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Abstract

We show that no torus knot of type (2,2n+1) can be obtained from a polynomial embedding
t— (f(t),g(t),h(t)) where (deg(f),deg(g)) < (3,2n+ 2). Eventually, we give explicit examples
with minimal lexicographic degree.
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1 Introduction

The study of non compact knots began with Vassiliev [Vd]. He proved that any non-compact knot
type can be obtained from by a polynomial embedding ¢ — (f(t),g(t),h(t)),t € IR. The proof uses
Weierstrass approximation theorem on a compact interval, the degrees of the polynomials may be
quite large, and the plane projections of the polynomial knots quite complicated.

Independently, Shastri [SH] gave a detailed proof of this theorem, he also gave simple polynomial
parametrizations of the trefoil and of the figure eight knot.

This is what motivated A. Ranjan and Rama Shukla [RY] to find small degree parametrizations
of the simplest knots, the torus knots of type (2,n),n odd, denoted by K,,. They proved that these
knots can be attained from polynomials of degrees (3,2n — 2,2n — 1). In particular, they obtain a
parametrization of the trefoil K3 analogous to Shastri’s one.

As the number of crossings of a plane projection of K, is at least n ([Rd)]), it is easy to see,
using Bézout’s theorem, that this plane curve cannot be parametrized by polynomials of degrees
less than (3,n + 1).

Naturally, Rama Mishra ([Mi]) asked whether it was possible to parametrize the knot K, by
polynomials of degrees (3,n + 1, m) when n = 1, or 0] mod 3.

In this paper, we give a negative answer to this question for any n # 3.

As a conclusion, we give explicit parametrizations of optimal degrees of K3, K5 and K7. We
also give parametrizatios of Ky with a plane projection possessing the minimal number of crossing
points. These embeddings are of smaller degree than those already known.

Our method is based on the fact that all plane projections of K,, with the minimal number n
of crossings have essentially the same diagram. This is a consequence of the now solved classical
Tait’s conjectures M, [Kd, [P, MT]. This allows us to transform our problem into a problem of
real polynomial algebra.

Unfortunately, our method cannot be generalized if there is no plane projection with n crossings
(see the trefoil example, fig. ff)



2 The principal result

If n is odd, the torus knot of type (2,n) noted K,, is the boundary of a Moebius band twisted n

times ([Rd, Kd, B1]).

Figure 1: K,,, n=3,5,7.

A theorem of Bankwitz (1930) says that the number of crossings of a plane projection of K, is at
least n (see [Rd]). In this paper we shall consider polynomial knots, that is polynomial embeddings
IR — IR?, ¢+ (z(t),y(t), 2(t)). The closure of a polynomial knot in the one point compactification
S3 of the space IR? is an ordinary knot (see [Va, Bll, RS and figures at the end).

Lemma 1 Let C be a plane polynomial curve with n crossings parametrized by C(t) = (x(t),y(t)).
Suppose C is the projection of a non trivial knot, and deg z:(t) < degy(t). Then we have deg z(t) > 3.
If deg x(t) = 3, then degy(t) > n+ 1.

Proof. x(t) must be non monotonic, so degx(t) > 2. Suppose that z(t) is of degree 2. Then
x(t;) = x(s;) implies that t; + s; is constant, and so the parameter values corresponding to the
crossing points are ordered as

S < e < Sy < by < e <ty

Using n Reidemeister’s moves of type I ([Rd, [Kd]), we see that C can be reduced to a trivial diagram,
a contradiction.

Suppose now that deg z(t) = 3, then by Bézout’s theorem ([[Fj]), the curve C has at most deg y(t)—1
crossing points, and this implies that degy(t) > n + 1. O

The recently proved Tait’s conjectures allow us to characterize plane projections of K,, with the
minimal number of crossings.

Lemma 2 Let C be a plane curve with n crossings parametrized by C(t) = (x(t),y(t)). Then C is
the projection of a knot K, if and only if there exist real numbers s1 < ... < s, <t1...<tn, such
that C(SZ) = C(tl)

Proof. Let C be a plane projection of a knot of type K, with the minimal number n of crossings.
Using the Murasugi’s theorem B ([M]) which says that a minimal projection of a prime alternating
knot is alternating, we see that C is alternating.

