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Abstract

The class of vehicle routing problems involves the optimization of freight or
person transportation activities. These problems are generally treated via the repre-
sentation of geographical data as a valued complete graph. Every arc of the graph
represents the shortest path for a possible origin-destination connection. Several
attributes can be defined for an arc (travel time, travel cost. . . ), but the path implied
by this arc is computed according to a single criterion, generally travel time. Con-
sequently, some alternative routes proposing a different compromise between the
attributes of the arcs are dismissed at once from the solution space. In this work,
we propose to represent geographic data with a multigraph, so that these alterna-
tive routes are considered, and to evaluate how it impacts onsolution algorithms
and solution values. A simple insertion algorithm is proposed and illustrated in
the context of a demand responsive transportation system developed in a French
department. Computational experiments on realistic data underline the potential
cost savings brought by the multigraph model.

KEYWORDS: vehicle routing problem, demand responsive transportation, multigraph, short-
est path problem with resource constraints.

1 Introduction

The class of vehicle routing problems draws many researchers and industrial practi-
tioners attention during the last decades. These problems involve the optimization of
freight or person transportation activities. They are generally treated via the represen-
tation of geographic data as a valued complete graph. The vertex set is limited to the
set of origin or destination points. Any arc of the graph thenrepresents the shortest
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path between two vertices. Several attributes can be definedfor an arc (travel time,
travel cost. . . ), but the path implied by this arc is computedaccording to a single crite-
rion, generally travel time. Consequently, some alternative routes proposing a different
compromise between the attributes of the arcs are dismissedat once from the solution
space, as in Figure 1. This can be problematic in many situations. A typical exam-
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Figure 1: Simple graph construction

ple is provided by demand responsive transportation (DRT) systems. In such systems,
a set of customer origin and destination locations is identified and vehicle routes are
defined to transport the customers, according to some quality-of-service constraints
and/or objectives. Though the path retained between two (originor destination) cus-
tomer locations is generally set as the shortest path in time, the driver or the shipper
might prefer a less costly itinerary if he gets time. If the customer pays according to the
distance (which is generally not the case in DRT systems, butis true in taxis), avoiding
fast but long-distance Sections could also be of interest (for the customer). Note that
initially computing the shortest path matrix according to distance instead of time could
induce similar drawbacks, especially considering sections with heavy traffic. Section 4
will develop the example of a DRT system implemented in the Doubs Central area in
France.

In this work, we propose to represent geographic data with a multigraph, so that
alternative routes are considered. Ideally, an arc will be added between two vertices for
each Pareto optimal path according to arc attributes in the geographic network, unless
they traverse another origin or destination location. Any good path of the geographic
network would then be captured in the graph. Practically, one could prefer just to
consider a reasonable set of arcs between two vertices.

At least two other situations would deserve to be further explored, but will be left
as perspectives here. A first situation would be the case of a traveler having several
transportation modes at his disposal (foot, metro, tramway, bus. . . ) and having to de-
cide how to combine them to reach some destination. The multigraph representation
then appears to be well-suited as long as the schedule of facilities can be neglected
(as it is often the case for a tramway or a metro for example, but not for a train). A
second situation would be met by a traveler having a tourist interest in his travel. One
might then have some clearly identified destination points and different possibilities
(with different duration and tourist interests) of linking these points. Actually, having a
multigraph representation makes sense as soon as several attributes are defined on arcs.
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In this paper, our first objective is to evaluate the tractability of a multigraph repre-
sentation. We describe this representation in Section 2. Section 3 focuses on the new
difficulties for vehicule routing optimization caused by this representation. The paper
concludes with the case of a practical DRT system in Section 4.

2 Multigraph representation

Let GD = (VD, AD) be the graph induced by a geographic network. An arc ofAD

typically represents a link between two crossroads or a portion of road having con-
sistent characteristics (slope, direction. . . ).GD has the advantage to offer a complete
and precise description of the physical layout, but can reach a size detrimental to the
efficient execution of routing optimization procedures. We consider here that each arc
(i, j) ∈ AD is characterized byR attributes (R ≥ 2): dDi j(1), . . . , dDi j(R). Attributes can
indifferently represent duration, distance, cost, interest, onerousness, etc.

