and the same time windows size. There is a drawback
that many passengers are likely to be provided with a poor level of quality of
service. There is also a small interest for using a multigraph with long maximal
ride times, because min-cost arcs often form feasible routes. Thus, we derived
from this benchmark (only from the ‘b’ series) a more time constrained one
denoted by series ‘c’, with an individual maximal ride time equal to 1.5 times
the min-time path from pick-up to drop-off stops. We also generated 3 new
bigger instances (‘C’ ones) by concatenation of some Cordeau instances. From
16 to 630 requests must be served by an unlimited homogeneous fleet. These
multigraph series were produced by adding arcs and computing Pareto optimal
paths through dynamic programming. We added |V |2 × 10% arcs (|V | is the
number of vertices) for all series except for the ‘C-630’ instance with which only
2% arcs were added. Additional arcs are slower (according to attribute de

ij(2))
than initial arcs between 20% and 40%; they are cheaper (attribute de

ij(0)) in
the same proportions. Thus we construct road networks such as the time and
cost deviations of an arc from the min-time arc, does not exceed 40%. This
maximal gap is equal to 50% in the Doubs Central road network. Euclideans
multigraphs cover a larger interval of values of densities ([0.39, 1.16]) than the
Doubs Central’s ones ([0.45, 0.58]). These instances and the characteristics of
the multigraphs are more deeply detailed in Annex A.

The results obtained with the algorithms presented in Sections 4.3 and 4.4
on multigraph and those obtained on min-time paths simple graph, are com-
pared in the Tables 5 and 6 for the Euclidean instances and in Table 7 and 8
for the realistics ones. Italic typography style is used to highlight the results
obtained on multigraphs. Each instance is solved with the 5-steps heuristic.
Then, computed routes initiate the column generation algorithm. For each se-
ries we indicate the total cost (‘cost’ in Tables 5 and 7) of the current solution
at different steps of the insertion heuristic (steps 1, 2 and 5) and after the
exact solution. Values for the optimals solutions of the second objective, the
time lost, and the number of vehicles can be found in columns ‘time lost’ and
‘vehicles’. At the first and the final steps, we compute the gap between the cur-
rent solution and the optimal solution obtained on the simple graph. The row
‘gap’ indicates the average of this gap on all instances above: gap = (Cost −

23

Optimal Cost on Simple Graph)×100/Optimal Cost on Simple Graph. Com-
puting times (‘cpu time sec.’ in Tables 5 and 7) are given in seconds; the com-
puting time of the optimal solution cumulates the heuristic and the column
generation computing times. The quantities of FSASP solved by the heuristic
are given by columns ‘insertions’ in Tables 6 and 8, in the request insertion
case, and ‘arc selections’ in Tables 6 and 8 in the request deletion case. Note
that in the case of the simple graph, the FSASP solved only aims at comput-
ing the schedule of services and checking feasibility. Columns ‘ESPPRC’ and
‘nodes’ represent the number of subproblems solved and the number of nodes
created during the branch-and-price algorithm, respectively.

The exact method is only able to solve instances with less than 100 requests
which is a reasonable performance; the low number of explored nodes shows
the high quality of the linear relaxation of the master problem. However,
its purpose was actually to evaluate the quality of the proposed heuristic. It
comes out that the obtained heuristic solutions are between 5% and 10% worse
than optimal ones in average, either on a simple graph or on a multigraph and
either on Euclidean or on realistic instances. Additional experiments show that
running the heuristic initialized with different initial orders (even randomly
generated) reduces this gap. Our insertion heuristic is very time consuming for
solving the biggest instances, the ‘C’ series; the first step runs about one hour
for the ‘C-310’ instance! Passenger flows are less than 100 requests for a day in
the Doubs Central. Consequentely, the heuristic performance was considered
as satisfactory for the Doubs Central ODT application.

Using a multigraph reduces costs by more than 15% for Euclidean instances
and 10% for realistic instances, which is considerable for poorly dense road
network of a rural zone. By using a multigraph , better (about 1% and 14%
in average for realistic and Euclidean instances, respectively) results with the
heuristic than the exact approach using the simple graph even can be obtained.
On many instances, the initial greedy procedure (‘step 1’) is enough to out
perform the exact method on the simple graph. As expected, the time lost
by passengers could increase dramatically by using a multigraph. Alternative
paths allow the transporter to go further in the exploitation of customers’
time constraints. However, this impact is correlated to the flow structure. For
instance, the time lost is not penalized for ‘econv’ series. The most surprising
result is the relatively low number of vehicles used by solutions on multigraphs.
It means that a non negligible interesting (and time feasible) routes mergings
are rejected from the solutions on simple graphs because of their high costs.
The similar results obtained on ‘1.3 delayed’ and on ‘1.5 delayed’ realistic
instances show the positive impact of the multigraph model even on very time
constrained instances. The heterogeneous fleet of realistic instances causes a
large number of FSASP (‘insertions’) in the heuristic case and slave problem
(‘ESPPRC’) in the exact method case and thus long computing times.