Then the Tait’s flyping conjecture, proved by Menasco and Thistlethwaite ([MT], P1]) asserts
that C is related to the standard diagram of K, by a sequence of flypes. Let us recall that a flype
is a transformation most clearly described by the following picture.

The standard diagram S of K,, has the property that there exist real numbers s; < ... < s, <11 <
... < ty, such that S(s;) = S(t;). Now, let us we perform a flype on a knot diagram having this
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Figure 2: A flype

property. We see that, for any possible orientation of this diagram, the transformed diagram has
the same property. O

In this paper, we shall prove the following result

Theorem. Ifn # 3 is odd, the torus knot K, cannot be represented by polynomials of degrees
(3,n 4+ 1,m).
3 Proof of the main result

Our proof makes use of Chebyshev (unitary) polynomials:

3.1 Chebyshev Polynomials

sin((n 4+ 1)0) .

Definition 1 Ift = 2cos @, let T,,(t) = 2cos(nf) and V,,(t) = -~
sin

Remark 1 T,, and V,, are both monic and have degree n. We have
Vo) =1, Vi(t)=t, Vup1(t) =tVyu(t) — Via—1(t).

We have also
To=2, Tv=t, Th1(t)=tT,(t) —Th-1(t).

Furthermore Ts(t) =t — 3t and

Vo) =t" —(n— 1)t" 2+ ~(n—2)(n —3)t" 4 — ... (1)

DN | =

We shall also need the following lemmas which will be proved in the next paragraph.

Lemma A. Let s # t be real numbers such that Ts(s) = T3(t). For any integer k, we have

Ty (t) — Ti(s) 2 . km
v Z v — ___Q - _ t).
P— \/gsm 3 Vi—1(s +1)

Lemma B. Let n > 3 be an integer.
Let s1 < s9 <+ < 8p and t; < -+ < ty, be real numbers such that Ts(s;) = Ts(t;). Let u; = t; + s;.
We have

n n
Zu?<n+4, Zuf‘<n—|—22. (2)
i=1 i=1



3.2 Proof of the theorem

Proof. We shall prove this result by reducing it to a contradiction. Suppose the plane curve C
parametrized by © = P(t), y = Q(t) where deg P = 3, deg Q = n+1 is a plane projection of K. If
the polynomial P was monotonic, C would have no crossings, which is absurd. We can also suppose
that Q(¢) is monic. Therefore, we can suppose that

P(t) = T3(t)7 Q(t) = Tn—l—l(t) + anTn(t) +---+ alTl(t) + ag.

By Bézout’s theorem, the curve C has at most (3 —1)(n+1—1)/2 = n double points. As it has at
least n crossings, we see that it has exactly n crossings and therefore is a minimal crossing diagram

of K,. According to the lemma , there exist real numbers s; < --- < 8, t1 < -+ < tp, 8 <
such that P(s;) = P(t;), Q(s;) = Q(t;). Let u; =t; + s;, 1 <i <n. We have

y(ts) —y(si)  Tagi(ts) — Tug1(s:) n Zn: a Ti(t:) — Tk(sz‘).

tl' — S; ti — S; s tl' — S;
so by lemma [}, uy,...,u, are the roots of the polynomial
—1
2 . (n+D)m i 2 kr
R(u) = —=sin ————— V,(u) + ap——=sin — Vi (u).
()= 5 () + i g Vi

We have to consider several cases.
Case: n =2] mod 3]. R(u) has degree at most n — 1. This is a contradiction.
Case: n = 1] mod 3]. In this case the polynomial R(u) can be written
R(u) = Vp(u)+an—1Vp—1(u) — an—3Vp—3(u) — - +ag
U 4 ™t — (0 — Du" 4

Z U = —Ap_1, Z uu; = —(n — 1),

1<i<n 1<i<j<j

Therefore we get

and then )
n n
Zu? = (Zul> - QZUW]' =a? [ +2(n—1)>2(n—-1).
i=1 i=1 i<j
According to lemma B we also have ), u? < n+ 4, we get a contradiction for n > 6.
Case: n =0[ mod 3|. In this last case we have
R(u) = Vn(u) - an72Vn72(u) - an73Vn73(u) +e

Les us denote Sy = Y i, uf the Newton sums of the roots of the polynomial R. Using the classical
Newton formulas ([FY]), we obtain

S1=01=0, S5 = O'% — 209 = —209, S4 = 20% — 40y,
where o; are the coefficients of R. On the other hand, it is not difficult (eq. ) to see that

(n—2)(n - 3)

02:—(an_2+n—1), 04:(n—3)an_2+ 9

and then
Sy =2(an_2+2)*+6n—18 > 6n — 18.