Let us assume that we are interested here in some vehicle routing problem. For
sake of generality, we do not define it precisely. Let us namekey locations the set
of all locations ofGD playing a special part in the problem: vehicle depots, customer
locations, origin and destination of transportation requests. . . LetV ⊂ VD be the set of
all key locations. For (i, j) ∈ V×V, letPi j be the set of all Pareto optimal paths fromi to
j, considering theR criteriadD(1), . . . , dD(R). We introduce the multigraphG = (V, A).
For each couple of vertices (i, j) ∈ V × V and each pathPe

i j ∈ Pi j (1 ≤ e ≤
∣

∣

∣Pi j

∣

∣

∣), we
introduce an arc (i, j)e ∈ A. The arc (i, j)e is then characterized byde

i j(1), . . . , de
i j(R).

Note that setsPi j are possibly of very large size, especially whenR is large. Howe-
ver, one can expect to haveR = 2 orR = 3 in most practical cases. Also, attributes time,
distance and cost are generally closely correlated, which can drastically limit the num-
ber of Pareto optimal paths. Finally, one could imagine proposing to users a heuristic
preselection of a subset of paths fromPi j in case it is too large (and depending of the
context). In the remaining, we assume that such a multigraphG = (V, A) makes part of
input data.

3 Route optimization in a multigraph

Vehicle routing problems generally address three types of decision:

• assignment decisions, allocatingkey locations to vehicles;

• sequencing decisions, defining the visit order for each vehicle;

• scheduling decisions, determining a timetable for the visit of the assignedkey
locations for each vehicle.

Once assignment and sequencing decisions are fixed, it is generally trivial to deduce
timetables. With the multigraph representation, this property does not hold. Indeed,
one has to determine which arc to use between two consecutivekey locations of the
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sequence. As shown below, this problem, we callFixed Sequence Arc Selection Pro-
blem (FSASP), is NP-hard but can be solved efficiently through dynamic program-
ming. Besides the FSASP tackled in Section 3.1, this Sectionfocuses on the impact
of the multigraph representation on the standard solution schemes of vehicle routing
problems. The impact on resolution algorithms is briefly evoked in Section 3.2. The
particular case of the insertion operator in a sequence, widely used in neighborhood
definitions, is studied in Section 3.3.

3.1 Fixed Sequence Arc Selection Problem

The theorem 1 proves the NP-hardness ofFSASPas a reduction (Figure 2) of a Mul-
tidimensional Multiple Choice Knapsack Problem (MMCKP ), a NP-hard problem as
an extension of the Knapsack Problem (Martello and Toth, 1990). Let us define the

Limited Capacity
Knapsack

Upper Bounds on
Attributes

object class

arc origin−destination

dimension

attributeFSASP−dec

MMCKP−dec

1 2 3 4

Figure 2: Reduction from MMCKP to FSASP

FSASP more precisely. LetG = (V, A) be a multigraph andR a set of attributes as de-
fined in Section 2. Attribute 0 corresponds to the objective function. An upper bound
Qr is defined for 1≤ R. A sequence (i0, . . . , iN) is introduced. The FSASP is to select a
set of arcs (i0, i1)e1, (i1, i2)e2, . . . , (iN−1, iN)eN such that attribute 0 is minimized and the
upper bounds are satisfied.

Theorem 1 The FSASP is NP-hard.

PROOF. Let us define FSASP-dec the decision problem version of the FSASP. FSASP-
dec trivially belongs to the NP class, since it is easy to find apolynomial-length certifi-
cate that can be checked in a polynomial time. The NP-completeness is shown with a
polynomial time reduction from the decisionnal version of the Multidimensional Multi-
ple Choice Knapsack Problem (MMCKP-dec). The MMCKP-dec is defined as follow,
to select in a set ofN class j of C j objects withD dimensions, a set of objectsu such
that the sum of their value (wd

u) on each dimensiond does not exceed an upper bound
Wd. Let us define the following instance of FSASP-dec such that an object is an arc, a
class is a destination vertex and a dimension is an attribute. V = {i0, i1, . . . , iN }; R = D
; upper bound of the attributeQr = Wr (r = 1, . . . ,R); for theeth objectu of classC j

(1 ≤ e ≤ |C j|), we associate the ingoing arcje of vertex j with attributesde
j(r) = wr

u.
An optimal arcs selection of FSASP-dec corresponds to an optimal objects selection
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MMCKP-dec. .

