P. -V Koseleff 
email: koseleff@math.jussieu.fr
  
D Pecker 
email: pecker@math.jussieu.fr
  
On polynomial Torus Knots

Keywords: Knot theory, polynomial curves, torus knots, parametrized space curve Mathematics Subject Classification 2000: 14H50, 12D10, 26C10, 57M25 P. -V. Koseleff, D. Pecker, On polynomial Torus Knots

We show that no torus knot of type (2, n), n > 3 odd, can be obtained from a polynomial embedding t → (f (t), g(t), h(t)) where (deg(f ), deg(g)) ≤ (3, n + 1). Eventually, we give explicit examples with minimal lexicographic degree.

Introduction

The study of non compact knots began with Vassiliev [Va]. He proved that any non-compact knot type can be obtained from a polynomial embedding t → (f (t), g(t), h(t)), t ∈ IR. The proof uses Weierstrass approximation theorem on a compact interval, the degrees of the polynomials may be quite large, and the plane projections of the polynomial knots quite complicated.

Independently, Shastri [Sh] gave a detailed proof of this theorem, he also gave simple polynomial parametrizations of the trefoil and of the figure eight knot.

This is what motivated A. Ranjan and Rama Shukla [RS] to find small degree parametrizations of the simplest knots, the torus knots of type (2, n), n odd, denoted by K n . They proved that these knots can be attained from polynomials of degrees (3, 2n -2, 2n -1). In particular, they obtain a parametrization of the trefoil K 3 analogous to Shastri's one. They also asked the natural question which is to find the minimal degrees of the polynomials representing a general torus knot of a given type (there is an analogous question in Vassiliev's paper [Va]).

The number of crossings of a plane projection of K n is at least n (Bankwitz theorem, see [Re]). It is not difficult to see, using Bézout theorem, that this plane curve cannot be parametrized by polynomials of degrees smaller than (3, n + 1).

Naturally, Rama Mishra ([Mi]) asked whether it was possible to parametrize the knot K n by polynomials of degrees (3, n + 1, m) when n ≡ 1, or 0 mod 3.

In this paper, we shall prove the following result

Theorem. If n = 3 is odd, the torus knot K n cannot be represented by polynomials of degrees

(3, n + 1, m).
Our method is based on the fact that all plane projections of K n with the minimal number n of crossings have essentially the same diagram. This is a consequence of the now solved classical Tait's conjectures [Mu, Ka, Pr, MT]. This allows us to transform our problem into a problem of real polynomial algebra.

As a conclusion, we give explicit parametrizations of K 3 , K 5 and K 7 . By our result, they are of minimal degrees. We also give an explicit parametrization of K 9 with a plane projection possessing the minimal number of crossing points. This embedding is of smaller degree than those already known.

The principal result

If n is odd, the torus knot K n of type (2, n) is the boundary of a Moebius band twisted n times (see [Re, Ka, St]). The recently proved Tait's conjectures allow us to characterize plane projections Lemma 1 Let C be a plane curve with n crossings parametrized by C(t) = (x(t), y(t)). If C is the projection of a knot K n then there exist real numbers

s 1 < • • • < s n < t 1 < • • • < t n , such that C(s i ) = C(t i ).
Proof. Let C be a plane projection of a knot of type K n with the minimal number n of crossings.

Using the Murasugi's theorem B ( [Mu]) which says that a minimal projection of a prime alternating knot is alternating, we see that C is alternating.

