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Abstract

The class of vehicle routing problems involves the optiridraof freight or
person transportation activities. These problems arergiynéeated via the repre-
sentation of geographical data as a valued complete gramhy Erc of the graph
represents the shortest path for a possible origin-dégtinaonnection. Several
attributes can be defined for an arc (travel time, travel.cogtbut the path implied
by this arc is computed according to a single criterion, gahetravel time. Con-
sequently, some alternative routes proposingfizint compromise between the
attributes of the arcs are dismissed at once from the salgpace. In this work,
we propose to represent geographic data with a multigrapthat these alterna-
tive routes are considered, and to evaluate how it impactobrion algorithms
and solution values. A simple insertion algorithm is praggbsind illustrated in
the context of a demand responsive transportation systeslaged in a French
department. Computational experiments on realistic datketine the potential
cost savings brought by the multigraph model.

KEYWORDS.: vehiclerouting problem, demand responsive transportation, multigraph, short-
est path problem with resource constraints.

1 Introduction

The class of vehicle routing problems draws many reseaschred industrial practi-
tioners attention during the last decades. These problevo$/e the optimization of
freight or person transportation activities. They are galhetreated via the represen-
tation of geographic data as a valued complete graph. Thexveet is limited to the
set of origin or destination points. Any arc of the graph thepresents the shortest



path between two vertices. Several attributes can be deforeah arc (travel time,
travel cost. . .), but the path implied by this arc is compw@ecbrding to a single crite-
rion, generally travel time. Consequently, some alteveatbutes proposing aftierent

compromise between the attributes of the arcs are dismisatte from the solution
space, as in Figure 1. This can be problematic in many situsti A typical exam-

geographical network working graph
C
A
D
ways from1to 2| (D); (E); (A,C); (B,C) (D); (A,C)

Figure 1: Simple graph construction

ple is provided by demand responsive transportation (DR3ess. In such systems,
a set of customer origin and destination locations is idiedtiand vehicle routes are
defined to transport the customers, according to some gudliservice constraints
andor objectives. Though the path retained between two (odgidestination) cus-
tomer locations is generally set as the shortest path in, tineedriver or the shipper
might prefer a less costly itinerary if he gets time. If thetmmer pays according to the
distance (which is generally not the case in DRT systemdshuie in taxis), avoiding
fast but long-distance Sections could also be of interesttffe customer). Note that
initially computing the shortest path matrix according istance instead of time could
induce similar drawbacks, especially considering sestiith heavy tréfic. Section 4
will develop the example of a DRT system implemented in thel3oCentral area in
France.

In this work, we propose to represent geographic data withubignaph, so that
alternative routes are considered. Ideally, an arc willdoea between two vertices for
each Pareto optimal path according to arc attributes in ¢loggphic network, unless
they traverse another origin or destination location. Aopdpath of the geographic
network would then be captured in the graph. Practicallg oould prefer just to
consider a reasonable set of arcs between two vertices.

At least two other situations would deserve to be furthelenga, but will be left
as perspectives here. A first situation would be the case @&valer having several
transportation modes at his disposal (foot, metro, trambay. ..) and having to de-
cide how to combine them to reach some destination. The gnafth representation
then appears to be well-suited as long as the schedule ditiésccan be neglected
(as it is often the case for a tramway or a metro for examplenbufor a train). A
second situation would be met by a traveler having a tourtstést in his travel. One
might then have some clearly identified destination poimid different possibilities
(with different duration and tourist interests) of linking these miActually, having a
multigraph representation makes sense as soon as seuéiatas are defined on arcs.



In this paper, our first objective is to evaluate the traditgtof a multigraph repre-
sentation. We describe this representation in Section 2tidhe3 focuses on the new
difficulties for vehicule routing optimization caused by thigressentation. The paper
concludes with the case of a practical DRT system in Section 4

2 Multigraph representation

Let Gp = (Vp, Ap) be the graph induced by a geographic network. An arépf
typically represents a link between two crossroads or agoudf road having con-
sistent characteristics (slope, direction..Gp has the advantage tdfer a complete
and precise description of the physical layout, but canhreasize detrimental to the
efficient execution of routing optimization procedures. Wesider here that each arc
(I, ]) € Ap is characterized bR attributes R > 2): dp, (1), ..., dp, (R). Attributes can
indifferently represent duration, distance, cost, interestousaess, etc.