Though NP-hard, the problem can be solved rather efficiently. It can be addressed
as a Shortest Path Problem with Resource Constraints (SPPRC), generally NP-hard.
Resources correspond to the level of consumption on resources. de

i j(r) indicates the
level of consumption of resourcer when arc (i, j)e is traversed.

If we assume that resources have non-decreasing extension functions, it can be
solved with dynamic programming (Desrosierset al.. 1995). The algorithm (Figure
3) is an extension of the classical Bellman’s algorithm. Theprinciple is to associate
with each possible partial path a label which contains the consumption level for each
resource at the end of the partial path, and to extend these labels (by the extension func-
tions) checking resource constraints until the best feasible paths are obtained. Domi-
nance rules are used to compare partial paths arriving at a same location and to discard
some of them. Unlike Bellman’s algorithm, when no resourcesare considered, each
vertex of the graph can maintain a large number of labels since the comparison of two
labels takes into account their consumption level for each resource. The algorithm is
not initially designed for the case of a multigraph, but remains valid in this context.
One just have to consider every outgoing arc when extending labels.

[0,4]
[0,8] [0,8]
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Figure 3: Dynamic programming algorithm for FSASP

When searching for the optimal arc set to use in the sequence,the dynamic pro-
gramming algorithm is applied on an acyclic graph of limitedsize (one can expect that
in most cases a vehicle route visits a limited number of vertices) , which helps it finding
optimal solutions efficiently (Irnich and Desaulniers, 2004).

3.2 Impact on resolution algorithms

Local search algorithms basically consist in repeatedly considering an incumbent so-
lution, exploring a set of neighbour solutions and selecting a new incumbent solution
in this neighbourhood. In a simple descent algorithm, the best neighbour solution is
selected at each iteration until it is worse than the incumbent solution. The algorithm
then stops. Several metaheuristics mechanisms can be addedto avoid being trapped
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into local optima. But, in every case, the multigraph representation does not interfere
with the local search scheme except for evaluating the feasibility and the value of the
solutions explored, which is exactly the purpose of the FSASP.

However, one can be a little more clever than simply evaluating every neighbour
solution using the dynamic programming algorithm of Section 3.1. A possibility would
be to explore the whole neighborhood and find the best neighbour solution with one
execution of the dynamic programming algorithm. This possibility is illustrated for the
insertion operator in Section 3.3.

This operator is critical for inter-routes moves likerelocate andexchange. Cross-
moves which plug subsequences or intra-route neighbourhood operators (k-opt, Or-
opt,. . . ,) are quite different. In this case, if a resource is very restrictive (like tight
time windows), the feasible neighbourhood can be small enough to be exhaustively
explored.

With regards to exact methods, multigraph increases the size of data and so the
combinatorial aspect of the problem. Hence, one can conjecture that these methods
would fail to solve instances of a size that they would be ableto tackle with a sim-
ple graph representation. However, the basic principles ofthe methods would not be
changed. Linear relaxation can still be computed and serve as a bounding rule in a
Branch and Bound method; one can expect most of the valid inequalities to remain
true; column generation can be applied with a simple adaptation of the subproblem...
Actually, a noticeable difference relates to the branching scheme. Usually, branching
decisions enforce or forbid the use of an arc. With the multigraph representation, this
can be rather inefficient, as forbidding an arc is not as strong as in the simple graph
case.