By the lemma B, we deduce that 22 +n > 6n — 18, i.e. n = 3. O



3.3 Proof of lemmas A and B
We shall use the following lemma that says that parameters of crossing points lie on an ellipse.
Lemma 3 (Lissajous ellipse) Let s # t be complex numbers such that
Ts(t) = Ts(s).
There exists a complex number o such that
s =2cos(a+7/3), t =2cos(a—7/3).
Furthermore, o is real if and only if s and t are both real, and then t > s if and only if sina > 0.

Proof. We have
T3(t) — T5(s)
t—s
Then, if T5(t) = T5(s), t # s, we get

=t*+ 5%+ st—3. (3)
3 2 1 2 2., 2
—(t+s) —{—§(t—s) = 2(t* + s° + st) = 6.

2
]

Then there exists a complex number « such that

That means

t+s . t—s
cos v =——, sina=_—
that is
t =2cos(a —m/3), s =2cos(a+ 7/3).
« is real if and only if cos a and sin « are both real that is to say, iff s and ¢ are real. In this case:
t>s & sina > 0. O

Proof of lemma A.
Let s < t be real numbers such that T5(s) = T3(t). According to lemma B (ellipse), there exists a
real number o such that

t =2cos(a —m/3), s =2cos(a+7/3).

We have L
Ti(t) — Ti(s) = 2(cos(k(ow — m/3)) — cos(k(a + 7/3))) = 4sin ?ﬂ sin ke,
and then
sin b
T — 1T T; — 1T i ey 2
k() = Tils) = (t) — Ti(s) = 81.nka : 7?% = —sink—7T Vi—1(u)
t—s Ti(t) — T1(s) sina g & V3 3
3

where u = 2 cos . And eventually we have
t+ s =2(cos(a —m/3) + cos(a + 7/3)) = 4cos cosg =2cosa = u.

a

In order to prove lemma B, we shall use the following lemma which describes the geometrical
configuration. Let us denote s(a) = 2cos(a + %), t(a) = 2cos(a — F).

5



Lemma 4 Let o,/ € [0,7] be such that s(o) < s(a'), and t(a) < t(a'). Then o« > o, and
2r _a+d _ow

3 ~ 2 ” 3
Proof. We have

/ o
t(a) —tla) = 4sin(a+a - g) -sin(a 2a ) >0,
/ v
s(d) —s(a) = 4sin(a ta + z) sin( a ) > 0.
2 3 2
: ) o at+a 2m .. -
Therefore, if @ < o/ we get 5 < 3 and > 5 This is a contradiction, and consequently
a> . , /
2
We thus deduce that & ; RIS g By the second inequality we get a ; R % O

Proof of lemma B.

Let 81 < ... < s, and t; < ...t, be such that T3(s;) = T3(t;). Using lemma [ there are oy > - -+ >
ay, €]0, 7] such that s; = s(«y), t; = t(a;) and we have

2 a1 + a9 Qp_1 + ap 7T
— > ———— >0 > >yl > > —.
3 2 2 ol 2 3
T ™ ™
We thus have only two possibilities: 5 >ap_1>a, >00r >0 > ay > 5

On the other hand, we get

cos(z)? + cos(y)? = 1 — cos(z + y)? + 2 cos(x) cos(y) cos(z + y).

T
Case 1. 5 > ap—1 > ay > 0.

1
We get cos(ay,) > 0, cos(a,—1) > 0 and cos(ay,—1 + ) < —5 80 €q. B.3 becomes

3
cos(a_1)? 4 cos(ay)? <1 —cos(ap_1 + ay)? < 1
and
n n—2
Z cos(a;)?> = cos(ay)? + Z cos(a;)? + (cos(an_1)? + cos(an)?)
i=1 =2
1 3 1
< 1 =3)-—+ - =—(n+4).
< 1+(n-3) 11 4(n+)

T
Case 2. 7T>oz1>oz22§.

