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An amplitude-phase formulation for nonlinear modes

and limit cycles through invariant manifolds

S. Bellizzi�, R. Bouc

Laboratoire de Mécanique et d’Acoustique, CNRS, 31 Chemin Joseph Aiguier, F-13402 Marseille, France 

The aim of this paper is to show how the concept of nonlinear modes can be used to characterize periodic orbits and

limit cycles in multi-degree-of-freedom nonlinear mechanical systems. In line with previous studies by Shaw and Pierre, the

concept of nonlinear modes is introduced here in the framework of invariant manifold theory for dynamical systems. A

nonlinear mode is defined in terms of amplitude, phase, frequency, damping coefficient and mode shape, where the last

three quantities are amplitude and phase dependent. An amplitude-phase transformation is performed on the nonlinear

dynamical system, giving the time evolution of the nonlinear mode motion via the two first-order differential equations

governing the amplitude and phase variables, as well as the geometry of the invariant manifold. The system of formulation

adopted here is suitable for use with a Galerkin-based computational procedure. The existence and stability of periodic

orbits such as limit cycles on the associated invariant manifolds can be studied from the differential equations governing

the amplitude and phase variables.

The examples given here involve adding gyroscopic and/or ‘‘negative’’ nonlinear damping terms of Van der Pol type,
and nonlinear restoring force to the system equations.

1. Introduction

Nonlinear modes (NMs) are efficient tools for analyzing the behavior of vibrating mechanical systems [1–6].

In a series of papers by Shaw and Pierre [5–8], the NM concept was related to invariant manifold theory for

dynamical systems. A NM in a (regular enough) n-dimensional, autonomous, second-order nonlinear

mechanical system is any motion which evolves in a two-dimensional invariant set. This set contains the

equilibrium point (zero oscillation) and is tangent to the plane-eigenspace corresponding to the linear mode of

the associated linearized system (small oscillations). The invariant manifold geometry is characterized by a set

of partial differential equations (PDEs) with respect to the ‘‘master coordinates’’ (all displacements and

velocities are related to a single pair of displacement and velocity terms, called the ‘‘master coordinates’’). The

time evolution of a NM motion is given by the remaining second-order nonlinear oscillator governing the

master coordinates. The amplitude-phase transformation performed on the master equation, based on the
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linear modal frequency in Ref. [8], takes computational advantage of the 2p-periodic character of the

parametric expressions for the invariant manifold in terms of the phase variable.

We recently proposed [9] an amplitude-phase formulation for characterizing a NM in conservative

nonlinear systems in the line with the approach developed in Ref. [3]. As in the linear case, a NM is described

in terms of the amplitude, mode shape and frequency, where in this study the distinctive feature is the fact that

the last two quantities are amplitude and phase dependent. The time evolution of the NM motion was then

given by a first-order differential equation governing the total phase motion, from which the period of

the oscillation can easily be deduced. It was established that the frequency and mode shape functions solve a

2p-periodic (with respect to the phase variable) nonlinear differential eigenvalue problem. This method also

gives a parametric description of the associated invariant manifold.

In the present study this formulation is extended to autonomous mechanical systems including displacement

and velocity nonlinear terms. The amplitude-phase transformation involves a new function to characterize the

amplitude modulation, that we will call a ‘‘damping function’’ (in the wide sense). This function also depends

on the amplitude and phase variables. The dynamics is now described by two first-order nonlinear differential

equations, the one governing the total phase motion, and the other the amplitude motion. It is observed that in

some cases periodic solutions may exist for the amplitude equation, denoting the presence of stable or unstable

‘‘limit cycles’’ on the invariant manifold. The procedure is first discussed in the case of single-degree-of-

freedom (sdof) oscillators in Section 2. Three cases are considered: a sdof oscillator without damping but with

inertial nonlinearity and a nonlinear restoring force, a sdof oscillator with a linear damping term, unit mass

and a nonlinear restoring force, a sdof oscillator with ‘‘negative nonlinear damping’’ of the van der Pol type

yielding two stable and one unstable limit cycles. In this last example, it is observed that a small parameter

approach leads to predictive analytical results as to the behavior of the oscillator. In Section 3, the procedure

for n-dimensional mechanical systems is presented. For computing the NMs, the use of a Galerkin procedure

based on truncated Fourier series with respect to the phase variable, combined with polynomial functions for

the amplitude variable, is also discussed. A two-dimensional example is first presented. Four configurations

are considered, depending on the properties of the damping terms: a conservative non-gyroscopic system, a

conservative gyroscopic system, a dissipative system with proportional damping, and a dissipative system with

non-proportional damping. Lastly, a system of two coupled van der Pol equations is discussed, including the

stability results of the corresponding limit cycles on the associated invariant manifolds.

2. sdof Case

2.1. Undamped case with inertial nonlinearity

Let us consider an undamped sdof oscillator with inertial nonlinearity and a nonlinear restoring force. Let

T ¼ 1
2
mðqÞ _q2 and U ¼ UðqÞ

be the kinetic energy function and the potential energy function, respectively, where q denotes the

displacement. Using the notation gqðqÞ ¼ ðqg=qqÞðqÞ, the Euler–Lagrange equation reads

d

dt
ðmðqÞ _qÞ � 1

2
mqðqÞ _q2 þUqðqÞ ¼ 0 (1)

giving the equation of motion

mðqÞ €qþ 1
2
mqðqÞ _q2 þ f ðqÞ ¼ 0, (2)

where f ðqÞ ¼ UqðqÞ.
It will be assumed in what follows that the functions m and f are regular enough and mðqÞXm040, f ð0Þ ¼ 0

and qf ðqÞX0.

We will now establish that a periodic orbit of Eq. (2) can be expressed, either

qðtÞ ¼ aðcosfðtÞ þ bðaÞÞ;
_qðtÞ ¼ �aOða;fðtÞÞ sinfðtÞ (3)
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with

_fðtÞ ¼ Oða;fðtÞÞ; fð0Þ ¼ j (4)

or

qðtÞ ¼ aðcosfðtÞ þ bða;fðtÞÞÞ;
_qðtÞ ¼ aOða;fðtÞÞð� sinfðtÞ þ bfða;fðtÞÞÞ

(5)

with

_fðtÞ ¼ Oða;fðtÞÞ; fð0Þ ¼ j. (6)

Numbers a and j are two constants which set the initial conditions of the motion.