3.3 Insertion in a sequence

The insertion operator consists in searching for the best insertion position of a given
vertex s in the sequence. Let us consider the acyclic multigraphG1 = (V1, A1) whereV1

is made of the vertices of the sequence (including the depot(s)) plus one vertex for each
possible insertion position for s; in the following we call virtual vertices these latter
vertices;A1 contains every arc respecting the sequence order. Figure 4 illustrates the
construction ofG1. We adapt the algorithm mentioned before by adding a resourceRs

implying the insertion of exactly one virtual vertex. Finding the best insertion position
for s is then equivalent to find the shortest path inG1 with respect to all resource
constraints.

sequence

s vertices

Figure 4: Insertion in a sequence – multigraph construction
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The label associated with a partial path is defined by a level of consumption for
each resource, a cost, a destination vertex plus the specialresourceRs. Rs rules of
consumption and violation are summarized in Table 3. This resource is initialized,
at the depot, with a value 0. Ingoing arcs on virtual verticesconsume 1 unit of the
resource, others arcs consume 0. An upper bound upon the consumption of the resource
is defined with a value 1 for every virtual vertex; labels extended to the final depot are
constrained to have a value 1. The extension function of thisresource is trivially non-
decreasing. We present further a more detailed algorithm for the case of a request
insertion.

arc (i, j) (i, s) (i, depot)
consumption 0 1 0
violation − , 0 , 1

Table 1: Insertion resource extension function

4 Example of a DRT system in the Doubs Central area

4.1 DRT description

The motivation of this study stems from the development of a Demand Responsive
Transport (DRT) system in the Doubs Central area (France). ADRT system is a flexible
transport system intented to carry out transport requests via a fleet of vehicles under
feasibility and operational constraints. Contrary to a traditional public transport system,
the routes are determined for each time period (a day in our case), according to the
requests. The key issue for such systems is to find optimized operational solutions
taking account of the possibly contradictory objectives ofthe partners involved :

• for the Transport Organizing Authorities (TOA), rationalize the transport offer
and make the service visible and attractive;

• for the conveyors (Local Taxi companies in the central Doubscase), make the
service profitable;

• for the possible subcontractors (hauliers), conquer new markets;

• for the associations of users, improve the quality of life and the access to the
facilities.

In the DRT system considered here, each user issues a requestdefined by a pick-up
point (departure), a drop-off point (arrival), a given number of passengers and a latest
drop-off date that cannot be exceeded. An acceptable quality of service can be ensured
by providing a guarantee on the maximal gap between the pick-up date and this la-
test drop-off date. As we will specify it later, these constraints can be expressed using
traditional time windows. Local taxi companies carry out the service, so the fleet is
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heterogeneous, limited in quantity and with multiple depots. The payment is propor-
tional to the distance plus a fixed cost for the use of each vehicle. Distances, both in
time and in kilometers, are known for the road network. Our objective is to find the
less costly transportation plan for the authorities and, then, to minimize the time spend
in transport by the users.

In this case, the interest to consider alternative paths is to propose less expensive
paths (avoiding tolls for example), but proposing an equivalent quality of service.

DRT are well studied systems. The underlying vehicle routing problem is generally
identified under the name ofDial-a-Ride Problem (DARP). The DARP is a particular
case ofPickup & Delivery Problem which consists in transporting goods from points
of collecting, to points of delivery; the distinction comesfrom the quality of service
having to be integrated when people are carried. Most of the work on the DARP has
realistic application. The reader may find a recent state-of-the-art on this subject in
(Cordeau and Laporte, 2003). The DARP met in Doubs Central can be modelled (refer
to Section 4.2) as aPickup & Delivery Problem with Time Windows (PDPTW), a very
well studied problem. Among the different methodologies proposed for its resolution,
one can cite tabu search and simulated annealing for heuristics (Li and Lim, 2001)
and column generation methods (Savelsbergh and Sol, 1995, Sigurd et al., 2004) for
exacts methods. Toth and Vigo (2002) and Crainic and Laporte(1998) present more
general information onPickup&Delivery Problem and other vehicle routing problems.
The originality of our problem compared to the previous oneslies in the multigraph
feature. Especially, as highlighted before, this model introduces another decision level,
the sequence arc selection.