Let us assume that we are interested here in some vehiciegqublem. For
sake of generality, we do not define it precisely. Let us n&aydocations the set
of all locations ofGp playing a special part in the problem: vehicle depots, custo
locations, origin and destination of transportation ressie . LetV c Vp be the set of
all key locations. Fori(j) € VXV, letP;; be the set of all Pareto optimal paths frota
j, considering th& criteriadp (1), . . ., dp(R). We introduce the multigrap® = (V, A).
For each couple of vertices {) € V x V and each patRf, € #jj (1 < e < |7>ij|), we
introduce an arci{ )€ € A. The arc{, j)¢is then characterized tqu(l), ety diej(R).

Note that set®;; are possibly of very large size, especially wliis large. Howe-
ver, one can expectto halRe= 2 orR = 3 in most practical cases. Also, attributes time,
distance and cost are generally closely correlated, wtaohdcastically limit the num-
ber of Pareto optimal paths. Finally, one could imagine peiqg to users a heuristic
preselection of a subset of paths fr@t in case it is too large (and depending of the
context). In the remaining, we assume that such a multig@&aph(V, A) makes part of
input data.

3 Route optimization in a multigraph

Vehicle routing problems generally address three typeoistbn:
e assignment decisions, allocatikey locationsto vehicles;
¢ sequencing decisions, defining the visit order for eachokehi

e scheduling decisions, determining a timetable for thet wifithe assignedey
locations for each vehicle.

Once assignment and sequencing decisions are fixed, it exajgntrivial to deduce
timetables. With the multigraph representation, this progpdoes not hold. Indeed,
one has to determine which arc to use between two consed@tiMecations of the



sequence. As shown below, this problem, we Eated Sequence Arc Selection Pro-
blem (FSASP), is NP-hard but can be solvei@ently through dynamic program-
ming. Besides the FSASP tackled in Section 3.1, this Seétiomses on the impact
of the multigraph representation on the standard solutitvermes of vehicle routing
problems. The impact on resolution algorithms is brieflyk®gin Section 3.2. The
particular case of the insertion operator in a sequenceglyigsed in neighborhood
definitions, is studied in Section 3.3.

3.1 Fixed Sequence Arc Selection Problem

The theorem 1 proves the NP-hardnes§8ASPas a reduction (Figure 2) of a Mul-
tidimensional Multiple Choice Knapsack ProbleMNICKP ), a NP-hard problem as
an extension of the Knapsack Problem (Martello and TothQ198et us define the

MMCKP-dec object class\ dimension Limited Capacity
/,—%\\ //—\\, i \> Knapsack
/ —————— —

e \ @
@@@

") \,@
S o / ) Upper Bounds or

FSASP-dec arc origin— destlnatlon attribute Attributes

Figure 2: Reduction from MMCKP to FSASP

FSASP more precisely. L& = (V, A) be a multigraph an® a set of attributes as de-
fined in Section 2. Attribute 0 corresponds to the objectivecfion. An upper bound
Q" is defined for 1< R. A sequenceiy, ..., iy) is introduced. The FSASP is to select a
set of arcsig, i1)®, (i1,i2)%, ..., (in-1, in)® such that attribute 0 is minimized and the
upper bounds are satisfied.

Theorem 1 The FSASP is NP-hard.

PROOF. Let us define FSASP-dec the decision problem veribie & SASP. FSASP-
dec trivially belongs to the NP class, since it is easy to fipdlgnomial-length certifi-
cate that can be checked in a polynomial time. The NP-compésts is shown with a
polynomial time reduction from the decisionnal versionha Multidimensional Multi-
ple Choice Knapsack Problem (MMCKP-dec). The MMCKP-decgfireed as follow,
to select in a set dN classj of C; objects withD dimensions, a set of objeatissuch
that the sum of their valuenf) on each dimensiod does not exceed an upper bound
WU, Let us define the following instance of FSASP-dec such thattgect is an arc, a
class is a destination vertex and a dimension is an attribute{ig, i1,...,in}; R=D

: upper bound of the attribu® = W' (r = 1,...,R); for thee™ objectu of classC;
(1 < e < ICjl), we associate the ingoing aje of vertex j with attributesd®(r) = w{
An optimal arcs selection of FSASP-dec corresponds to amapbbjects selection



MMCKP-dec. B

Though NP-hard, the problem can be solved ratlfigciently. It can be addressed
as a Shortest Path Problem with Resource Constraints (SRBB&rally NP-hard.
Resources correspond to the level of consumption on reesudﬁ(r) indicates the
level of consumption of resourcaevhen arc, j)€ is traversed.