Then the Tait's flyping conjecture, proved by Menasco and Thistlethwaite ([MT, Pr]), asserts that C is related to the standard diagram of K n by a sequence of flypes. Let us recall that a flype is a transformation most clearly described by the following picture. The standard diagram S 0 of K n has the property (cf [Re]) that there exist real numbers s

1 < • • • < s n < t 1 < • • • < t n such that S 0 (s i ) = S 0 (t i ). It is alternating.
Let S be a diagram with real parameters After the flype on B, we have new parameters corresponding to the crossing points satisfying

s 1 < • • • < s n < t 1 < • • • < t n such that S(s i ) = S(t i ), and let us perform a flype of a part B of S For any (a, b, c) ∈ A × B × C we have s a < s b < s < s c < t a < t b < t < t c . s t A B C A B C s ′ t ′
s ′ a < s ′ < s ′ b < s ′ c < t ′ a < t ′ < t ′ b < t ′ c .
The transformed diagram S ′ has the same property: there exist real parameters

s 1 < • • • < s n < t 1 < • • • < t n , such that S ′ (s i ) = S ′ (t i ).
So then, after any sequence of flypes, the transformed diagram will have the same property. P

In this paper we shall consider polynomial knots, that is to say, polynomial embeddings IR -→ IR 3 , t → (x(t), y(t), z(t)). Polynomial knots are non-compact subsets of IR 3 . The closure of a polynomial knot in the one point compactification S 3 of the space IR 3 is an ordinary knot (see [Va, Sh, RS] and figures at the end).

Lemma 2 Let C be a plane polynomial curve with n crossings parametrized by

C(t) = (x(t), y(t)). Suppose that C is the projection of K n and deg x(t) ≤ deg y(t). Then we have deg x(t) ≥ 3. If deg x(t) = 3, then deg y(t) ≥ n + 1.
Proof. x(t) must be non-monotonic, so deg x(t) ≥ 2. Suppose that x(t) is of degree 2. Then x(t i ) = x(s i ) implies that t i + s i is constant, and so the parameter values corresponding to the crossing points are ordered as

s 1 < • • • < s n < t n < • • • < t 1 .
We have a contradiction according to lemma 1 Suppose now that deg x(t) = 3. The crossing points of the curve C correspond to parameters (s, t), s = t, that are common points of the curves of degrees 2 and deg y(t) -1:

x(t) -x(s) t -s = 0, y(t) -y(s) t -s = 0.
By Bézout theorem ( [Fi]), the number of such points are at most 2 × (deg y(t) -1). (s, t) and (t, s) are distinct points and correspond to the same crossing point. So, the curve C has at most deg y(t) -1 crossing points, and this implies that deg y(t) ≥ n + 1. P

Proof of the main result

Our proof makes use of Chebyshev (monic) polynomials.

Chebyshev Polynomials

Definition 1 If t = 2 cos θ, let T n (t) = 2 cos(nθ) and V n (t) = sin((n + 1)θ) sin θ .

Remark 1 T n and V n are both monic and have degree n. We have

V 0 = 1, V 1 = t, V n+1 = t V n -V n-1 . (1) 
We have also

T 0 = 2, T 1 = t, T n+1 = t T n -T n-1 . For n ≥ 2, let V n = t n + a n t n-2 + b n t n-4 + • • • . Using recurrence formula 1, we get a n+1 = a n -1, b n+1 = b n -a n-1
so by induction,

V n = t n -(n -1)t n-2 + 1 2 (n -2)(n -3)t n-4 + • • • . ( 2 
)
We shall also need the following lemmas which will be proved in the next paragraph.

Lemma A. Let s = t be real numbers such that T 3 (s) = T 3 (t). For any integer k, we have

T k (t) -T k (s) t -s = 2 √ 3 sin kπ 3 V k-1 (s + t). Lemma B. Let n ≥ 3 be an integer. Let s 1 < s 2 < • • • < s n and t 1 < • • • < t n be real numbers such that T 3 (s i ) = T 3 (t i ). Let u i = t i + s i . We have n i=1 u 2 i ≤ n + 4, n i=1 u 4 i ≤ n + 22.