4.2 Problem Formulation

The problem is to serve a setR of requests with an heterogeneous fleet ofK vehicles of
limited capacityCk, based in various depots and with a fixed costpck. LetG = (V, A) be
a network, whereV is the set of nodes including two nodes for each request, consisting
of two servicesr+ for the pick-up andr− for the drop off, and two nodes for each vehicle
, one for the starting depot and one for the arrival depot (respectively notedok andmk).
The requestr brings togetherlr+ passengers. We define also the valuelr− = −lr+ . A
servicei (r+ or r−) has a non-negative durationsi. An arc (i, j)e ∈ A is a path (in the
geographical network) linkingi to j. A costde

i j(2), a loadde
i j(1) = l j and a duration

de
i j(0) are associated with each arc (i, j)e. The arcs corresponding to the shortest time

paths in the geographical network are identified by the valuee = 0.
For each requestr ∈ R we noteBr− the latest drop-off date andδr the maximal

gap betweenBr− and the effective pick-up date;δr is proportionnal to the shortest time
path (d0

r+r−(0)). Equations (1)-(3) turn these constraints into time windows constraints,
whereAi is the earliest starting date for the servicei andBi the latest starting date. This
formulation splits up the gap constraint (over the two services of a request) into two
independent constraints on each service:

Br+ = Br− − d0
r+r− (0)− sr+ (1)

Ar+ = Br− − δr − sr+ (2)

Ar− = Ar+ + sr+ + d0
r+r− (0) (3)
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The part of a solution relative to a single vehicle is called aroute. It is called
sequence, if the service dates are not fixed,i.e., only the vehicle assignment and the
order of realization of theservices are known.

To construct the routing planning, one have to assign one vehicle to each request,
to sequence the services for each vehicle and to fix service starting datesTi, the latter
correspondig to arc selection.

To simplify the model, we introduce decision variablesLi that correspond to the
number of passengers in the vehicle used, after the servicei is done. The binary
decision variablesxk

i je state the selection of arc (i, j)e by the vehiclek. The objec-
tive function (4) first minimizes the total cost for the authorities. A second hierar-
chical objective function is added to take the customer quality of service into con-
sideration and to minimize the sum of gaps between latest drop-off dates and effec-
tive pick-up dates. To ensure the model coherence, some dataare set as follows :
de

mkok
(2) = de

mkok
(1) = de

imk
(1) = de

oki(1) = 0; Aok = Amk = −∞ andBok = Bmk = ∞.

min Lex(
∑

k∈K

∑

(i, j)e∈A

xk
i jede

i j(2)+
∑

k∈K

∑

(ok ,i)e∈A

pckxk
okie,

∑

i∈N

Bi− − Ti+ ) (4)

subject to
∑

k∈K

∑

(i+ , j)e∈A

xk
i+ je = 1 ∀i ∈ R, (5)

∑

(i+ , j)e∈A

xk
i+ je −

∑

( j,i−)e∈A

xk
ji−e = 0 ∀k ∈ K,∀i ∈ R, (6)

∑

(i, j)e∈A

xk
i je −

∑

( j,i)e∈A

xk
jie = 0 ∀k ∈ K,∀ j ∈ V, (7)

xk
i je

(

Ti + de
i j(0)+ si − T j

)

≤ 0 ∀k ∈ K, (i, j)e ∈ A, (8)

Ai ≤ Ti ≤ Bi ∀k ∈ K, i ∈ V, (9)

Ti+ + d0
i+i− (0)+ si ≤ Ti− ∀k ∈ K, i ∈ R, (10)

xk
i je

(

Li + de
i j(1)− L j

)

= 0 ∀k ∈ K, (i, j)e ∈ A, (11)

xk
i jeLi+ ≤ Ck ∀k ∈ K, i ∈ R, (12)

xk
i jeLi− ≤ Ck − de

i j(1) ∀k ∈ K, i ∈ R, (13)

xk
i je ∈ {0, 1} ∀k ∈ K, (i, j)e ∈ A. (14)

4.3 Insertion heuristic

We propose a three steps algorithm.

1. The first step is a greedy insertion procedure which aims atconstructing an arc
sequence per vehicle (without time-stamping) satisfying all requests.

2. Local search, based on removals and insertions, is then used to improve the set
of sequences.

3. The arc sequences are scheduled (time-stamped) in the last step.
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4.3.1 The three step approach

Greedy insertion procedure Empty sequences are initially associated with each ve-
hicle. The requests are then inserted one after another intosequences, according to
a predetermined order. The insertion generating the smallest increase in cost, is se-
lected. Insertion is "greedy" in the sense that the relativeorder of the yet inserted
requests is preserved. On the other hand, the arcs selectionbetween successive stops is
re-optimized. Insertion can indeed force to use faster but more expensive arcs. The de-
termination of the optimal set of arcs is a NP-hard problem asa FSASP with 2 attributes
(time and cost)(see Section 3.1). The model and the method proposed to solve it are
detailed in the following subsection. Let us specify that inthe usual case where only
one arc is considered between two stops (simple graph), the problem is polynomial.