Eqs. (3) and (5) introduce two amplitude-phase transformations of the equation of motion (2). In both cases

the frequency function O and the bias function b need to be found. These expressions differ from the classical

polar transformation, since they involve a non-constant frequency Oða;fÞ.
In expressions (3), b is a scalar function which depends only on a, and O is a positive scalar function which

depends on a and f. As we shall see, O is an even 2p-periodic continuous function with respect to f and hence

with Fourier series

Oða;fÞ ¼
X

1

n¼0

OnðaÞ cos nf. (7)

In expressions (5), the bias function b depending on a and f will be sought for, arbitrarily, along with the

frequency function O, in the form of an even p-periodic function with respect to f with Fourier series

Oða;fÞ ¼
X

1

n¼0

O2nðaÞ cos 2nf,

bða;fÞ ¼
X

1

n¼0

b2nðaÞ cos 2nf. ð8Þ

In both cases, it can be seen from Eqs. (4) and (6) that the period of the motion is given by

TðaÞ ¼
Z 2p

0

1

Oða;fÞ df. (9)

After some algebraic and differential manipulations, substituting Eq. (3) into Eq. (2) gives

d

df
ðmðaxðfÞÞO2 sin2 fÞ � 2

a
sinf f ðaxðfÞÞ ¼ 0, (10)

where xðfÞ ¼ cosfþ bðaÞ yielding

O2ða;fÞ ¼
2
R f

0
sin sf ðaxðsÞÞds

amðaxðfÞÞ sin2 f
¼ 2ðUðaþ abðaÞÞ �Uða cosfþ abðaÞÞÞ

a2mðaxðfÞÞ sin2 f
, (11)

with the constraint equation
Z p

0

sin sf ðaxðsÞÞds ¼ 0, (12)

i.e.

Uðað1þ bðaÞÞÞ �Uðað�1þ bðaÞÞÞ ¼ 0. (13)

Eq. (13) defines the bias function bðaÞ and, together with the assumption qf ðqÞX0, means that O2, given by Eq.

(11), is a positive continuous 2p-periodic function with respect to f for fixed a with Fourier series (7).

The above result is well known in the case of mðqÞ ¼ 1, see for example Ref. [13]. Unfortunately, it does not

seem to be applicable to multi-dof (mdof) systems.
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Substituting Eq. (5) into Eq. (2) gives

d

df
ðmðaxðfÞÞO2 sin2 fÞ � 2

a
sinff ðaxðfÞÞ

� sinf
d

df
ðmðaxðfÞÞO2bfÞ þmðaxðfÞÞO2bff

� �

¼ 0, ð14Þ

where now xðfÞ ¼ cosfþ bða;fÞ. Eq. (14) looks rather like Eq. (10) but it contains an additional term which

depends on the first two derivatives of the bias function b. Eq. (14) cannot be solved analytically and

apparently we have to solve, for fixed a, one equation for two unknown functions O2 and b. Nevertheless we

look for even p-periodic functions (see Eq. (8)). Consequently, using the decomposition

mðaxðfÞÞ ¼
X

1

n¼0

m2nðaÞ cos 2nfþ
X

1

n¼0

m2nþ1ðaÞ cosð2nþ 1Þf

¼ meðfÞ þmoðfÞ,

f ðaxðfÞÞ ¼
X

1

n¼0

f 2nðaÞ cos 2nfþ
X

1

n¼0

f 2nþ1ðaÞ cosð2nþ 1Þf

¼ f eðfÞ þ f oðfÞ,
where ð�Þe (respectively ð�Þo) denotes the even (respectively, odd) cosine terms in Fourier series, Eq. (14) can be

re-written as

d

df
ðmeðfÞO2 sin2 fÞ � 2

a
sinff oðfÞ

� sinf
d

df
ðmoðfÞO2bfÞ þmoðfÞO2bff

� �

¼ 0, ð15Þ

d

df
ðmoðfÞO2 sin2 fÞ � 2

a
sinf f eðfÞ

� sinf
d

df
ðmeðfÞO2bfÞ þmeðfÞO2bff

� �

¼ 0, ð16Þ

where Eq. (15) (respectively, Eq. (16)) stands for the odd (respectively, even) sine terms of Eq. (14).

If mo � 0 and f e � 0, then bða;fÞ ¼ 0 is a solution of Eq. (16), and Eq. (15) reduces to Eq. (10), yielding the

same expression for Eqs. (3) and (5) and O is p-periodic with Fourier series (8).

Except for some special cases, Eqs. (15) and (16) have to be solved numerically and this can be done using a

Galerkin procedure based on the truncated Fourier series of Eq. (8) as we shall see later on. The formulation

(5) and (6) can be extended to the mdof case [9] and will be used in this paper.

2.2. Odd restoring force with linear damping

Consider a sdof oscillator with linear damping, unit mass and a nonlinear restoring force

€qþ c _qþ f ðqÞ ¼ 0. (17)