24

In order to link together the cost reduction on solutions and some character-
isitcs of the multigraph, we compute the graph of the Figure (6). For each
instance, the ‘mincost’ curve, which represents the average cost savings be-
tween min-cost and min-time arcs, is drawn as a function of the ‘gap’ between
simple and multi- graph solutions. The ‘gap’ tends to increase with high val-
ues of the ‘mincost’. The dotted line represents the density of the multigraph
obtained after a set of trivial reductions according to time constraints. The
density of multigraphs also increases with the ‘gap’. We see in the column
‘mincost’ of the Tables 6 and 8 that the optimal solutions on multigraphs use
a high rate of min-cost arcs and min-time arcs. According to these values, we
guess that ‘mincost’ line is strongly correlated to the ‘gap’. By construction,
our instances with high values of ‘mincost’ tend to have high density. Almost
all irregularities of these curves come from some realistic instances with a
strong polarity which mitigates the effect stated above.

0

5

10

15

20

25

30

4 6 8 10 12 14 16 18 20 22 24 26
0.2

0.4

0.6

0.8

1

1.2

m
in

co
st

(%
)

d
en

si
ty

gap (%)

mincost
density

Fig. 6. Multigraphs gains and attributes

These results show a strong impact of multigraph on both cost and CPU
consumption. A reservation software, jointly developed by the project team
(UMR ESPACE, LIA) named TADOU has been issued from this research in-
corporating the proposed heuristic and is currently operational in the Doubs
Central area. These tests were carried out with a 2.3 GHz Intel and 512 Mo
RAM and a 3600 seconds CPU time limit. The application is a C++ com-
piled kernel of a Microsoft Visual Basic application embedded in a database
(Microsoft Access) environment.

25

instance cost time lost vehicles cpu time sec.

name step 1 steps 1-5 exact exact exact step 1 steps 1-5 exact

c2-16 343.6 293.8 332.1 292.0 320.2 276.8 4 13 3 3 0 0 0 0 0 0
c2-20 355.8 314.2 345.3 310.9 339.8 305.4 6 9 4 4 0 0 0 0 0 0
c2-24 478.6 391.1 453.1 372.5 440.8 365.2 3 22 3 3 0 0 0 0 0 1
c3-18 350.2 306.2 337.7 292.9 334.3 289.2 5 10 4 4 0 0 0 0 0 0
c3-24 456.2 379.8 421.0 359.7 401.6 341.9 12 29 6 6 0 0 0 0 0 0
c3-30 587.9 499.5 562.1 471.1 543.0 458.9 7 25 5 4 0 0 0 0 0 1
c3-36 617.5 518.5 617.5 506.4 554.5 496.3 4 26 6 5 0 0 0 1 0 4
c4-16 335.7 299.0 332.6 299.0 327.3 289.6 4 11 4 4 0 0 0 0 0 0
c4-24 462.8 396.4 413.7 369.6 407.7 364.8 14 28 5 4 0 0 0 0 0 0
c4-32 627.7 499.9 574.3 488.5 542.2 464.7 11 24 6 5 0 0 0 1 0 1
c4-40 719.4 582.0 697.1 570.9 673.2 550.9 2 39 6 6 0 0 0 2 1 5
c4-48 778.1 664.8 764.8 649.2 657.8 607.8 0 55 10 7 0 0 0 3 1 12
c5-40 742.9 597.1 731.1 588.5 716.7 576.6 13 53 5 5 0 0 0 1 1 7
c5-50 949.8 749.2 895.2 693.3 860.7 674.8 25 89 7 6 0 0 0 4 2 12
c5-60 1037.5 860.2 1033.4 829.4 926.6 802.9 5 64 11 7 0 1 0 5 2 71
c6-48 883.2 674.3 829.0 648.8 815.9 636.0 12 51 8 8 0 0 0 2 1 7
c6-60 1063.6 856.6 1001.9 818.0 961.4 769.5 16 56 7 6 0 2 0 13 6 56
c6-72 1213.0 908.2 1136.9 881.4 1073.1 829.6 20 61 8 8 0 2 1 21 26 202
c7-56 1052.7 816.9 1002.5 793.2 951.1 754.2 19 57 8 8 0 1 0 4 3 19
c7-70 1183.6 889.3 1078.5 855.0 1030.9 820.6 30 72 10 9 0 1 0 10 11 82
c7-84 1481.4 1099.7 1431.9 1072.5 1350.1 1030.3 22 108 9 8 0 5 1 35 58 451
c8-64 1116.1 836.4 1050.2 823.1 993.8 787.8 20 53 9 9 0 1 1 5 5 48
c8-80 1335.6 1003.8 1256.3 967.4 1169.4 907.2 38 79 9 9 0 5 1 46 41 207
c8-96 1477.9 1116.9 1468.1 1097.5 1383.5 1043.2 41 114 10 9 0 9 1 86 114 1287