Proof of the theorem

Proof. We shall prove this result by reducing it to a contradiction. Suppose the plane curve C parametrized by x = P (t), y = Q(t) where deg

P = 3, deg Q = n + 1 is a plane projection of K n .
By translation on t, one can suppose that P (t) = t 3 -αt+β. If the polynomial P was monotonic, C would have no crossings, which is absurd. Therefore α > 0. Dividing t by ρ = √ 3/ √ α, one has P (t) = ρ 3 (t 3 -3t) + µ. By translating the origin and scaling x, one can now suppose that

P (t) = t 3 -3t = T 3 (t).
By translating the origin and scaling y, we can also suppose that Q(t) is monic and write

P (t) = T 3 (t), Q(t) = T n+1 (t) + a n T n (t) + • • • + a 1 T 1 (t).
By Bézout theorem, the curve C has at most (3 -1)(n + 1 -1)/2 = n double points. As it has at least n crossings, we see that it has exactly n crossings and therefore is a minimal crossing diagram of K n . According to the lemma 1, there exist real numbers

s 1 < • • • < s n , t 1 < • • • < t n , s i < t i such that P (s i ) = P (t i ), Q(s i ) = Q(t i ). Let u i = t i + s i , 1 ≤ i ≤ n. We have Q(t i ) -Q(s i ) t i -s i = T n+1 (t i ) -T n+1 (s i ) t i -s i + n k=1 a k T k (t i ) -T k (s i ) t i -s i .
so by lemma A, u 1 , . . . , u n are the distinct roots of the polynomial

R(u) = ε n+1 V n (u) + n k=1 a k ε k V k-1 (u), (3) 
where

ε k = 2 √ 3 sin kπ 3 . Remark 2 Note that ε k = V k-1 (1) is the 6-period sequence ε 0 = 0, ε 1 = 1, ε 2 = 1, 0, -1, -1, . . ..
We have to consider several cases.

£ Case n ≡ 2 mod 3. ε n+1 = 0 and R(u) has degree at most n -1. This is a contradiction.

£ Case n ≡ 1 mod 3. In this case, n ≡ 1 mod 6 and ε n+1 = ε n = 1, ε n-1 = 0. Thus R(u) can be written as

R(u) = V n (u) + a n V n-1 (u) -a n-2 V n-3 (u) -• • • + a 2 V 1 (u) + a 1 = u n + a n u n-1 -(n -1)u n-2 + • • • .
using equation 2. Therefore we get

1≤i≤n u i = -a n , 1≤i<j≤n u i u j = -(n -1),
and then

n i=1 u 2 i = n i=1 u i 2 -2 1≤i<j≤n u i u j = a 2 n + 2(n -1) ≥ 2(n -1).
According to lemma B we also have n i=1 u 2 i ≤ n + 4, we get a contradiction for n > 6. £ Case n ≡ 0 mod 3. In this last case we have n = 3 mod 6, so

ε n+1 = -1, ε n = 0 and ε n-1 = 1, so -R(u) = V n (u) -a n-1 V n-2 (u) -a n-2 V n-3 (u) + • • • -a 2 V 1 (u) -a 1 . Let σ i be the coefficients of -R(u) = u n + n k=1 (-1) k σ k u n-k .
From the equation 2, we see that

σ 1 = 0, σ 2 = -(a n-1 + n -1), σ 4 = (n -3) a n-1 + (n -2)(n -3) 2 .
Let S k be the Newton sums n i=1 u k i of the roots of the polynomial R. Using the classical Newton formulas ( [FS]), we obtain

S 1 = σ 1 = 0, S 2 = σ 2 1 -2σ 2 = -2σ 2 , S 4 = 2σ 2 2 -4σ 4 , and then S 4 = 2(a n-1 + 2) 2 + 6n -18 ≥ 6n -18.
By the lemma B, we deduce that 22 + n ≥ 6n -18, i.e. n ≤ 8 so n = 3. P

Proof of lemmas A and B

We shall use the following lemma Lemma 3 (Lissajous ellipse) Let s = t be complex numbers such that

T 3 (t) = T 3 (s).
There exists a complex number α such that s = 2 cos(α + π/3), t = 2 cos(α -π/3).

Furthermore, α is real if and only if s and t are both real, and then t > s if and only if sin α > 0.