In order to improve the effectiveness of this phase, the algorithm is applied twice.
The first time, requests are treated in a random order. A marginal cost is then computed
for each request. This cost is calculated by removing the request temporarily and by
evaluating the corresponding profit. The order used for the second execution of the
algorithm is then the decreasing order of the marginal costs, so that the most expensive
requests are the first inserted. The best of the two solutionsobtained is preserved.

Local search (descent method) Once a first set of sequences obtained, the principle
of the second step is to remove certain requests of the solution, then to re-insert them
at lower cost (with the insertion procedure described above). The new solution is thus,
either identical to or more advantageous than the previous one. This treatment is ap-
plied to the requests in the initial order of insertion whichproved empiricaly to be most
powerful. This operation is repeated until no more improvement of the solution during
a complete cycle is noted.

Time-stamping (scheduling) The solution obtained with our algorithm produces
feasible arcs sequences with unfixed starting dates of service. These dates have no
impact on the first hierarchical level of the solution cost. To schedule a sequenceS , we
optimize the second hierarchical level of the objective function which is to minimize
the sum of the gaps between latest drop-off dates (Br−) and pick-up dates (Tr+). This
amounts to minimize the following objective (15) since the latest drop-off times are
constant :

max
∑

r∈S

Tr+ (15)

The recursion procedure described in formula (16), computes latest feasible pick-up
dates that characterize theLatest Scheduling Solutions. Theorem 2 proves the optima-
lity of these solutions dates for the secondary criteria.

Bi := min
{

Bi, Bi+1 − d0
i,i+1(0)− si

}

∀i = |2S | − 1, . . . , 1 (16)

Lemma 1 Let T ′ a Latest Scheduling Solution of a service sequence S with service
date B′i . Let T a solution such that i exists with Ti > B′i . T is unfeasible.

PROOF. If Bi = B′i thenT is unfeasible elseBi > B′i. In that caseB′i = B′i+1 −

d0
i,i+1(0) − si, so Ti > B′i+1 − d0

i,i+1(0) − si. HoweverTi+1 > Ti + si + d0
i,i+1(0), that
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impliesTi + 1 > B′i+1. This process is stopped either by a relationB j = B′j andT is
unfeasible, or by the end of the sequence with the equationT2S−1 > B′2S−1. However
B′2S−1 = B2S−1 by construction, which proves the lemma. .

Theorem 2 Let S be a service sequence such that to each service i a time window
constraint [Ai, Bi], a duration si and a realization date Ti are associated. The travel
time between two successive services is noted d0

i,i+1(0). If S is feasible then Latest
Scheduling Solutions are feasible and maximize the function

∑

r∈S Ti.

PROOF. IfS is feasible then a solutionT 0 exists such that for eachi, Ai ≤ T 0
i ≤ Bi.

Let T ′ be the latest scheduling datesT ′i . T
′ is unfeasible if and only ifT ′u < Au for

one or moreu (T ′i ≤ Bi ∀i, by construction). In this case,T 0
u > T ′u which proves the

feasibility ofT ′ by lemma 1.
Let T 1 a feasible solution better thanT ′. u exists such thatT 1

u > T ′u. Lemma 1
proves the no-existence of a suchT 1, and then the optimality ofT ′. .

The drop-off dates (Tr−) from the following rules and equation (17) :

• A vehicle is allowed to wait at a stop only after a drop-off followed by a pick-up.

• As soon as the vehicle reaches a stop, the passengers concerned are dropped off.

• A vehicle leaves a stop immediately after the last pick-up.

∀i a drop-off, Ti = Ti−1 + si−1 + d0
i−1,i(0) (17)

Solutions respecting these operationals constraints, calledLatest Pick-Up Earliest Drop-
Off Solutions, form a dominant set for the routing problem and the scheduling problem;
pick-up dates are unchanged.