gap (%) 10.1 -11.0 5.1 -13.8 0.0 -17.0

C-168 2765.4 1968.8 2625.0 1840.7 2408.5 - 81 - 17 - 0 96 4 639 2379 -
C-310 4733.4 3272.2 4582.0 3145.7 - - - - - - 1 1364 14 7213 - -
C-630 8961.6 6246.8 8719.1 - - - - - - - 6 4355 119 - - -

Table 5
Results on euclidean instances

26

instance insertions arc selections ESPPRC nodes arcs used in MG

name step 1 steps 1-5 steps 1-5 exact exact mincost mintime

c2-16 51 51 649 549 112 95 11 14 1 1 85 12
c2-20 90 90 649 558 120 100 14 17 1 1 60 34
c2-24 72 72 862 530 189 120 25 42 1 1 45 52
c3-18 71 71 492 496 90 90 11 13 1 1 61 39
c3-24 114 114 1111 949 140 116 14 18 1 1 55 40
c3-30 131 131 993 1462 180 240 24 54 1 1 56 41
c3-36 475 165 3854 1615 133 252 21 127 1 1 61 36
c4-16 70 70 448 445 80 80 7 10 1 1 64 36
c4-24 96 97 912 906 144 144 11 17 1 1 83 10
c4-32 137 137 1606 1326 256 224 19 54 1 1 50 47
c4-40 216 243 3163 2414 396 317 33 106 1 1 44 54
c4-48 837 249 7729 3748 162 480 29 180 1 1 58 42
c5-40 225 225 1837 1714 280 240 37 134 1 1 67 29
c5-50 287 292 4163 3773 500 445 50 151 1 1 62 34
c5-60 1079 427 12949 3795 326 420 49 458 1 1 73 22
c6-48 349 355 3214 3359 336 336 32 118 1 1 72 25
c6-60 339 339 3124 3327 420 420 85 379 1 1 70 27
c6-72 463 463 5710 5555 648 572 135 428 1 1 72 24
c7-56 383 351 3550 3166 392 392 59 199 1 1 66 29
c7-70 526 515 5110 4832 490 490 99 450 1 1 75 24
c7-84 663 699 6832 7191 672 672 195 825 1 1 70 16
c8-64 442 485 7164 4352 704 448 76 342 1 1 76 21
c8-80 557 572 8925 5557 880 560 166 530 1 1 70 28
c8-96 892 894 7798 12501 670 1056 257 1506 1 2 77 21

C-168 2066 2182 27806 27104 1680 1680 1033 - 1 - - -
C-310 5923 6061 65275 46918 2790 1923 - - - - -
C-630 20810 20164 349593 - 8820 - - - - - -

Table 6
Results on euclidean instances

27

instance cost time lost vehicles cpu time sec.