Proof. We have

T 3 (t) -T 3 (s) t -s = t 2 + s 2 + st -3. (4) Then, if T 3 (t) = T 3 (s), t = s, we get 3 2 (t + s) 2 + 1 2 (t -s) 2 = 2(t 2 + s 2 + st) = 6. -2 -1 1 2 -2 -1 1 2 (s, t) (s, 2 cos α) That means t + s 2 2 + t -s 2 √ 3 2 = 1.
Then there exists a complex number α such that

cos α = t + s 2 , sin α = t -s 2 √ 3 , that is t = 2 cos(α -π/3), s = 2 cos(α + π/3).
α is real if and only if cos α and sin α are both real that is to say, iff s and t are real. In this case: t > s ⇔ sin α > 0. P

In order to prove lemma B, we shall use the following lemma which describes the geometrical configuration. Let us denote s(α) = 2 cos(α + π/3) and t(α) = 2 cos(α -π/3).

Lemma 4 Let α, α ′ ∈ [0, π] be such that s(α) < s(α ′ ), and t(α) < t(α ′ ). Then α > α ′ and 2π 3 > α + α ′ 2 > π 3 . Proof. We have 2 cos α = s(α) + t(α) < s(α ′ ) + t(α ′ ) = 2 cos α ′ so α > α ′ . t(α ′ ) -t(α) = 4 sin( α + α ′ 2 - π 3 ) • sin( α -α ′ 2 ) > 0, s(α ′ ) -s(α) = 4 sin( α + α ′ 2 + π 3 ) • sin( α -α ′ 2 ) > 0. From α > α ′ we get 0 < α + α ′ 2 - π 3 and α + α ′ 2 + π 3 < π, that is to say π 3 < α + α ′ 2 < 2π 3 . P Proof of lemma B. Let s 1 < • • • < s n and t 1 < • • • < t n be such that T 3 (s i ) = T 3 (t i ).
Using lemmas 3 and 4 there are

α 1 > • • • > α n ∈ ]0, π[ such that s i = s(α i ), t i = t(α i ) and we have 2π 3 > α 1 + α 2 2 > α 2 > • • • > α n-1 > α n-1 + α n 2 > π 3 .
At least two of the α i 's lie in the intervals ]0, π/2] or [π/2, π[. We have only two cases to consider:

π > α 1 > α 2 ≥ π 2 , or π 2 ≥ α n-1 > α n > 0.
On the other hand, we get the equality cos 2 x + cos 2 y = 1 -cos 2 (x + y) + 2 cos x cos y cos(x + y).

(5)

£ Case 1. π 2 ≥ α n-1 > α n > 0.
We get cos α n ≥ 0, cos α n-1 ≥ 0 and cos(α n-1 + α n ) < -1 2 so eq. 5 becomes

cos 2 α n-1 + cos 2 α n ≤ 1 -cos 2 (α n-1 + α n ) ≤ 3 4 and n i=1 cos 2 α i = cos 2 α 1 + n-2 i=2 cos 2 α i + (cos 2 α n-1 + cos 2 α n ) ≤ 1 + (n -3) • 1 4 + 3 4 = 1 4 (n + 4),
that is

S 2 = n i=1 u 2 i = n i=1 (2 cos α i ) 2 ≤ n + 4. £ Case 2. π > α 1 > α 2 ≥ π 2 .
We get cos α 1 ≤ 0, cos α 2 ≤ 0 and cos(α 1 + α 2 ) < -1 2 so eq. 5 becomes

cos 2 α 1 + cos 2 α 2 ≤ 1 -cos 2 (α 1 + α 2 ) ≤ 3 4
and similarly, we get

S 2 = n i=1 (2 cos α i ) 2 ≤ n + 4.
Analogously, we get cos 4 x + cos 4 y ≤ (cos 2 x + cos 2 y) 2 , and we deduce: Let us consider the curve of degree (3, 7, 8):