We will assume that the function f is regular enough and, for the sake of simplicity, that f ðqÞ ¼ �f ð�qÞ.
If ca0, the amplitude of the motion is time dependent. To take this fact into account, a solution of Eq. (17)

is sought for in the following:

qðtÞ ¼ vðtÞ cosfðtÞ (18)

with

_fðtÞ ¼ OðvðtÞ;fðtÞÞ;
_vðtÞ ¼ vðtÞxðvðtÞ;fðtÞÞ; fð0Þ ¼ j; vð0Þ ¼ a, (19)
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where O and x are two scalar functions of the variables v and f, the frequency function and the damping

function, respectively. As previously, we look for O and x in the form of even p-periodic functions with respect

to f with Fourier series

Oðv;fÞ ¼
X

1

n¼0

O2nðvÞ cos 2nf,

xðv;fÞ ¼
X

1

n¼0

x2nðvÞ cos 2nf. ð20Þ

Substituting Eqs. (18) and (19) into Eq. (17) and equating the sine and cosine terms separately leads to the

following PDEs in terms of the two variables v and f for the two unknown functions O and x

qx

qf
cosf� 2x sinf� xv

1

2O2

qO2

qv
sinf ¼ c sinf, ð21Þ

1

2

qO2

qf
sinfþ O2 cosf� 1

v
f ðv cosfÞ ¼ cosf x2 þ 1

2
v
qx2

qv
þ cx

� �

. ð22Þ

If f ðqÞ ¼ kq, then O2 � k � ðc2=4Þ and x � �c=2 as was to be expected. Otherwise, it can be established that

in the case of positive (respectively, negative) damping, c40 (respectively, co0), we have xp0 (respectively,

xX0Þ so that the zero solution is asymptotically stable (respectively, unstable).

Except for some special cases, Eqs. (21) and (22) have to be solved numerically, and this can be done using a

Galerkin procedure based on the truncated Fourier series of Eq. (20).

The transformation Eqs. (18) and (19) can be applied to systems with nonlinear damping as well as to

systems including auto-oscillations. In this last case, ‘‘limit cycles’’ can be studied as we shall see in the next

section.

2.3. Application to limit cycles

From Eq. (19), it follows that

dv

df
¼ vtðv;fÞ, (23)

where tðv;fÞ ¼ ðxðv;fÞ=Oðv;fÞÞ can be viewed as a ‘‘generalized damping rate function’’.

Since the right-hand side of Eq. (23) is p-periodic with respect to f, periodic solutions

v�ðfÞ ¼ v�ðfþ pÞ

may exist with some x and O (one necessary condition being that tðv;fÞ does not keep a constant sign). It

follows that

qðtÞ ¼ v�ðfðtÞÞ cosfðtÞ

will be a T-periodic function with period

T ¼
Z 2p

0

df

Oðv�ðfÞ;fÞ . (24)

The stability analysis of this periodic motion (‘‘limit cycle’’) will be easily deduced from the variational

equation associated with Eq. (23).

Example. Let us consider the nonlinear sdof oscillator of the van der Pol type

€q� �ð1� 22
3
q2 þ 8q4 � 32

15
q6Þ _qþ q ¼ 0, (25)

where � is a positive (small) parameter.
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Substituting Eqs. (18) and (19) into Eq. (25) gives similar equations to Eqs. (21) and (22)

qx

qf
cosf� 2x sinf� xv

1

2O2

qO2

qv
sinf ¼ �pðv cosfÞ sinf, (26)

1

2

qO2

qf
sinfþ O2 cosf� cosf ¼ cosf x2 þ 1

2
v
qx2

qv
þ �pðv cosfÞx

� �

, (27)

where pðqÞ ¼ �ð1� 22
3
q2 þ 8q4 � 32

15
q6Þ. One can check that solutions of Eqs. (26) and (27) are such that

x ¼ Oð�Þ; O2 ¼ 1þOð�2Þ and x
1

O2

qO2

qv
¼ Oð�3Þ.

It follows from Eq. (26), that

xðv;fÞ ¼ x0ðvÞ þ x2ðvÞ cos 2fþ x4ðvÞ cos 4fþ x6 cos 6fþOð�3Þ (28)

with

x0ðvÞ ¼ � �

12
ð�6þ 11v2 � 6v4 þ v6Þ; x2ðvÞ ¼ � �

24
ð22v2 � 16v4 þ 3v6Þ,

x4ðvÞ ¼ � �

60
ð�10v4 þ 3v6Þ; x6ðvÞ ¼ � �

120
v6

and, from Eq. (27), we deduce that

O2ðv;fÞ ¼
X

6

n¼0

O2
2nðvÞ cos 2nfþOð�4Þ (29)

with

O2
0ðvÞ ¼ 1þ �2 �1

4
þ 11

4
v2 � 845

96
v4 þ 203

18
v6 � 217

32
v8 þ 77

40
v10 � 1001

4800
v12

� �

and, for n40, O2
2n ¼ Oð�2Þ.

Substituting Eqs. (28) and (29) into Eq. (23), the existence of limit cycles for Eq. (25) can be deduced from

the existence of equilibrium points of the averaged equation ([11], recalling that x ¼ e~x and hence t ¼ e~t)

dv

df
¼ vhtðvÞi; where htð�Þi ¼ 1

2p

Z 2p

0

xð:;fÞ
Oð:;fÞ df, (30)

yielding

htðvÞi ¼ 1

2p

Z 2p

0

xðv;fÞdfþOð�2Þ ¼ x0ðvÞ þOð�2Þ.

The amplitudes of the limit cycles are given by the three positive roots of the equation x0ðvÞ ¼ 0 up to Oð�2Þ.
The first root v�1 ¼ 1 gives a stable limit cycle (ðqx0ð1Þ=qvÞo0), the second root v�2 ¼

ffiffiffi

2
p

gives an unstable limit

cycle (ðqx0ð
ffiffiffi

2
p

Þ=qvÞ40), and the third root v�3 ¼
ffiffiffi

3
p

gives a stable limit cycle (ðqx0ð
ffiffiffi

3
p

Þ=qvÞo0). The phase

picture of the stable limit cycles obtained by directly simulating Eq. (25) is shown in Fig. 1. From (24), the

period of the limit cycles is given by

T i ¼
2p

O0ðv�i Þ
þOð�2Þ. (31)

Table 1 compares, for various values of the parameter �, the period of the limit cycle v�1 ¼ 1 with the ‘‘exact’’

period of the limit cycle obtained by directly simulating Eq. (25) with a shooting method.
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3. mdof Systems

We now consider a mdof system of the form

½M� €QðtÞ þ Fð _QðtÞ;QðtÞÞ ¼ 0, (32)

where QðtÞ is an n-vector, ½M� is a non-singular symmetric n� n-matrix and F is a (sufficiently regular) vector

function with dimension n such that Fð0; 0Þ ¼ 0.