If we assume that resources have non-decreasing extensictidns, it can be
solved with dynamic programming (Desrosietsl.. 1995). The algorithm (Figure
3) is an extension of the classical Bellman’s algorithm. Pphiaciple is to associate
with each possible partial path a label which contains thesamption level for each
resource at the end of the partial path, and to extend thieeks|gby the extension func-
tions) checking resource constraints until the best féagaths are obtained. Domi-
nance rules are used to compare partial paths arriving ae kation and to discard
some of them. Unlike Bellman’s algorithm, when no resoumesconsidered, each
vertex of the graph can maintain a large number of labelsedime comparison of two
labels takes into account their consumption level for easlource. The algorithm is
not initially designed for the case of a multigraph, but remavalid in this context.
One just have to consider every outgoing arc when extendivgj$.

labels ﬁqr[]in?ted
{38 {710 {744

33 {85} 472 m {108}
OC QQ Q . unfeasible

[0,4] 8,5 [3,10] 2,3 [7, 11] constraints
[0,8] [0,8] [0,11] on attributes

Figure 3: Dynamic programming algorithm for FSASP

When searching for the optimal arc set to use in the sequéimealynamic pro-
gramming algorithm is applied on an acyclic graph of limigézk (one can expect that
in most cases a vehicle route visits a limited number of gesli , which helps it finding
optimal solutions #iciently (Irnich and Desaulniers, 2004).

3.2 Impact on resolution algorithms

Local search algorithms basically consist in repeatedhsimiering an incumbent so-
lution, exploring a set of neighbour solutions and selgcimew incumbent solution
in this neighbourhood. In a simple descent algorithm, th&t heighbour solution is
selected at each iteration until it is worse than the incurhbelution. The algorithm
then stops. Several metaheuristics mechanisms can be amdedid being trapped



into local optima. But, in every case, the multigraph repn¢éation does not interfere
with the local search scheme except for evaluating theléigiand the value of the
solutions explored, which is exactly the purpose of the FBAS

However, one can be a little more clever than simply evahgagivery neighbour
solution using the dynamic programming algorithm of Set8dL. A possibility would
be to explore the whole neighborhood and find the best neighdaution with one
execution of the dynamic programming algorithm. This plaitiy is illustrated for the
insertion operator in Section 3.3.

This operator is critical for inter-routes moves lik@ocate andexchange. Cross-
moves which plug subsequences or intra-route neighbourhoodatger k-opt, Or-
opt,...,) are quite dierent. In this case, if a resource is very restrictive (liigntt
time windows), the feasible neighbourhood can be small ghda be exhaustively
explored.

With regards to exact methods, multigraph increases treeafiziata and so the
combinatorial aspect of the problem. Hence, one can cangthat these methods
would fail to solve instances of a size that they would be abltackle with a sim-
ple graph representation. However, the basic principlde@imethods would not be
changed. Linear relaxation can still be computed and ses\e lzounding rule in a
Branch and Bound method; one can expect most of the validualiigs to remain
true; column generation can be applied with a simple adiaptaf the subproblem...
Actually, a noticeable dierence relates to the branching scheme. Usually, branching
decisions enforce or forbid the use of an arc. With the midp) representation, this
can be rather ineicient, as forbidding an arc is not as strong as in the sim@ehyr
case.

3.3 Insertion in a sequence

The insertion operator consists in searching for the bestriion position of a given
vertex s in the sequence. Let us consider the acyclic matiiyg; = (V1, A1) whereVy

is made of the vertices of the sequence (including the depqius one vertex for each
possible insertion position for s; in the following we caittual vertices these latter
vertices;A; contains every arc respecting the sequence order. Figlires#tates the

construction of5;. We adapt the algorithm mentioned before by adding a resdryc
implying the insertion of exactly one virtual vertex. Findithe best insertion position
for s is then equivalent to find the shortest pathGn with respect to all resource
constraints.