1
We get cos(ag) <0, cos(az) <0 and cos(ag + az) < —5 S0 eq. B.d becomes

cos(a1)? 4 cos(az)? < 1 — cos(ay + az)? <

>~ w

that is,

n

Sy = Z (2cos())* < n+ 4.

i=1



Analogously, we get cos(x)* + cos(y)* < (cos(z)? + cos(y)?)?, and we deduce:

Sy = Z (2cos(a;))* < n+22.
i=1

4 Parametrized models of K3, K5 and K;, Ky ...

We get parametrizations of K,,: C = (X (t),Y(¢),Z(t)), with n crossings obtained for parameter
values satisfying the hypothesis of lemma [J. All of our curves are symmetric with respect to the
y-axis.

4.1 Parametrization of K3

We can parametrize K3 by x = T5(t),y = Ty(t),z = T5(t). It is a Lissajous space curve (compare
().

We can in fact notice that there exists a projection of our trefoil K3 with four crossings and a
complicated ordering of the parameter values corresponding to the crossings.

The plane curve (T5(t),T5(t)) has 4 crossing points but notice that there do not exist real
numbers 1 < 3 < $3,t1 < tg < t3, such that z(s;) = x(t;), 2z(s;) = 2z(t;). This example shows that
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Figure 3: Knot K3

our method cannot be generalized when the projections of K, have at least n + 1 crossing points.

4.2 Parametrization of K

Let

Y(t) = Tg(t) —2Ts(t) +2.189Ty(t) — 2.170 T (t),
Z(t) = Ti(t) —0.56T5(t) — 0.01348 T ().
The curve (X (t),Y(t)) has exactly 5 double points.

In conclusion we have found a curve of degree (3,7,8). Using our theorem, this curve has
minimal degree. R. Mishra showed the existence of such an example ([RY, Mj)).
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4.3 Parametrization of K-
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X = Ty(t),
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Y = Ty (t)—2.360Tk () + 4.108 Ty (t) — 6.037 Ty (t) + 7.397 T, (1),
Z = —6.263T1 (1) — 22427 (t) + 23.42Ts (1) + 6.263 T3 (t) .

The curve (X (¢),Y (t)) has exactly 7 double points for values (t;, s;) and we have the following

n 1 2 3 4 5 6] 7
cos(og) | -1/2 | -3/10 | - 2/10 0| 2/10] 3/10]| 1/2

5; -2.0 | -1.952 | -1.807 | - 1.732 | - 1.497 | - 1.352 | - 1.0

ti 1.0 1.352| 1497 | 1.732| 1.897 | 1.952| 20
Z(t;) — Z(s;) | -3.0| 3.305 |-23.394 | 3.464 |-3.394 | 3.305]-3.0

AW

Bottom view

In conclusion we found a curve of degree (3,10, 11). Using our theorem, this curve has minimal

degree.

Zoom on the bottom view

Figure 5: Knot K7
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Figure 6: Knot K7

4.4 Parametrization of K

We choose polynomials of degree 3,13, 14.

X = Ts5(t),
Y = Tu (t) —4.5167119 (t) + 12.16 T (t) —24.46 13 (t) + 39.92 Tk (t) — 55.307y (t) + 66.607T5 (t) R
Z = b5.161Ty (t) + 1.3977T} (t) —5.1617T% (t) —2.389T11 (t) + Ti3 (t)

The curve (X (t),Y (t)) has exactly 9 double points for values (¢;, s;) and we have:

n 1 2 3 4 5 6 7 8 9

cos () 1/2°] -3/10 | -2/10 | -1/10 0 1/10 | 2/10 | 3/10| 1/2
si 2. [ -1.952 | -1.897 | -1.823 | -1.732 | -1.623 | -1.497 | -1.352 | -1.000

ti 1.000 | 1.352 | 1.497 | 1.623 | 1.732 | 1.823 | 1.897 | 1.952 2.
Z(t;) — Z(s;) | -3.000 | 3.306 | -3.394 | 3.447 | -3.464 | 3.447 | -3.394 | 3.306 | -3.000

Conclusion

We have found minimal degree polynomial curves for toric knots K,, n = 3,5,7. For degree 9, one
can prove that it is minimal under the assumption that the projection (X (¢),Y (¢)) has exactly 9
double points. We have similar constructions for higher degrees.
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