name step 1 steps 1-5 exact exact exact step 1 steps 1-5 exact

rand1.3-25 907.9 817.9 853.9 781.1 774.6 728.7 9 29 7 6 0 0 0 0 0 3
rand1.3-50 1863.5 1715.4 1771.9 1618.3 1603.3 1464.8 12 42 11 11 0 0 0 5 2 40
rand1.3-100 3440.9 3130.6 3230.2 3007.4 2892.7 2676.5 27 79 18 19 0 1 1 16 108 785
conv1.3-25 1051.4 879.2 884.2 802.1 814.2 704.8 0 22 8 7 0 0 0 2 0 5
conv1.3-100 1912.9 1646.4 1755.2 1513.7 1575.7 1356.2 33 76 9 9 0 1 0 8 5 58
conv1.3-50 3568.2 2880.0 3148.7 2618.4 2740.2 2349.2 85 140 13 13 0 4 1 31 82 626
econv1.3-25 1168.4 1005.5 1167.9 1005.5 1142.7 984.2 24 23 9 9 0 0 0 1 0 2
econv1.3-50 2176.5 1886.5 2170.4 1886.5 2134.2 1864.5 74 92 18 18 0 0 0 3 1 13
econv1.3-100 4195.6 3656.1 4120.7 3624.0 4008.5 3515.9 206 208 31 31 0 2 1 9 3 77
mconv1.3-25 641.4 604.0 570.1 549.0 528.0 494.9 3 5 5 5 0 0 0 1 0 2
mconv1.3-50 1162.2 1163.8 1051.3 1010.9 978.2 909.0 11 16 10 10 0 0 0 3 3 10
mconv1.3-100 2448.2 2113.7 2205.7 1982.8 1946.4 1766.5 0 32 13 13 0 1 2 11 94 244
random1.5-25 930.9 834.7 838.9 804.0 768.3 720.1 14 53 6 6 0 0 0 1 0 3
random1.5-50 1920.3 1759.0 1773.2 1640.2 1600.2 1457.4 18 71 11 11 0 1 0 5 3 50
random1.5-100 3327.8 3069.2 3134.0 2866.8 2751.8 2564.6 116 182 17 16 0 2 1 18 75 266
conv1.5-25 1003.0 805.9 867.1 763.0 776.7 673.4 32 40 7 7 0 0 0 1 0 8
conv1.5-50 1627.9 1392.9 1520.6 1309.5 1369.1 1185.6 121 159 6 6 0 1 0 8 8 92
conv1.5-100 3227.2 2730.0 2800.6 2485.1 2410.3 2117.5 246 320 11 11 0 12 1 87 323 1881
econv1.5-25 1041.4 883.8 1028.5 862.0 947.1 830.1 72 84 9 9 0 0 0 1 0 3
econv1.5-50 1961.8 1677.8 1869.8 1671.9 1752.0 1538.8 157 195 14 14 0 1 0 5 1 37
econv1.5-100 3762.6 3179.6 3484.6 3070.8 3272.5 2857.1 427 490 26 25 0 3 1 16 31 1237
mconv1.5-25 574.8 540.4 510.2 498.2 475.5 450.1 27 31 3 3 0 0 0 1 1 3
mconv1.5-50 1086.5 1030.5 1034.5 964.3 939.2 884.1 62 59 7 7 0 0 0 2 5 14
mconv1.5-100 2301.6 2044.3 2134.7 1977.2 1878.1* 1705.2 98 92 12 12 0 2 1 12 3600 380

gap (%) 18.7 4.8 9.5 -1.1 0.0 -10.1

(*) After 3600 seconds the lower and upper bounds computed are 1877.45 and 1878.05
Table 7
Results on Doubs Central instances

28

instance insertions arc selections ESPPRC nodes

name step 1 steps 1-5 steps 1-5 exact exact

rand1.3-25 303 327 2890 2480 166 148 175 201 5 5
rand1.3-50 758 757 11124 9684 594 489 133 356 1 7
rand1.3-100 2122 2156 27114 37270 996 1390 2374 2307 111 91
conv1.3-25 325 304 2503 3235 150 194 111 162 1 1
conv1.3-100 718 711 5918 6764 300 349 227 476 1 1
conv1.3-50 1833 1739 20547 17819 900 798 519 915 1 1
econv1.3-25 388 395 3254 2243 131 92 44 42 1 1
econv1.3-50 1061 1072 9385 6528 277 186 69 122 1 1
econv1.3-100 3364 3403 32043 19550 696 393 78 222 1 1
mconv1.3-25 289 289 2692 2387 169 142 55 133 1 5
mconv1.3-50 748 746 12892 8653 699 445 180 148 1 1
mconv1.3-100 1905 1913 27269 21363 1099 898 378 607 1 1
random1.5-25 310 308 3098 3332 168 194 99 116 1 1
random1.5-50 727 731 6790 6764 349 344 210 355 3 7
random1.5-100 2009 2045 22976 26184 896 998 1124 698 35 5
conv1.5-25 307 286 3278 2330 200 150 85 210 1 1
conv1.5-50 614 617 7113 5414 450 348 265 487 1 1
conv1.5-100 1641 1572 16355 16555 795 799 2943 1093 175 1
econv1.5-25 382 388 2138 3206 87 129 55 45 1 1
econv1.5-50 1021 1018 7111 11178 245 388 92 213 1 1
econv1.5-100 2902 2924 36422 20664 898 492 565 912 43 35
mconv1.5-25 297 288 2637 2177 174 144 121 123 1 1
mconv1.5-50 736 734 5647 5482 298 295 155 178 1 1
mconv1.5-100 1757 1769 21831 16841 893 800 43054 804 7416 6

Table 8
Results on Doubs Central instances

29

5 Conclusion

In this article, we investigated the interest and the tractability to use a multi-
graph representation for solving vehicle routing problems where arcs with
several attributes characterize alternatives in the road network.