We want to characterize the NMs in the framework of the invariant manifold theory [5], using an

amplitude-phase transformation as for sdof oscillators.

3.1. Undamped case

In a previous work [9] we considered the case in which the nonlinear force function F does not depend on _Q.

We briefly summarize here the main results.

Assume firstly that F is an odd function (FðQÞ ¼ �Fð�QÞ). A normal mode is defined from a family of

periodic solutions to Eq. (32) sought in the form

QðtÞ ¼ aWða;fðtÞÞ cosfðtÞ, (33)

where the scalar function f satisfies the differential equation

_fðtÞ ¼ Oða;fðtÞÞ; fð0Þ ¼ j. (34)

By analogy with the linear case (where Eqs. (33) and (34) hold with constant W and O), the vector function, W

and the scalar function O, will be referred to here as the modal vector and the resonance frequency of the

nonlinear normal mode, respectively, and the scalar function f, will be referred to here as the total phase of

the motion. The one-dimensional differential equation (34) governing the total phase motion f, will define the

dynamics of the periodic response and the scalar quantities a (a40) and j (j 2 ½0; 2p�) will set the initial

conditions of the vibration in the phase space. To ensure that the parameter a appropriately characterizes the

-1.5 -1 -0.5 0 0.5 1 1.5 2

q

-1.5

-1

-0.5

0

0.5

1

1.5

2

q.

Fig. 1. Phase portrait � ¼ 0:5, qð0Þ ¼
ffiffiffi

2
p

� 0:1 (continuous line) and qð0Þ ¼
ffiffiffi

2
p

þ 0:1 (dashed line).

Table 1

Period of the limit cycle v�1 ¼ 1 for various values of e

e ¼ 0:01 e ¼ 0:1 e ¼ 0:5 e ¼ 0:8 e ¼ 1

T given by Eq. (31) 6.2832 6.2860 6.3543 6.4710 6.5833

T given by a shooting method 6.2832 6.2849 6.3263 6.3938 6.4564
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amplitude of the vibration in mode motion, a normalization condition on the modal vector W is required. One

can set, for example, for all (a;f),

WTða;fÞ½M�Wða;fÞ ¼ 1. (35)

Substituting Eq. (33) into Eq. (32) and eliminating the time variable in the resulting equation by using

Eq. (34), Eq. (32) reduces to the following differential equation in the variable f:

½M�W O2 cosfþ 1

2
ðO2Þf sinf

� �

¼ LðO2;W;fÞ þ 1

a
FðWa cosfÞ, (36)

where

LðO2;W;fÞ ¼ O2 cosf½M�Wff � 2O2 sinf½M�Wf þ 1
2
ðO2Þf cosf½M�Wf (37)

and ð�Þf denotes partial differentiation with respect to f. The differential rule ðO2Þf ¼ 2OOf has been used to

work with the unknown function O2 in place of O.

Eq. (36), which is 2p-periodic with respect to f, together with the normalization condition (35), can be viewed

as a nonlinear 2p-periodic eigenvalue–eigenvector problem. Thus, the modal vector W and the frequency O

will be searched for as 2p-periodic functions with respect to f for fixed a. More specifically, due to the odd

symmetry of the function F, and the quadratic form (in W) of the normalization constraint (35), these

functions will be searched for as even periodic functions with respect to f with period p and hence with

Fourier series containing only cosine terms of even order. It follows that the Fourier series of QðtÞ in terms of

fðtÞ will contain only cosines terms of odd order. It can be established that if QTFðQÞX0 (which is weaker

than the monotony assumption made in Ref. [9]) necessarily leads to O2
X0. The period of the vibration in

mode motion depends only on the amplitude a and follows easily from Eq. (34):

TðaÞ ¼
Z 2p

0

1

Oða;fÞ df. (38)

Eq. (33) together with

_QðtÞ ¼ aOða;fðtÞÞðWfða;fðtÞÞ cosfðtÞÞ �Wða;fðtÞÞ sinfðtÞÞ, (39)

define a ‘‘synchronous’’ periodic oscillation in the sense of Ref. [1]. The modal line in the configuration space

can be either straight or curved. It should be mentioned that this formulation gives also a characterization of

the NM in the framework of the invariant manifold in the phase space [5,7,8]. The invariant manifold

coincides with the set, in the phase space, defined by Eqs. (33) and (39) taking the initial conditions a and j to

be independent variables.

If FðQÞa� Fð�QÞ, due to the presence of quadratic terms for example, Eq.(33) must be replaced by [9]

QðtÞ ¼ aðWða;fðtÞÞ cosðfðtÞÞ þ Bða;fðtÞÞÞ, (40)

where the term Bða;fÞ, such that Bða;fÞ ¼ Bða;�fÞ ¼ Bða;fþ pÞ; takes into account the even cosine terms in

the nonlinear oscillation.

To prepare the next section, an equivalent formulation, more convenient for the numerical analysis, consists

in seeking (Q; _Q) in the form

QðtÞ ¼ aXða;fðtÞÞ;
_QðtÞ ¼ aYða;fðtÞÞ; (41)

where fðtÞ is again given by Eq. (34).

Substituting Eq. (41) into Eq. (32), using Eq. (34) we obtain a system of first-order nonlinear differential

equations in the variables f for the unknowns X;Y;O,

XfO ¼ Y, (42)

½M�YfOþ 1

a
FðaXÞ ¼ 0 (43)
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for which 2p-periodic solutions are planned. To complete the above equations a normalization condition must

be added. We use the following result: any regular, even, 2p-periodic vector function XðfÞ can always be

written XðfÞ ¼ XocðfÞ þ XecðfÞ, where Xoc (resp., Xec) stands for the odd cosine (resp., even cosine) terms in

the Fourier series of XðfÞ. Moreover, there exists one and only one even and p-periodic vector function in f,

WcðfÞ, such that XocðfÞ ¼ WcðfÞ cosf. It follows that the normalization constraint (35) can again be retained

and rewritten as

XocT ½M�Xoc ¼ cos2 f. (44)

Finally, we seek periodic solutions of Eqs. (42)–(44) such that

Xða;fÞ ¼ Xða;fþ 2pÞ ¼ Xða;�fÞ, (45)

Yða;fÞ ¼ Yða;fþ 2pÞ ¼ �Yða;�fÞ, (46)

Oða;fÞ ¼ Oða;�fÞ ¼ Oða;fþ pÞ. (47)

3.2. The general case

Return now to the general system of Eq. (32). This may include systems having damped modes or systems

with auto-oscillations. In both cases the amplitude is no longer constant but time-modulated. As in the sdof

systems (see Section 2), we must consider a supplementary first-order equation governing the amplitude

modulation.