,-74@\\ 7 & N s vertices

Figure 4: Insertion in a sequence — multigraph construction



The label associated with a partial path is defined by a leebnsumption for
each resource, a cost, a destination vertex plus the spesalirceRs. Rs rules of
consumption and violation are summarized in Table 3. Thésuwece is initialized,
at the depot, with a value 0. Ingoing arcs on virtual verticessume 1 unit of the
resource, others arcs consume 0. An upper bound upon theroptien of the resource
is defined with a value 1 for every virtual vertex; labels exked to the final depot are
constrained to have a value 1. The extension function ofrfseurce is trivially non-
decreasing. We present further a more detailed algorithmthi® case of a request
insertion.

arc (.j) (,s) (i, depot)
consumption 0 1 0
violation - #0 #1

Table 1: Insertion resource extension function

4 Example of a DRT system in the Doubs Central area
4.1 DRT description

The motivation of this study stems from the development ofeemBnd Responsive
Transport (DRT) system in the Doubs Central area (Franc®RA system is a flexible
transport system intented to carry out transport requeata ¥ieet of vehicles under
feasibility and operational constraints. Contrary to ditianal public transport system,
the routes are determined for each time period (a day in aa&)caccording to the
requests. The key issue for such systems is to find optimipedational solutions
taking account of the possibly contradictory objectivethef partners involved :

o for the Transport Organizing Authorities (TOA), ratiorzgithe transportféer
and make the service visible and attractive;

¢ for the conveyors (Local Taxi companies in the central Dotdose), make the
service profitable;

o for the possible subcontractors (hauliers), conquer nevkets

o for the associations of users, improve the quality of lifel &me access to the
facilities.

In the DRT system considered here, each user issues a retpiigsd by a pick-up
point (departure), a dropfiopoint (arrival), a given number of passengers and a latest
drop-df date that cannot be exceeded. An acceptable quality ofcgerain be ensured
by providing a guarantee on the maximal gap between the ygicate and this la-
test drop-@f date. As we will specify it later, these constraints can hgressed using
traditional time windows. Local taxi companies carry out gervice, so the fleet is



heterogeneous, limited in quantity and with multiple depdthe payment is propor-
tional to the distance plus a fixed cost for the use of eachcleehDistances, both in
time and in kilometers, are known for the road network. Oyective is to find the
less costly transportation plan for the authorities aneinto minimize the time spend
in transport by the users.

In this case, the interest to consider alternative paths gapose less expensive
paths (avoiding tolls for example), but proposing an edeiviequality of service.

DRT are well studied systems. The underlying vehicle ragiroblem is generally
identified under the name @ial-a-Ride Problem (DARP). The DARP is a particular
case ofPickup & Delivery Problem which consists in transporting goods from points
of collecting, to points of delivery; the distinction confeem the quality of service
having to be integrated when people are carried. Most of i wn the DARP has
realistic application. The reader may find a recent stat@fart on this subject in
(Cordeau and Laporte, 2003). The DARP met in Doubs Centrabeanodelled (refer
to Section 4.2) as Rickup & Delivery Problem with Time Windows (PDPTW), a very
well studied problem. Among theftiérent methodologies proposed for its resolution,
one can cite tabu search and simulated annealing for hiear{$ti and Lim, 2001)
and column generation methods (Savelsbergh and Sol, 189&d%t al., 2004) for
exacts methods. Toth and Vigo (2002) and Crainic and Lap{@888) present more
general information oRickup & Delivery Problemand other vehicle routing problems.
The originality of our problem compared to the previous olies in the multigraph
feature. Especially, as highlighted before, this modebiitices another decision level,
the sequence arc selection.

4.2 Problem Formulation

The problemis to serve a sRtof requests with an heterogeneous fledt afehicles of
limited capacityCy, based in various depots and with a fixed qugt LetG = (V, A) be

a network, wher#/ is the set of nodes including two nodes for each requestjstors

of two services™* for the pick-up and~ for the drop @, and two nodes for each vehicle

, one for the starting depot and one for the arrival depopéetvely notedy, andmy).
The request brings togethel;- passengers. We define also the vdlue= —I-. A
servicei (r* orr~) has a non-negative duratian An arc , j)¢ € Ais a path (in the
geographical network) linkingto j. A costdﬁ(Z), a Ioaddiej(l) = |j and a duration
dﬁ(O) are associated with each argjj®. The arcs corresponding to the shortest time
paths in the geographical network are identified by the value.