In the first step, we made clear that this representation makes the prob-
lem harder even when the vehicle assignment and sequencing decisions are
fixed, i.e. when the problem is reduced to arc selection and service schedul-
ing. Known that this scheduling subproblem is NP-hard, we address it with a
dynamic programming algorithm, based on a SPPRC modeling.

We then discussed how classical solution schemes, either based on local search
(heuristics and metaheuristics) or enumeration (exact algorithms), can handle
the multigraph representation.

An algorithm was derived to solve a DARP for an ODT system developed in
the Doubs Central area in France. The insertion operator was specified for
a request made of a pick-up and a drop-off service and an insertion-based
heuristic made of a greedy constructive algorithm and a descent method is
presented. To evaluate the performances of this heuristic, we developed an
exact branch-and-price method. The computational study shows the efficiency
and effectiveness of our algorithm for a set of benchmark instances issued
from real data. These results permit to conclude positively both concerning
the tractability of the multigraph representation and the savings in term of
solution value that can be attained through this representation.

This work offers at least two important perspectives. The first one concerns
the use of this representation in other contexts: multimodal networks, scenic
route planning or road traffic congestion modeling have been underlined.

The second perspective is to investigate more deeply the adaptation of differ-
ent algorithms to the multigraph representation. The issue is rather different
for heuristic or exact algorithms. The first step is done concerning local search
type algorithms. The solution scheme proposed to evaluate in a single run
every neighbour solution for the insertion operator is indeed a good start-
ing point for proposing equivalent algorithms for other types of operators. In
any case, this paper shows that any type of operator can be used, if one ac-
cepts that the evaluation of a neighbour solution involves solving an SPPRC.
Dealing with big instances necessitates certainly to consider suboptimal neigh-
bourhoods in this phase, for instance by reducing the size of the multigraph.
Focus on extremal arcs seems to be promising because of the large presence
of these arcs in optimal solutions.

Concerning exact methods, column generation appears as a very natural tool

30

to cope with the multigraph representation. As we showed, a multigraph rep-
resentation mainly impacts on the column generation subproblem, which hap-
pens to be a ESPPRC which can directly integrate the multigraph dimension.
However, the results show that the cpu time dramatically increases for the
multigraph representation, due to the difficulty of the so-defined subproblem.
Hence a relevant issue is to define acceleration techniques taking account of
the multigraph structure.

References

[1] R.K. Ahuja, D.S. Hochbaum, and J.B. Orlin. Solving the convex cost
integer dual network flow problem. Management Science, 49(7):950–964,
2003.

[2] M.M. Akbar, M.S. Rahman, M. Kaykobad, E.G. Manning, and G.C.
Shoja. Solving the multidimensional multiple-choice knapsack problem by
constructing convex hulls. Computers & Operations Research, 33:1259–
1273, 2004.

[3] R. Baldacci, L. Bodin, and A. Mingozzi. The multiple disposal facilities
and multiple inventory locations rollon-rolloff vehicle routing problem.
Computers & Operations Research, 33(9):2667–2702, 2006.

[4] J.E. Beasley and N. Christofides. An algorithm for the resource con-
strained shortest path problem. Networks, 19:379–394, 1989.

[5] R. Bent and P. Van Henteryck. A two-stage hybrid algorithm for pickup
and delivery vehicle routing problems with time windows. Computers &

Operations Research, Forthcoming.
[6] M. Bielli, A. Boulmakoul, and H. Mouncif. Object modeling and path

computation for multimodal travel systems. European Journal of Opera-

tional Research, 175:1705–1730, 2006.
[7] A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and M. Tru-

bian. Heuristics from nature for hard combinatorial optimization prob-
lems. International Transactions in Operational Research, 3:1–21, 1996.

[8] J.-F. Cordeau. A branch-and-cut algorithm for the dial-a-ride problem.
Operations Research, Forthcoming.

[9] J.-F. Cordeau and G. Laporte. The dial-a-ride problem (DARP): Vari-
ants, modeling issues and algorithms. 4OR, 1:89–101, 2003.