More specifically, we focus on motion where the displacements and velocities, ðQðtÞ; _QðtÞÞ, are related to a

single pair of amplitude and phase variables, ðvðtÞ;fðtÞÞ, according to

QðtÞ ¼ vðtÞXðvðtÞ;fðtÞÞ;
_QðtÞ ¼ vðtÞYðvðtÞ;fðtÞÞ; (48)

where X and Y are n-vector functions. The amplitude and phase variables are governed by the two first-order

differential equations

_fðtÞ ¼ OðvðtÞ;fðtÞÞ;
_vðtÞ ¼ vðtÞxðvðtÞ;fðtÞÞ; fð0Þ ¼ j; vð0Þ ¼ a, (49)

where O and x are scalar functions. Numbers j (2 ½0; 2p�) and a (40) are two given constants which set the

initial conditions of the motion.

As in Section 3.1, the four functions X, Y, O and x will define a modal motion for Eq. (32), provided that they

are 2p-periodic in the phase variable f. Again, the two-dimensional invariant manifold associated with the NM

in the phase space reads

Q ¼ aXða;jÞ;
_Q ¼ aYða;jÞ; (50)

while the two first-order differential equations (49) govern the dynamics of the motion on the invariant

manifold.

The two scalar functions, O (the frequency function) and x (the (generalized) damping function), play the

same role as in the sdof case (see Section 2).

Substituting Eq. (48) into Eq. (32) and using Eq. (49) and the chain rule, yields a set of first-order nonlinear

PDEs in the two variables ðv;fÞ,
ðXþ vXvÞxþ XfO ¼ Y, (51)

½M�ðYþ vYvÞxþ ½M�YfOþ 1

v
FðvY; vXÞ ¼ 0. (52)
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The PDEs (51) and (52) are independent of time and contain the two unknown vector functions X and Y, their

partial derivatives with respect to v and f and the two unknown scalar functions O and x.

To characterize the four unknown functions X, Y, O and x, it is necessary to add two constraint scalar

equations to Eqs. (51) and (52) (normalization conditions). Due to the 2p-periodicity in the phase variable f,

the function X can always be broken up according to

X ¼ Xoc þ Xec þ Xos þ Xes,

where ð:Þoc (ð:Þec, ð:Þos, ð:Þes, respectively) denotes the odd cosine (even cosine, odd sine, even sine, respectively)

terms in the corresponding Fourier series. Moreover there exist (one and only one) even and p-periodic vector

functions Wc;Ws such that

Xocðv;fÞ ¼ Wcðv;fÞ cosf; Xosðv;fÞ ¼ Wsðv;fÞ sinf.

It follows that we can adopt the normalization condition (usually set for linear systems):

WT
c ½M�Wc þWT

s ½M�Ws ¼ 1,

WT
c ½M�Ws ¼ 0,

which can be rewritten as

sin2 fXocT ½M�Xoc þ cos2 fXosT ½M�XosT ¼ sin2 f cos2 f, (53)

XocT ½M�XosT sinf cosf ¼ 0. (54)

Finally, a NM of the system (32) is obtained by solving Eqs. (51)–(54) for the four functions X, Y, O and x,

recalling that

Xðv;fÞ ¼ Xðv;fþ 2pÞ; Yðv;fÞ ¼ Yðv;fþ 2pÞ, (55)

Oðv;fÞ ¼ Oðv;�fÞ ¼ Oðv;fþ pÞ; xðv;fÞ ¼ xðv;�fÞ ¼ xðv;fþ pÞ. (56)

If Fð _Q;QÞ ¼ �Fð� _Q;�QÞ then vXðv;fÞ takes the form

vXðv;fÞ ¼ vðWcðv;fÞ cosf�Wsðv;fÞ sinfÞ,

which can be interpreted in terms of amplitude modulation coefficient (v), eigenvectors (Wc;Ws) and frequency

(O), like for a linear system.

4. Computing the nonlinear modes

The challenge is now how to solve the PDEs (51)–(54) for the four unknown functions X, Y, O and x. These

equations have been formally established for ðv;fÞ 2 Rþ � ½0; 2p�. In the approximation procedure, the

domain over which the PDEs will be solved will be limited to ½0; vmax� � ½0; 2p�, where vmax is a positive

constant.

In the case of small oscillation responses (i.e. j v j 51), denoting by ½qF _Qð:; :Þ� and by ½qFQð:; :Þ� the Jacobian
matrix of F with respect to _Q and Q, the nonlinear system (32) can be replaced by the linearized one

½M� €QðtÞ þ ½qF _Qð0; 0Þ� _Qþ ½qFQð0; 0Þ�Q ¼ 0, (57)

which gives n linear modes. These linear modes solve the PDEs (51)–(54) by introducing into Eq. (52) the

following approximation:

FðvXðv;fÞ; vYðv;fÞÞ
v

� ½qF _Qð0; 0Þ�Yðv;fÞ þ ½qFQð0; 0Þ�Xðv;fÞ.
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Each one of these linear modes can be written

Xðv;fÞ ¼ Wc cosf�Ws sinf;

Yðv;fÞ ¼ ðxWc � OWsÞ cosf� ðxWs þ OWcÞ sinf;
Oðv;fÞ ¼ o and xðv;fÞ ¼ Z:

(58)

where the complex frequency l ¼ Zþ io (i ¼
ffiffiffiffiffiffiffi

�1
p

), solves

detð½M�l2 þ ½qF _Qð0; 0Þ�lþ ½qFQð0; 0Þ�Þ ¼ 0. (59)

The eigenvector, W ¼ Wc þ iWs, is next given by solving the two following equations:

ð½M�ðZ2 � o2Þ þ Z½qF _Qð0; 0Þ� þ ½qFQð0; 0Þ�ÞWc � ð2oZ½M� þ o½qF _Qð0; 0Þ�ÞWs ¼ 0, (60)

ð2oZ½M� þ o½qF _Qð0; 0Þ�ÞWc þ ð½M�ðZ2 � o2Þ þ Z½qF _Qð0; 0Þ� þ ½qFQð0; 0Þ�ÞWs ¼ 0 (61)

under the normalization constraints

WT
c ½M�Wc þWT

s ½M�Ws ¼ 1, (62)

WT
c ½M�Ws ¼ 0. (63)

We focus now on calculating the NMs which coincide at small values of v (i.e. v � 0) with one of the modes

of the linear system (57).

Since the unknown functions are 2p-periodic and p-periodic with respect to the variable f (see Eqs. (55) and

(56)), a Galerkin discretization procedure based on the truncated Fourier series with respect to the variable f

can be used advantageously here. The trigonometric functions are combined with the canonical polynomial

functions with respect to the variable v. Hence, the unknown functions are expanded into

Xocðv;fÞ � Xc
linðfÞ þ

P

Nv

p¼1

P

Nf

k¼0

Xc
p;2kþ1v

p cosð2k þ 1Þf;

Xecðv;fÞ �
P

Nv

p¼1

P

Nf

k¼0

Xc
p;2kv

p cos 2kf;

Xosðv;fÞ � Xs
linðfÞ þ

P

Nv

p¼1

P

Nf

k¼0

Xs
p;2kþ1v

p sinð2k þ 1Þf;

Xesðv;fÞ �
P

Nv

p¼1

P

Nf

k¼1

Xs
p;2kv

p sin 2kf;

(64)

Yocðv;fÞ � Yc
linðfÞ þ

P

Nv

p¼1

P

Nf

k¼0

Yc
p;2kþ1v

p cosð2k þ 1Þf;

Yecðv;fÞ �
P

Nv

p¼1

P

Nf

k¼0

Yc
p;2kv

p cos 2kf;

Yosðv;fÞ � Ys
linðfÞ þ

P

Nv

p¼1

P

Nf

k¼0

Ys
p;2kþ1v

p sinð2k þ 1Þf;

Yesðv;fÞ �
P

Nv

p¼1

P

Nf

k¼1

Ys
p;2kv

p sin 2kf;

(65)
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Oðv;fÞ � Olin þ
P

Nv

p¼1

P

Nf

k¼0

Op;2kv
p cos 2kf;

xðv;fÞ � xlin þ
P

Nv

p¼1

P

Nf

k¼0

xp;2kv
p cos 2kf;

(66)

where NvX1 and NfX0 denote the order of the truncated series and Xc
p;2kþ1, X

c
p;2k; . . . ; xp;2k denote the

unknown expansion coefficients which have to be determined. The vector function Xc
lin, X

s
lin, Y

c
lin and Ys

lin and

the constants Olin and xlin which set the linear mode under investigation are calculated from Eqs. (58)–(63).

Substituting Eqs. (64)–(66) into (51)–(54) and applying a Galerkin projection based on the scalar product

ðf ; gÞ ¼
Z vmax

0

Z 2p

0

f ðv;fÞgðv;fÞdvdf

and the basis functions vp cosmf, vp sinmf (in Eqs. (51) and (52)) and vp cos 2mf (in Eqs. (53) and (54)) leads

to a set of 4Nvð2Nf þ 1Þnþ 2NvNf nonlinear algebraic equations in the unknown Xc
p;2kþ1, X

c
p;2k; . . . ; xp;2k. For

fixed Nv and Nf, a Newton–Raphson method with a zero starting point has been implemented to solve these

equations.

Based on some symmetrical properties of the nonlinear function F, the number of unknowns can be

significantly reduced. More specifically, if F is a polynomial vector function with only odd degree terms, the

approximation procedure can be simplified, keeping in Eqs. (64)–(66) only terms with even degrees with

respect to the variable v and setting Xec � 0, Xes � 0, Yec � 0 and Yes � 0.

5. Examples

5.1. Linear damping and nonlinear restoring forces

Let us consider the two-dimensional mechanical system presented in Refs. [8,9]

€q1 þ c11 _q1 þ c12 _q2 þ o2
1q1 þ 0:405q31 þ 1:34q21q2 þ 1:51q1q

2
2 þ 0:349q32 ¼ 0;

€q2 þ c21 _q1 þ c22 _q2 þ o2
2q2 þ 0:448q31 þ 1:51q21q2 þ 1:05q1q

2
2 þ 4:580q32 ¼ 0

(67)

with o1 ¼ 0:689 and o2 ¼ 3:244.
Four configurations have been studied, depending on the properties of the damping terms: non-gyroscopic

and gyroscopic conservative systems, and dissipative systems with proportional and non-proportional

damping. With each configuration, the NM which coincides at small values of v with the second mode of the

underlying linear system was computed by solving Eqs. (51)–(54) over ½0; vmax� � ½0; 2p� with vmax ¼ 1:9 as

described in Section 4. Due to the symmetrical properties of the system, we have Xec � 0, Xes � 0 imposed and

only terms with even degrees with respect to the variable v have been kept in Eqs. (64)–(66). The order of

truncation was selected, based on the normalized mean square error over ½0;Tmax� defined by

r2ðTmaxÞ ¼
R Tmax

0
kQaðtÞ �QeðtÞk2 dt
R Tmax

0
kQeðtÞk2 dt

,

where Q ¼ ðq1; q2Þ. Qa denotes the modal motion given by the amplitude-phase formulae (Eq. (48)) by solving

Eqs. (49) numerically with the initial condition a ¼ vmax and j ¼ 0. Qe denotes the corresponding motion

obtained by solving the equation of motion Eq. (67) with the initial condition Qeð0Þ ¼ Qað0Þ and
_Q
eð0Þ ¼ _Q

að0Þ. The range of integration Tmax depends on the behavior of the modal motion under

investigation.