For each request € R we noteB;- the latest drop-fH date ands, the maximal
gap betweetB,- and the &ective pick-up datej; is proportionnal to the shortest time
path ﬁﬂr,(O)). Equations (1)-(3) turn these constraints into timadews constraints,
whereA is the earliest starting date for the senviemdB; the latest starting date. This
formulation splits up the gap constraint (over the two smgiof a request) into two
independent constraints on each service:

B = B--d’ (0)-s- 1)
A+ = Br-—06—5+ (2)
A- = A-+s.+d% (0) (3)



The part of a solution relative to a single vehicle is calletbate. It is called
sequence, if the service dates are not fixiegl, only the vehicle assignment and the
order of realization of theervices are known.

To construct the routing planning, one have to assign oneleeto each request,
to sequence the services for each vehicle and to fix senaceéngt datedl;, the latter
correspondig to arc selection.

To simplify the model, we introduce decision variableghat correspond to the
number of passengers in the vehicle used, after the senikelone. The binary
decision variablesg!‘je state the selection of arg, )¢ by the vehiclek. The objec-
tive function (4) first minimizes the total cost for the autiies. A second hierar-
chical objective function is added to take the customeritjaf service into con-
sideration and to minimize the sum of gaps between latest-difodates and féec-
tive pick-up dates. To ensure the model coherence, someadatset as follows :
dﬁwk(z) = dﬁwk(l) = dierm(l) = dgki(l) = 0; Ag, = A, = —o0 andB,, = By, = oo.

min Lex(z Z X0 (2) + Z Z pckxgkie,z B- - Ti+) (4)

keK (i,j)eeA keK (ox.i)eeA ieN
subject to
Xije =1 VieR, (5)
keK (i*,j)eeA
D Kem > ®Ke=0 vkeKViegR (6)
(i*.j)eeA (j.i7)eeA
Z Xo— Z Xe.=0 VkeKVjeV, 7)
(i,j)eeA (j.i)eeA
Xe(Ti+050)+s -T))<0 VkeK,(i,)®cA (8)
A <Ti <B; VkeK,ieV, 9)
T +d2-(0)+s <Ti- VkeK,ieR (10)
Xe(Li+0d5(1) - L)) =0 VkeK,(i,)®ecA (11)
Xielir <Ck  VkeK,ieR, (12)
Xjeli- <Ck—di(1)  VkeKieR, (13)
X €10,1) VkeK,(i,j)°eA (14)

4.3 Insertion heuristic
We propose a three steps algorithm.

1. The first step is a greedy insertion procedure which ainesmstructing an arc
sequence per vehicle (without time-stamping) satisfylhgeguests.

2. Local search, based on removals and insertions, is theshtasmprove the set
of sequences.

3. The arc sequences are scheduled (time-stamped) in tletdps



4.3.1 The three step approach

Greedy insertion procedure Empty sequences are initially associated with each ve-
hicle. The requests are then inserted one after anothesé@goences, according to
a predetermined order. The insertion generating the satailerease in cost, is se-
lected. Insertion is "greedy” in the sense that the reladinder of the yet inserted
requests is preserved. On the other hand, the arcs selbetieeen successive stops is
re-optimized. Insertion can indeed force to use faster lmrerexpensive arcs. The de-
termination of the optimal set of arcs is a NP-hard probleaBSASP with 2 attributes
(time and cost)(see Section 3.1). The model and the methagbped to solve it are
detailed in the following subsection. Let us specify thathia usual case where only
one arc is considered between two stops (simple graph) rtidgm is polynomial.

In order to improve theflectiveness of this phase, the algorithm is applied twice.
The first time, requests are treated in a random order. A malrgost is then computed
for each request. This cost is calculated by removing thaestgtemporarily and by
evaluating the corresponding profit. The order used for #o®isd execution of the
algorithm is then the decreasing order of the marginal ¢cestthat the most expensive
requests are the first inserted. The best of the two solutibtened is preserved.

Local search (descent method) Once a first set of sequences obtained, the principle
of the second step is to remove certain requests of the gn|utien to re-insert them

at lower cost (with the insertion procedure described ajpoMee new solution is thus,
either identical to or more advantageous than the previaes @his treatment is ap-
plied to the requests in the initial order of insertion whighved empiricaly to be most
powerful. This operation is repeated until no more improgatof the solution during

a complete cycle is noted.

Time-stamping (scheduling) The solution obtained with our algorithm produces
feasible arcs sequences with unfixed starting dates ofcgervihese dates have no
impact on the first hierarchical level of the solution cost.sthedule a sequenSewe
optimize the second hierarchical level of the objectivection which is to minimize
the sum of the gaps between latest drdpeates B;-) and pick-up datesT{+). This
amounts to minimize the following objective (15) since the&ekt drop-ff times are
constant :

maxZ Tr+ (15)

The recursion procedure described in formula (16), conplatest feasible pick-up
dates that characterize thatest Scheduling Solutions. Theorem 2 proves the optima-
lity of these solutions dates for the secondary criteria.