[10] J.-F. Cordeau and G. Laporte. A tabu search heuristic algorithm for
the static multi-vehicle dial-a-ride problem. Transportation Research B,
37:579–594, 2003.

[11] J.-F. Cordeau and G. Laporte. The dial-a-ride problem : models and
algorithms. 4OR, Forthcoming.

[12] L. Coslovich, R. Pesenti, and W. Ukovich. A two-phase insertion tech-
nique of unexpected customers for a dynamic dial-a-ride problem. Euro-

pean Journal of Operational Research, 175:1605–1615, 2006.

31

[13] T.G. Crainic and G. Laporte. Fleet Management and Logistics. Kluwer,
Boston, USA, 1998.

[14] G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon, and
F. Soumis. VRP with pickup and delivery. In The Vehicle Routing Prob-

lem, pages 225–242. P. Toth and D. Vigo, Philadelphia, 2002.
[15] G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. Column Gen-

eration. Springer, 2005.
[16] M. Desrochers and F. Soumis. A generalized permanent labelling algo-

rithm for the shortest path problem with time windows. Transportation

Science, 26(3):191–212, 1988.
[17] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time con-

strained routing and scheduling. In M.O. Ball, T.L. Magnanti, C.L.
Monna, and G.I. Nemhauser, editors, Network Routing, Handbooks in
Operations Research and Management Science, pages 35–139. Amster-
dam, North-Holland, 1995.

[18] Y. Dumas, J. Desrosiers, and F. Soumis. Large scale multi-vehicle dial-a-
ride systems. GERAD, Ecole des Hautes Etudes Commerciales, Montréal,
G-89-30, 1989.

[19] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem
with time windows. European Journal of Operational Research, 54:7–22,
1991.

[20] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography
of multiobjective combinatorial optimization. OR Spectrum, 22:425–460,
2000.

[21] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm
for the elementary shortest path problem with resource constraints: appli-
cation to some vehicle routing problems. Networks, 44(3):216–229, 2004.

[22] F. Guerriero and R. Musmanno. Label correcting methods to solve mul-
ticriteria shortest path problems. Journal of optimization theory and

applications, 111(3):589–613, 2001.
[23] G. Gutin and A.P. Punnen. The Traveling Salesman Problem and its

variations. Kluwer Academic Publishers, Dordrecht, 2002.
[24] M. Hifi, M. Michrafy, and A. Sbihi. A reactive local search-based algo-

rithm for the multiple-choice multi-dimensional knapsack problem. Com-

putational Optimization and Applications, 33:271–285, 2006.
[25] M.E.T. Horn. Multi-modal and demand-responsive passenger transport

systems: a modelling framework with embedded control systems. Trans-

portation Research A, 36:167–188, 2002.
[26] M.E.T. Horn. An extended model and procedural framework for planning

multi-modal passenger journeys. Transportation Research B, 37:641–660,
2003.

[27] S. Irnich and G. Desaulniers. Shortest path problems with resource con-
straints. In G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors,
Column generation, pages 33–66. Springer, 2005.

[28] J.J. Jaw, A.R. Odoni, H.N. Psaraftis, and N.H.M. Wilson. A heuristic

32

algorithm for the multi-vehicle many-to-many advance request dial-a-ride
problem. Transportation Research B, 20B:243–257, 1986.

[29] R.M. Jørgensen, J. Larsen, and K.B. Bergvinsdottir. Solving the dial-a-
ride problem using genetic algorithms.

[30] D. Josselin and C. Genre-Grandpierre. Des transports à la demande pour
répondre aux nouvelles formes de mobilité. le concept de modulobus.
In B. Montulet et al., editor, Mobilités et temporalités, pages 151–164.
University of Saint-Louis, Bruxelles, 2005.

[31] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer,
2004.

[32] H. Li and A. Lim. A metaheuristic for the pickup and delivery problem
with time windows. In ICTAI 2001, Dallas, USA, pages 160–170, 2001.

[33] Q. Lu and M.M. Dessouky. An exact algorithm for the multiple vehicle
pickup and delivery problem. Transportation Science, 38:503–514, 2004.

[34] O.B.G. Madsen, H.R. Ravn, and J.M. Rygaard. A heuristic algorithm
for the a dial-a-ride problem with time windows, multiple capacities, and
multiple objectives. Annals of Operations Research, 60:193–208, 1995.