5.1.1. Non-gyroscopic conservative system

Parameter values: c11 ¼ c12 ¼ c21 ¼ c22 ¼ 0. Linear mode under consideration (see Section 4): Z ¼ 0,

o ¼ 3:244, wc ¼ ð0; 0ÞT and ws ¼ ð0; 1ÞT.
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The corresponding NM is shown in Figs. 2 (a)–(d). All the coefficients in the x-expansion (Eq. (66)) as well

as those in the Xoc-expansion (Eq. (64)) were found to be equal to zero. An X-expansion with only cosine

terms was obtained upon taking wc ¼ ð0; 1ÞT and ws ¼ ð0; 0ÞT. This result is in agreement with the amplitude-

phase approach performed in Ref. [9], where the functions x and X os were both taken to be equal to zero.

Since function x is equal to zero, the modal motions are periodic and the period versus initial amplitude a (see

Eq. (38)) is plotted in Fig. 2(d). The nonlinearity affects not only the dynamical properties of the mode (see the

behavior of the period TðaÞ with respect to the amplitude level a) but also the geometrical properties of the

mode (see the behavior of X with respect to the amplitude level v). The associated invariant manifold is

therefore not a linear subspace (see Fig. 6(a)).

The normalized mean square errors computed with Tmax ¼ TðvmaxÞ (given by Eq. (38)) with different values

of Nv and Nf are given in Table 2. Orders Nv ¼ 4 and Nf ¼ 2, give sufficiently accurate approximations over

½0; 2p� � ½0; vmax�.

5.1.2. Gyroscopic conservative system

Parameter values: c11 ¼ c22 ¼ 0, c12 ¼ �c21 ¼ 1=3. Linear mode under consideration: Z ¼ 0, o ¼ 3:262,
wc ¼ ð�0:106; 0ÞT and ws ¼ ð0; 0:994ÞT.

The corresponding NM is shown in Figs. 3 (a)–(d). The first component of X shows the gyroscopic effect.

The modal motions are again periodic (see Fig. 6(a)). Contrary to the non-gyroscopic conservative case, the
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Fig. 2. Nonlinear mode which coincides for small values of v with the second mode of the underlying linear system of the non-gyroscopic

conservative system: (a) X 1 versus v and f, (b) X 2 versus v and f, (c) O versus v and f and (d) period versus a.
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coefficients in the x-expansion (Eq. (66)) were not found to be both equal to zero, but to have small values. It

was checked that imposing x � 0 yields the same result. The normalized mean square error was rðTðvmaxÞÞ ¼
0:00433 with Nv ¼ 4 and Nf ¼ 2.

5.1.3. Dissipative system with proportional damping

Parameter values: c12 ¼ c21 ¼ 0, cii ¼ 2toi with t ¼ 0:2. Linear mode under consideration: Z ¼ �0:649,
o ¼ 3:178, wc ¼ ð0; 0ÞT and ws ¼ ð0;�1ÞT.

The corresponding NM is shown in Figs. 4(a)–(d). As was to be expected, the damping function x was found

to differ significantly from zero, but kept a constant (negative) sign starting at x ¼ �0:649 at v ¼ 0 and

increasing slowly with v. The corresponding invariant manifold, including the modal motion with initial
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Table 2

Normalized mean square error

Nv ¼ 2 Nv ¼ 2 Nv ¼ 2 Nv ¼ 4 Nv ¼ 4 Nv ¼ 4

Nf ¼ 0 Nf ¼ 1 Nf ¼ 2 Nf ¼ 0 Nf ¼ 1 Nf ¼ 2

r 0.10277 0.04051 0.04183 0.13086 0.00651 0.00473
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conditions vð0Þ ¼ vmax and fð0Þ ¼ 0, is given in Fig. 6(c). The motion decreases slowly up to the equilibrium

point. The normalized mean square error was computed with Tmax ¼ 10TðvmaxÞ, yielding rðTmaxÞ ¼ 0:00962
with Nv ¼ 4 and Nf ¼ 2.

5.1.4. Dissipative system with non-proportional damping

Parameter values: c12 ¼ c21 ¼ 0:1, cii ¼ 2toi with t ¼ 0:2. Linear mode under consideration: Z ¼ �0:649,
o ¼ 3:177, wc ¼ ð�0:0324; 0:0001ÞT and ws ¼ ð0:0043; 0:9994ÞT.

The corresponding NM is shown in Figs. 5 (a)–(d). The behavior of the frequency and damping functions

was found to be similar to that obtained in the proportional damping case, except for the first component of

the vector X. Note that with large v, the difference is smaller but still persists. The corresponding invariant

manifold, including the modal motion with initial conditions vð0Þ ¼ vmax and fð0Þ ¼ 0, is given in Fig. 6(c).

Again, the motion decreases slowly up to the equilibrium point.

The normalized mean square error was computed with Tmax ¼ 10TðvmaxÞ yielding rðTmaxÞ ¼ 0:0103 with

Nv ¼ 4 and Nf ¼ 2.

The invariant manifolds were plotted in Figs. 6(a)–(d) in the phase subspace ðQ1;Q2; _Q2Þ using the same

viewpoint and the same plot ranges. For each configuration, the invariant manifold of the linearized system is

also shown on the faces of the bounding box. For conservative systems, the modal motions are periodic orbits.
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Each periodic orbit is characterized solely by its amplitude, and the invariant manifold can be said to be the

union of all these periodic orbits. These properties can be used to characterize and compute a NM (see Ref.

[12]). In the case of dissipative systems, the modal motions are orbits decreasing slowly up to the equilibrium

point. Here, again the invariant manifold can be said to be the union of orbits with initial conditions

vð0Þ ¼ vmax and fð0Þ ¼ j 2 ½0; 2p�.