Bi := min{B;, Bi,1 - d},,(0)- s} Vi=[2S|-1,...,1 (16)

Lemmal Let 77 a Latest Scheduling Solution of a service sequence S with service
date B/. Let 7~ a solution such that i existswith T; > B;. 7 isunfeasible.

PROOF. IfB; = Bf then7 is unfeasible els&; > B/. In that caseB = B[, -
di‘fi+1(0) —-s,s0Ti > B, — dSM(O) — 5. HoweverTi,y > Ti+ s + dﬁiﬂ(O), that

i+1

10



impliesTi +1 > B/,;. This process is stopped either by a relatign= Bj and7 is

unfeasible, or by the end of the sequence with the equdtign > B ;. However

B,s_; = Bas-1 by construction, which proves the lemma. B

Theorem 2 Let S be a service sequence such that to each service i a time window
congtraint [A;, Bi], a duration s and a realization date T; are associated. The travel
time between two successive services is noted d8i+1(0). If S is feasible then Latest
Scheduling Solutions are feasible and maximize the function >, .s T;.

PROOF. IfS is feasible then a solutioR® exists such that for eadhA; < Ti0 < B
Let 7" be the latest scheduling datés 7 is unfeasible if and only iff; < A, for
one or moreu (T/ < B;Yi, by construction). In this cas&@? > T/, which proves the
feasibility of 77 by lemma 1.

Let 7! a feasible solution better thaf. u exists such thaTl > T/. Lemma 1
proves the no-existence of a such, and then the optimality of”. ]

The drop-df dates T;-) from the following rules and equation (17) :
¢ Avehicle is allowed to wait at a stop only after a drofifollowed by a pick-up.
e As soon as the vehicle reaches a stop, the passengers catheeerdroppedft
e A vehicle leaves a stop immediately after the last pick-up.

Vi a drop-af, Tj = Ti_y + 5_1 + d”,(0) (17)

Solutions respecting these operationals constrainteddadtest Pick-Up Earliest Drop-
Off Solutions, form a dominant set for the routing problem and the schadydroblem;
pick-up dates are unchanged.

4.3.2 Request insertion in a sequence

This algorithm is an adaptation to the case of a requesthe approach described in
Section 3.3. Let us consider the acyclic multigraph= (V1, A1) where vertices are
depots, pick-ups and dropffe of the sequence plus one vertex férandr~ at each
insertion position. A contains all the arcs respecting the sequence order (Fiure
Initial constraints or constraints induced by the sequerareimmediately reduce the
number of insertion position.

Finding the best insertion position foris equivalent to find the shortest path (in
cost), satisfying all constraints on attributes (time asyplaxity) and visiting exactly one
vertex representing” and one representirrg in this order. We model this problem as
a SPPRC and solve it through dynamic programming with tHevi@hg particularities.
The labellb; associated with a partial path is defined with a level of camstion for
each resource (tim€'"® and loadL'), a costC'"i, and a destination vertgyx plus the
resource requeft’® for the new request. The rules of consumption and violation o
these resources are summarized in table 2 and 3RPhstarting level at the depot is
setto 0.

11



Figure 5: Request insertion in a sequence — multigraph nart&in

resource value constraint
T max{T®+d8(0).A]  <B
L' L' +d (1) <C
clv ch 4+ df(2)

J

Table 2: Resource extension functions

arc (.j)) (.r%) (.r7) (i,depot)
consumption 0 1 1 0
violation - #0 =1 # 2

Table 3:RP Request resource extension function

12



The extension functions of these resource are trivially-deareasing. Labels are
generated traversing the sequence and considering allitheing arcs for each vertex.
Labels violating constraints are deleted.

The dominance rule works as follov; dominateéb’j if equations (18) are valid.

Clby < M0} T < 10 L1y < |15 Ry > R (18)

The last condition orR® is valid by construction of5 where each pathi,, j) is
dominated by an ard,(j)®. So each extension d)tb} even coming through™ andr-
can be dominated by an extensior lj

When adding the request load to the maximal load in the seguén not exceed
the vehicle capacity. The load attribute can be ignoredtenisify the dominance rule.