[35] E. Melachrinoudisa, A.B. Ilhan, and H. Min. A dial-a-ride problem for
client transportation in a health-care organization. Computers & Opera-

tions Research, 34:742–759, 2007.
[36] B. Rekiek, A. Delchambre, and H.A. Saleh. Handicapped person trans-

portation: An application of the grouping genetic algorithm. Engineering

Application of Artificial Intelligence, 19:511–520, 2006.
[37] S. Ropke. Heuristic and exact algorithms for vehicle routing problems.

PhD thesis, University of Copenhagen (DIKU), 2005.
[38] S. Ropke, J.-F. Cordeau, and G. Laporte. Models and branch-and-cut al-

gorithm for pick-up and delivery problems with time windows. Networks,
Forthcoming.

[39] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows. Transporta-

tion Science, 40(4):455–472, 2006.
[40] M.W.P. Savelsbergh and M. Sol. DRIVE : Dynamic routing of indepen-

dant vehicles. Operations Research, 46:474–490, 1998.
[41] A. Sbihi. Les méthodes hybrides en optimisation combinatoire : algo-

rithmes exacts et heuristiques. Phd thesis, Université Paris 1, 2003.
[42] T. Sexton and L.D. Bodin. Optimizing single vehicle many-to-many oper-

ations with desired delivery times : I. scheduling. Transportation Science,
19:378–410, 1985.

[43] T. Sexton and L.D. Bodin. Optimizing single vehicle many-to-many op-
erations with desired delivery times : II. routing. Transportation Science,
19:411–435, 1985.

[44] A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving
bicriterion shortest-path problems. Computers & Operations Research,
27:507–524, 2000.

[45] P. Toth and D. Vigo. Fast local search algorithms for the handicapped

33

persons transportation problem. In Meta-heuristics: Theory and applica-

tions., pages 677–690. I.H. Osman & J.P. Kelly, Boston, 1996.
[46] P. Toth and D. Vigo. Heuristic algorithms for the handicapped persons

transportation problem. Transportation Science, 31:60–71, 1997.
[47] A. Warburton. Approximation of pareto optima in multiple-objective,

shortest-path problems. Operations Research, 35:70–79, 1987.
[48] Z. Xiang, C. Chu, and H. Chen. A fast heuristic for solving a large-scale

static dial-a-ride problem under complex constraints. European Journal

of Operational Research, Forthcoming.

A Benchmark characteristics

The Doubs Central has 170 stations and eigth depots. Each depot has an
homogeneous fleet (considered as unlimited) of 6-seaters taxis which incurre 10
units fixed costs. In the random series (‘rand’), requests start from any to any
station. In the convergent (‘conv’) and the extrem convergent (‘econv’) series,
request start from any station to a small number of stations. The requests of
the extrem convergent scenario have strongly bounded maximum arrival times.
About 75% of the requets concern the four most important (in the biggest
cities) stations in the Doubs Central in the multiconvergent series (‘mconv’).
Numbers of passengers depend on estimated flows in Doubs Central.

The Table A.1 summarizes the parameters of the generated realistic instances.

Scenario\ Dimension spatial time delay requests

random n → n [8 : 00, 18 : 00] 1/3, 1/5 25, 50, 100

convergent n → 1 [8 : 00, 18 : 00] 1/3, 1/5 25, 50, 100

extrem convergent n → 1 [13 : 00, 14 : 40] 1/3, 1/5 25, 50, 100

multiconvergent 4 → 4 [8 : 00, 18 : 00] 1/3, 1/5 25, 50, 100
Table A.1
The four demand scenarii descriptions

The instances derived from the Cordeau’s ones have an unlimited homogeneous
fleet, in a central depot, of 6-seaters vehicles. Using one vehicle generates a
fixed cost (=10). From outbound and inbound requests we keep the latest
drop-off time and the earliest pick-up time, respectively. Then, we compute
new time windows constraints using this time and a maximal ride time equal
to 1.5 times the min-time path between the pick-up and the drop-off points.
Requests concern up to 6 passengers and one half to less than 3.

The initial graph G0 represents the road network between stops and depots.
The reduced multigraph MG is the graph of services and non-dominated paths
between services stops. An arc in G0 generates one in MG, if it does not violate

34

capacity or time window constraints. An arc from a service of the request i (i+

or i−) to a service of the request j (j+ or j−) has to be used in a valid sequence
arranging requests i and j. Six such sequences exist: (i+ → i− → j+ → j−);
(i+ → j+ → j− → i−); (i+ → j+ → i− → j−); (j+ → j− → i+ → i−);
(j+ → i+ → i− → j−); (j+ → i+ → j− → i−). The simple graph G is
generated in the same way as MG but considering only min-time paths in G0.