5.2. A Van der Pol system

Let us consider the two coupled van der Pol equations

€q1 þ c11 _q1 þ c12 _q2 � �1ð1� q21 � d1q
2
2Þ _q1 þ q1 ¼ 0;

€q2 þ c21 _q1 þ c22 _q2 � �2ð1� d2q
2
1 � q22Þ _q2 þ 4q2 ¼ 0

(68)

with parameter values �1 ¼ �2 ¼ 0:5, d1 ¼ d2 ¼ 1, c11 ¼ c22 ¼ 0 and c12 ¼ �c21 ¼ 0:8.
Nonlinear motions were computed with vmax ¼ 2, Nv ¼ 4 and Nf ¼ 2, starting with the modes of the

linearized system:

	 Mode 1: Z ¼ 0:21, o ¼ 0:89, wc ¼ ð�0:011; 0:220ÞT, ws ¼ ð�0:974;�0:049ÞT,
	 Mode 2: Z ¼ 0:29, o ¼ 2:17, wc ¼ ð0:046; 0:907ÞT, ws ¼ ð0:417;�0:021ÞT.
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Fig. 7 shows the computed frequency and damping functions. At v ¼ 0, these functions coincide with the

modes of the linearized system. Both frequency functions increase with v, reflecting the hardness behavior of

the model in the two NMs. Both damping functions decrease with v, beginning with positive values and taking

negative values at high values of v. The solutions of Eq. (68) on the invariant manifolds can therefore be

expected to be periodic.
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The dynamic behavior of the modal motions are governed by the two first-order differential equations (49).

A periodic motion may occur on the invariant manifold if there exits a periodic solution to Eq. (23). The

existence of a periodic solution is deduced from the existence of an equilibrium point in the averaged equation

(using the average principle in the context of perturbation theory, see Ref. [11])

dv

df
¼ vhtðvÞi; where htð:Þi ¼ 1

2p

Z 2p

0

xð:;fÞ
Oð:;fÞ df. (69)

Mean damping rates hti versus v are plotted in Fig. 8 for the two NMs. Eq. (69) takes the equilibrium point

v�1 ¼ 1:59 in the first NM and v�2 ¼ 1:83 in the second NM. Each equilibrium point characterizes an

assymptotically stable (d=dvhtiðv�i Þo0) limit cycle on the associated invariant manifold. The approximations

can be improved by solving Eq. (23). The harmonic balance method yields the following truncated expansion:

v�1ðfÞ ¼ 1:5957� 0:0059 cos 2f� 0:0010 cos 4f� 0:0430 sin 2fþ 0:0004 sin 4f,

v�2ðfÞ ¼ 1:8657þ 0:0461 cos 2f� 0:01761 cos 4fþ 0:2146 sinf� 0:0043 sin 4f.

giving the limit cycle approximations (i ¼ 1; 2)

QðtÞ
_QðtÞ

 !

i

¼ v�i ðfðtÞÞ
Xiðv�i ðfðtÞÞ;fðtÞÞ
Yiðv�i ðfðtÞ;fðtÞÞ

!

with _f ¼ Oiðv�i ðfÞ;fÞ; fð0Þ ¼ j. (70)
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and (b) and (d) nonlinear mode 2.
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The last question which now arises is whether or not the limit cycles are stable in the phase space. To answer

this question Floquet’s theory (see Ref. [11]) is applied. Rewriting Eq. (68) in the first-order autonomous

differential system

d

dt
ZðtÞ ¼ GðZðtÞÞ with Z ¼ ðQT; _Q

TÞT,

the stability of the periodic solutions (70) can be deduced from the eigenvalues of the monodromy matrix

associated with the fundamental matrix solution of the 2p-periodic variational linear differential system (see

Ref. [11, p. 119])

d

df
DZðfÞ ¼ 1

Oiðv�i ðfÞ;fÞ
½qGZðZiðfÞÞ�DZðfÞ. (71)

The monodromy matrix is computed over one period, using the four canonical basis vectors as initial

conditions successively. The computations show that the periodic orbit (approximated by v�1) associated with

the first NM is stable on its invariant manifold and unstable in the phase space (two complex conjugate

multipliers are outside the unit circle), whereas the periodic orbit (approximated by v�2) associated with the
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Fig. 8. Evolution of hti versus v for the nonlinear modes 1 (continuous line) and 2 (dashed line).
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Fig. 9. Illustration of the (a) local and (b) global stability of the limit cycle associated with the second nonlinear mode: limit cycle given by

v�2 (bold continuous lines), motions obtained by solving Eq. (68) with initial conditions inside the invariant manifold (a) (continuous line)

and outside the invariant manifold (b) (continuous line).
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second NM is stable on its invariant manifold, as well as in the phase space (one multiplier lies on the unit

circle and all the others are located inside the unit circle). The local and global stability are illustrated in Fig. 9

by solving numerically Eqs. (68). Motions are plotted with initial conditions (near the periodic orbit) on the

invariant manifold, Fig. 9(a), and with initial conditions (near the periodic orbit) in the phase space outside the

invariant manifold, Fig. 9(b). The two motions are attracted by the same periodic orbit approximated by v�2.

6. Conclusion

An amplitude-phase transformation procedure is described here for characterizing NMs (damped motion,

periodic orbits, limit cycles, etc.) in the framework of invariant manifold theory. This system of formulation is

suitable for use with a Galerkin-based computational procedure. Bifurcation analysis can be performed, and

the existence and stability of periodic orbits on the associated invariant manifold can be studied from the two

first-order coupled differential equations governing the amplitude and phase variables which describe the

dynamics. If we look at the (generalized) damping rate function, it can be concluded that in some cases,

periodic solutions may exist for the amplitude equation, reflecting the presence of stable or unstable ‘‘limit

cycles’’ on the invariant manifold. Examples given here involve gyroscopic and/or damped nonlinear system

equations and systems with auto-oscillations. It is worth noting that the present approach differs significantly

from that described in Ref. [8] where, with an aim of improving the numerical procedure, an amplitude-phase

transformation based on the (constant) frequency of the linearized system is used.
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