The algorithm éiciency is well improved by a constraint propagation procedu
on time windows constraints. Time windows can be readjygtezserving all feasible
solutions, with a recursive algorithm based on equatio@¥4hd (20). This update is
made traversing the sequence twice (one time in each dirgéti O(|2S|) where|S| is
the number of requests in the sequeBceéis the vertex at thé" position inS.

A1 = max{Au, A +s +d),,0) Vi=1...,025/-1 (19)
Bi := min{B;, Bi,1 - d%,,(0)- s} Vi=[2S|-1,....1 (20)
4.4 Results

Due to the many variants of DARP that can be considered, fifaémchmark instances
for these problems is not an easy task. Actually, no benckmamrespond to our
situation, even with a simple graph representation.

Thus, we generated our own benchmark from geographicalddd@aubs Central
(IGN! maps) and estimated flows of population. We created threeo$&0 instances
with 10, 30 and 90 requests. The fleet is heterogeneous anesponds to the taxi
companies. The maximal gap between the latest dfbdate and the féective pick-
up date is two times longer than the shortest time path (irgdographical network).
The multigraph is two to three times denser than the simpd@lyr The variations
between arcs connecting the same vertices can go up to 3086fdfip cost for 30%
of additional travel time compared to the shortest time path

The results obtained with the algorithm presented in Sedcli® (MULTI), are
compared in Table 4 with those obtained by considering dmyshortest time paths
(SIMPLE) with the similar algorithm proposed in Garaix et, @005. The number
of requests and the algorithm used can respectively be foutitk first and second
columns. The three following columns indicate the mean,caginber of vehicles
used and computing times for the 30 instances of each bemkhrithe tests were
carried out with a 600MHz AMD Duron and 128 Mo RAM.

MULT]I obtains the least expensive solutions on average2¥,3% and 3,5% for
the instances with 10, 30 and 90 requests), with neither wmaheles used nor more
computing time. However results are better with the simpépl, for ten instances.

Linstitut Gégraphique National
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requests graph cost vehicles cpu (s)

10 SIMPLE 246 30 0
MULTI 239 3,2 0
30 SIMPLE 578 56 1
MULTI 559 56 2
90 SIMPLE 1368 105 30
MULTI 1320 106 70

Table 4: Results on multigraph and simple graph

5 Conclusion

In this article, we investigate the interest and the tratitalof the use of a multigraph
representation for solving vehicle routing problems whees af the geographical net-
work are characterized with several attributes.

In a first step, we make clear that this representation rarttierproblem complex
even when the vehicle assignment and sequencing decigieriixed, i.e., when the
problem is reduced to scheduling the services. After hagimgyvn that this schedul-
ing subproblem is NP-hard, we propose to address it with aaym programming
algorithm, based on a SPPRC modeling.

We then discuss how classical solution schemes, eithedloadecal search (heuris-
tics and metaheuristics) or enumeration (exact algorihaas handle the multigraph
representation. Though these points are only sketchedavat An emphasis is made
on the most shared tool used for routing: the insertion dpera

An algorithm is derived in the case of a DRT system develojppéte Doubs Cen-
tral area in France. The computational study shows flieiency and &ectiveness of
our algorithm for a set of benchmark instances issued fraidaga. These results per-
mit to conclude positively concerning the tractability bétmultigraph representation.

This work dfers at least two important perspectives. A first one conaiesise
of this representation in other contexts: multimodal nekspscenic route planning
or road trdfic congestion modeling have been underlined on the intramtucif the
article.

A second perspective is to investigate more deeply the atiaptof diferent al-
gorithms to the multigraph representation. The issue eradiferent for heuristic or
exact algorithms. A first step is done concerning local detype algorithms. The so-
lution scheme proposed to evaluate in one shot every neigialidion for the insertion
operator is indeed a good starting point for proposing exjeitt algorithms for other
types of operators. Anyway, it has be shown that any type efaipr can be used, if
one accepts that the evaluation of a neighbor solution wegd SPPRC resolution.

Concerning exact methods, column generation appears as/ axatiral tool to
cope with the multigraph representation. One can see dt twasreasons for that.
First, column generation proved to be veffi@ent in many routing situations. Sec-
ond, a multigraph representation mainly impacts on themaolgeneration subproblem,
which happens to be a SPPRC, similar to ours, and which cauotljirintegrates the
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multigraph dimension, as explained previously.
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