The Tables A.2 and A.3 summarize the main characteristics of the gener-
ated instances. In the Table A.2, Euclidean instances are grouped above the
big instance (‘C-’) they are contained in. The column ‘mincost’ indicates
the average percentage of cost savings between pairs of min-cost and min-
time arcs. The column ‘avgcost’ indicates the average of the average per-
centage of cost saving among all non dominated arcs between two vertices.
Columns ‘maxtime’ and ‘avgtime’ give the same values for time increases. The
columns d0, md and d show respectively the density of the road network, the
multigraph MG and the simple graphs G. The graph density is computed as
d(G = (V, A)) = |A′|/(|V ′||V ′ − 1|), where G′ = (V ′, A′) is the subgraph of
pick-up and drop-off (without depot). The density of MG can exceed 1 with
this definition.

35

name mincost maxtime avgcost avgtime d0 md d

c2-16 12 18 6 9 2.79 0.39 0.13

c2-20 12 16 6 8 2.59 0.36 0.13

c2-24 15 17 7 9 3.53 0.42 0.13

c3-18 11 15 6 8 2.40 0.26 0.12

c3-24 16 20 8 10 4.50 0.51 0.12

c3-30 15 19 8 10 3.91 0.48 0.12

c3-36 18 20 9 10 4.88 0.57 0.12

C-168 30 23 15 11 13.55 1.58 0.12

c4-16 9 14 5 7 2.58 0.28 0.12

c4-24 13 17 6 8 3.38 0.37 0.12

c4-32 17 19 8 10 4.00 0.49 0.12

c4-40 19 20 9 10 5.45 0.64 0.12

c4-48 20 21 10 10 5.57 0.64 0.12

c5-40 20 22 9 11 5.56 0.62 0.12

c5-50 21 22 10 11 5.69 0.63 0.12

c5-60 22 23 10 11 7.19 0.84 0.12

c6-48 20 21 10 10 5.47 0.61 0.12

c6-60 21 21 10 10 6.85 0.79 0.12

c6-72 23 23 11 11 7.89 0.94 0.12

C-310 34 22 17 10 20.28 2.28 0.12

c7-56 22 23 11 11 6.29 0.77 0.12

c7-70 23 22 11 11 7.46 0.88 0.12

c7-84 24 23 12 11 8.33 0.98 0.12

c8-64 22 22 11 11 6.71 0.76 0.12

c8-80 24 22 12 10 8.60 0.99 0.12

c8-96 26 23 13 11 9.79 1.16 0.12

C-630 32 22 16 10 18.62 2.15 0.12

Table A.2
Instances characteristics

36

name mincost maxtime avgcost avgtime d0 md d

rand1.3-25 9 9 4 4 4.56 0.45 0.12

rand1.3-50 8 9 4 4 4.90 0.55 0.12

rand1.3-100 8 9 4 4 4.98 0.54 0.11

conv1.3-25 10 11 5 5 6.49 0.71 0.12

conv1.3-100 10 10 5 4 5.95 0.71 0.11

conv1.3-50 10 9 5 4 5.67 0.73 0.11

econv1.3-25 9 7 5 3 6.48 0.47 0.08

econv1.3-50 8 8 4 4 5.77 0.41 0.07

econv1.3-100 8 8 5 3 5.30 0.39 0.07

mconv1.3-25 5 8 3 4 6.80 0.54 0.12

mconv1.3-50 6 8 3 4 6.20 0.56 0.12

mconv1.3-100 7 8 4 4 5.96 0.57 0.11

random1.5-25 9 9 4 4 4.56 0.46 0.12

random1.5-50 8 9 4 4 4.90 0.56 0.12

random1.5-100 8 9 4 4 4.98 0.55 0.12

conv1.5-25 10 11 5 5 6.49 0.74 0.12

conv1.5-50 10 10 5 4 5.95 0.74 0.12

conv1.5-100 10 9 5 4 5.67 0.75 0.11

econv1.5-25 9 7 5 3 6.48 0.51 0.09

econv1.5-50 8 8 4 3 5.77 0.45 0.09

econv1.5-100 8 7 4 3 5.30 0.46 0.09

mconv1.5-25 5 7 3 3 6.80 0.56 0.13

mconv1.5-50 6 8 3 4 6.20 0.57 0.12

mconv1.5-100 7 7 4 4 5.96 0.58 0.12

Table A.3
Instances characteristics

37