S 4 = n i=1 (2 cos α i ) 4 ≤ n + 22. bottom view of K 3 face view of K 3
x = T 3 (t), y = T 8 (t) -2 T 6 (t) + 2.189 T 4 (t) -2.170 T 2 (t), z = T 7 (t) -0.56 T 5 (t) -0.01348 T 1 (t).
The curve (x(t), y(t)) has exactly 5 double points when the projection (x(t), z(t)) has exactly 6. Note here that deg z(t) < deg y(t). In conclusion we have found a curve of degree (3, 7, 8). Using bottom view face view Figure 5: Knot K 5 our theorem, we see that this curve has minimal degree. A. Ranjan and R. Mishra showed the existence of such an example ( [RS, Mi]).

Parametrization of K 7

We choose The values of the parameters corresponding to the double points are obtained as intersection points between the ellipse t 2 + s 2 + st -3 = 0 and the curve of degree 9:

x = T 3 (t) , y = T 10 (t
(y(t) -y(s))/(t -s) = 0

The curve (x(t), y(t)) has exactly 7 double points corresponding to cos(α) = {±1/2, ±3/10, ±2/10, 0}.

In conclusion we have found a curve of degree (3,10,11). Using our theorem, this curve has minimal degree.

Parametrization of K 9

We choose polynomials of degree (3,13,14).

x = T 3 (t) , y = T 14 (t) -4.516 T 12 (t) + 12.16 T 10 (t) -24.46 T 8 (t) + 39.92 T 6 (t) -55.30 T 4 (t) + 66.60 T 2 (t) , z = T 13 (t) -2.389 T 11 (t) -5.161 T 7 (t) + 5.161 T 5 (t) + 1.397 T 1 (t) .

The curve (x(t), y(t)) has exactly 9 double points corresponding to cos(α) = {±1/2, ±3/10, ±2/10, ±1/10, 0}. One can prove that it is minimal under the assumption that the projection (x(t), y(t)) has exactly 9 double points.

Conclusion

We have found minimal degree polynomial curves for torus knots K n , n = 3, 5, 7. For degree 9, one can prove that it is minimal under the assumption that the projection (x(t), y(t)) has exactly 9 double points. We have similar constructions for higher degrees.
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 1 Figure 1: K n , n = 3, 5, 7. of K n with the minimal number of crossings.
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  Figure 2: A flype
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 3 Figure 3: Flype on the part B
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 4 Figure 4: The trefoil knot K 3
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  Figure 6: Knot K 7

Acknowledgments

We would like to thank Julien Marché for fruitful discussions on knot theory.

P

Proof of lemma A. Let s < t be real numbers such that T 3 (s) = T 3 (t). According to the ellipse lemma 3, there exists a real number α such that t = 2 cos(α -π/3), s = 2 cos(α + π/3).

We have s + t = 2 cos α and t -s = 4 sin π 3 sin α, so

P 4 Parametrized models of K 3 , K 5 , K 7 and K 9

We get parametrizations of K n : C = (x(t), y(t), z(t)), with n crossings obtained for parameter values satisfying the hypothesis of lemma 1. According to lemma A, we choose n distinct points

We then choose y(t) = Q 1 (t) and z(t) = Q 2 (t). We also add some linear combinations of T 6i efficiently. We then obtain a knot whose projection is alternating, when R 1 has no more roots in [-2, 2]. As we have chosen symmetric u i 's, all of our curves are symmetric with respect to the y-axis.

Parametrization of K 3

We can parametrize K 3 by x = T 3 (t), y = T 4 (t), z = T 5 (t). It is a Lissajous space curve (compare [Sh]). The plane curve (T 3 (t), T 4 (t)) has 3 crossing points. The plane curve (T 3 (t), T 5 (t)) has 4 crossing points corresponding to parameters (s i , t i ) with

so there do not exist real numbers s 1 < s 2 < s 3 , and

This example shows that our method cannot be generalized when the projections of K n have at least n + 1 crossing points.
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Zoom on the bottom view