4.3.2 Request insertion in a sequence

This algorithm is an adaptation to the case of a requestr of the approach described in
Section 3.3. Let us consider the acyclic multigraphG1 = (V1, A1) where vertices are
depots, pick-ups and drop-offs of the sequence plus one vertex forr+ andr− at each
insertion position.A contains all the arcs respecting the sequence order (Figure5).
Initial constraints or constraints induced by the sequencecan immediately reduce the
number of insertion position.

Finding the best insertion position forr is equivalent to find the shortest path (in
cost), satisfying all constraints on attributes (time and capacity) and visiting exactly one
vertex representingr+ and one representingr− in this order. We model this problem as
a SPPRC and solve it through dynamic programming with the following particularities.
The labellb j associated with a partial path is defined with a level of consumption for
each resource (timeT lb j and loadLlb j ), a costClb j , and a destination vertexj, plus the
resource requestRlb j for the new request. The rules of consumption and violation of
these resources are summarized in table 2 and 3. TheRlb j starting level at the depot is
set to 0.
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Figure 5: Request insertion in a sequence – multigraph construction

resource value constraint
T lb′ max

{

T lb + de
i j(0), A j

}

≤ B j

Llb′ Llb + de
i j(1) ≤ C

Clb′ Clb + de
i j(2)

Table 2: Resource extension functions

arc (i, j) (i, r+) (i, r−) (i, depot)
consumption 0 1 1 0
violation − , 0 , 1 , 2

Table 3:Rlb j Request resource extension function
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The extension functions of these resource are trivially non-decreasing. Labels are
generated traversing the sequence and considering all the outgoing arcs for each vertex.
Labels violating constraints are deleted.

The dominance rule works as follow.lb j dominateslb′j if equations (18) are valid.

Clb j ≤ Clb′j ; T lb ≤ T lb′j ; Llb j ≤ Llb′j ; Rlb j ≥ Rlb′j (18)

The last condition onRlb j is valid by construction ofG where each path (i, k, j) is
dominated by an arc (i, j)e. So each extension oflb′j even coming throughr+ andr−

can be dominated by an extension oflb j.
When adding the request load to the maximal load in the sequence do not exceed

the vehicle capacity. The load attribute can be ignored to intensify the dominance rule.
The algorithm efficiency is well improved by a constraint propagation procedure

on time windows constraints. Time windows can be readjusted, preserving all feasible
solutions, with a recursive algorithm based on equations (19) and (20). This update is
made traversing the sequence twice (one time in each direction) inO(|2S |) where|S | is
the number of requests in the sequenceS . i is the vertex at theith position inS .

Ai+1 := max
{

Ai+1, Ai + si + d0
i,i+1(0)

}

∀i = 1, . . . , |2S | − 1 (19)

Bi := min
{

Bi, Bi+1 − d0
i,i+1(0)− si

}

∀i = |2S | − 1, . . . , 1 (20)

4.4 Results

Due to the many variants of DARP that can be considered, finding benchmark instances
for these problems is not an easy task. Actually, no benchmark correspond to our
situation, even with a simple graph representation.

Thus, we generated our own benchmark from geographical dataof Doubs Central
(IGN1 maps) and estimated flows of population. We created three sets of 30 instances
with 10, 30 and 90 requests. The fleet is heterogeneous and corresponds to the taxi
companies. The maximal gap between the latest drop-off date and the effective pick-
up date is two times longer than the shortest time path (in thegeographical network).
The multigraph is two to three times denser than the simple graph. The variations
between arcs connecting the same vertices can go up to 30% of profit in cost for 30%
of additional travel time compared to the shortest time path.

The results obtained with the algorithm presented in Section 4.3 (MULTI), are
compared in Table 4 with those obtained by considering only the shortest time paths
(SIMPLE) with the similar algorithm proposed in Garaix et al., 2005. The number
of requests and the algorithm used can respectively be foundin the first and second
columns. The three following columns indicate the mean cost, number of vehicles
used and computing times for the 30 instances of each benchmark. The tests were
carried out with a 600MHz AMD Duron and 128 Mo RAM.

MULTI obtains the least expensive solutions on average (2,7%, 3,3% and 3,5% for
the instances with 10, 30 and 90 requests), with neither morevehicles used nor more
computing time. However results are better with the simple graph, for ten instances.

1Institut Gégraphique National
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requests graph cost vehicles cpu (s)
10 SIMPLE 246 3, 0 0

MULTI 239 3, 2 0
30 SIMPLE 578 5, 6 1

MULTI 559 5, 6 2
90 SIMPLE 1368 10, 5 30

MULTI 1320 10, 6 70

Table 4: Results on multigraph and simple graph

5 Conclusion

In this article, we investigate the interest and the tractability of the use of a multigraph
representation for solving vehicle routing problems when arcs of the geographical net-
work are characterized with several attributes.

In a first step, we make clear that this representation renders the problem complex
even when the vehicle assignment and sequencing decisions are fixed, i.e., when the
problem is reduced to scheduling the services. After havingshown that this schedul-
ing subproblem is NP-hard, we propose to address it with a dynamic programming
algorithm, based on a SPPRC modeling.

We then discuss how classical solution schemes, either based on local search (heuris-
tics and metaheuristics) or enumeration (exact algorithms), can handle the multigraph
representation. Though these points are only sketched out here, an emphasis is made
on the most shared tool used for routing: the insertion operator.

An algorithm is derived in the case of a DRT system developpedin the Doubs Cen-
tral area in France. The computational study shows the efficiency and effectiveness of
our algorithm for a set of benchmark instances issued from real data. These results per-
mit to conclude positively concerning the tractability of the multigraph representation.

This work offers at least two important perspectives. A first one concernsthe use
of this representation in other contexts: multimodal networks, scenic route planning
or road traffic congestion modeling have been underlined on the introduction of the
article.

A second perspective is to investigate more deeply the adaptation of different al-
gorithms to the multigraph representation. The issue is rather different for heuristic or
exact algorithms. A first step is done concerning local search type algorithms. The so-
lution scheme proposed to evaluate in one shot every neighbor solution for the insertion
operator is indeed a good starting point for proposing equivalent algorithms for other
types of operators. Anyway, it has be shown that any type of operator can be used, if
one accepts that the evaluation of a neighbor solution involves a SPPRC resolution.

Concerning exact methods, column generation appears as a very natural tool to
cope with the multigraph representation. One can see at least two reasons for that.
First, column generation proved to be very efficient in many routing situations. Sec-
ond, a multigraph representation mainly impacts on the column generation subproblem,
which happens to be a SPPRC, similar to ours, and which can directly integrates the
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multigraph dimension, as explained previously.

References

J-F. Cordeau and G. Laporte. The dial-a-ride problem (darp): Variants, modeling
issues and algorithms.4OR, 1:89–101, 2003.

T G. Crainic and G. Laporte.Fleet Management and Logistics. Kluwer, Boston,
USA, 1998.

Desrosiers J., Dumas Y., Solomon M.M., and Soumis F. Time constrained routing
and scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monna, andG.I. Nemhauser, edi-
tors,Network Routing, Handbooks in Operations Research and Management Science,
pages 35–139. Amsterdam, North-Holland, 1995.

T. Garaix, D. Josselin, D. Feillet, C. Artigues, and E. Castex. Transport à la de-
mande points à points en zone peu dense. proposition d’une méthode d’optimisation
de tournées. InSAGEO’2005, 2005.

S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. Tech-
nical report, les cahiers du GERAD G-2004-11, CRT, Montréal, 2004.

H. Li and Lim A. A metaheuristic for the pickup and delivery problem with time
windows. InICTAI 2001, 2001.

Martello S. and Toth P.Knapsack Problems: Algorithms and Computer Implementa-
tions. Wiley, 1990.

M W P. Savelsbergh and M. Sol. The general pickup and deliveryproblem. Trans-
portation Science, 29:107–121, 1995.

M. Sigurd, D. Pising, and Sig M. The pickup and delivery problem with time win-
dows and precedences. Technical report, Dpt. of Computer Science, University of
Copenhagen, 2004.

P. Toth and D. Vigo.The vehicle routing problem. Society for industrial and Applied
Mathematics, Philadelphia, PA, USA, 2002.

15


