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Abstract

We propose to use a Nomarski imaging interferometer to measure

the out-of-plane displacement field of MEMS. It is shown that the

measured optical phase arises both from height and slope gradients.

Using four integrating buckets a more efficient approach to unwrap

the measured phase is presented, thus making the method well suited

for highly curved objects. Slope and height effects are then decou-

pled by expanding the displacement field on a functions basis, and

the inverse transformation is applied to get a displacement field from

a measure of the optical phase map change with a mechanical load-

ing. A measurement reproducibility of about 10 pm is achieved, and

typical results are shown on a microcantilever under thermal actua-

tion, thereby proving the ability of such a set-up to provide a reliable

full-field kinematic measurement without surface modification.

1 Introduction

The increasing interest for micro-electro-mechanical systems (MEMS), es-
pecially when they are used as micro-mechanical sensors [1], leads one to
focus on the mechanical behavior of micro-objects. First, the standardized
mechanical tests at the macro scale have been adapted to the micro one, as-
suming an homogeneous stress or strain state. Bending [2] and tensile tests
[3, 4], as well as fatigue or creep tests [5] are performed since years, providing
a global kinematic response of the tested object.

However, classical photolithography processes use visible light to transfer
a mask onto a wafer surface. Then, light diffraction limits the achievable
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accuracy of the geometric shape of the resulting micro-objects, and the di-
mensions margins tends to increase compared to the dimensions themselves
as the object’s size decreases. The homogeneous stress (or strain) assump-
tion usually satisfied when performing mechanical tests at the macro-scale
is no longer reasonable, and one has to deal with heterogeneous mechanical
tests. As a consequence, one has to perform a spatially resolved kinematic
measurement instead of a global one.

Moreover, as their size decreases, the surface on volume ratio significantly
increases, and the behavior of micro-objects tends to be dominated by surface
effects instead of volume ones. As a consequence, measuring the displacement
field should avoid any surface modification or any contact. In addition, the
surface roughness of MEMS is usually very low, so that measurement tech-
niques involving surface-generated speckle [6] may be difficult to implement
[7].

An optical interferometric imaging set-up is then well suited to measure
displacement fields. The polarization interferometer [8] proposed herein is
derived from the one initially proposed by Nomarski [9]. Dealing with surface
topographies, it has been previously used to determine the mean slope of
tilted samples [10] or to get an image of the roughness of polished surfaces
using a multichannel Nomarski microscope [11, 12, 13].

After recalling the relation between the optical phase induced by the
sample-Wollaston prism group and the measured intensity, the twofold origin
of the optical phase is detailed. A shot-noise limited detection is described,
and the inversion method developed to convert an optical phase change into
an out-of-plane displacement is presented. An example is finally provided
on the measurement of the displacement field of a thermally loaded micro-
cantilever.

2 Measuring a differential topography

2.1 Experimental set-up

The basic interferential microscopy imaging set-up is shown in Fig. 1. A
spatially incoherent light source (LED, λ = 760 nm) illuminates a polariza-
tion beam-splitter. The beam reflected by the beam-splitter goes through a
polarization modulator and is initially polarized at 45˚ of the axes of a Wol-
laston prism. This splits the beam into two orthogonally polarized beams at
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a small angle between each other. These beams are focused upon the sample
by an objective lens. After reflection and recombination by the Wollaston
prism, the beam goes through the polarization modulator and the polariza-
tion beam-splitter. The transmitted beam is finally focused on a CCD array.
The polarization beam-splitter behaves as crossed linear polarizers mounted
at 45˚ of the axes of the Wollaston prism and of the polarization modulator.
One finally gets the interference between two images of the sample, shifted
by the Wollaston prism of the distance d. The resulting interference pattern
is recorded on a CCD array (DALSA CA-D1, 256 × 256 pixels, 8 bits).

2.2 Interference pattern obtained with a Nomarski imag-

ing interferometer

Let us denote p (Fig.1) the polarisation direction of the beam incident on
the Wollaston prism. The Wollaston prism shear-direction is denoted y. The
vector a denotes the polarisation direction of the beam impinging on the CCD
array. The orthogonal directions, in the prism’s plane, are denoted q, x, b,
respectively. One uses a light emitting diode, so that we denote E0 the am-
plitude of the non polarized wave impinging on the polarizing beam-splitter.
If tp is its amplitude transmission factor, and ǫp the attenuation factor for
the (ideally) suppressed component, the Wollaston prism is illuminated by
two orthogonally polarized beams, which electric fields are Eppp and Epqq,
with

Epp = E0tp (1)

Epq = E0ǫptp (2)

For a non polarized light source (LED), these two beams are incoherent,
and should be treated separately. ǫptp is the transmission factor in the stop
direction, so that ǫp = 0 is the perfect polarizer case. For each beam, the
Wollaston prism splits the beam into two orthogonally polarized beams (i.e.,
a x and a y component), and the light goes through the path (objective
- sample - objective - Wollaston prism). Let us consider that this results
in a phase shift φ between the x and the y components. Let us denote tn
the transmission factor of the path (Wollaston prism - objective - sample -
objective - Wollaston prism), ta the analyser’s transmission factor, and ǫata
its further attenuation factor in the stop direction. The total intensity I
impinging locally on the CCD array is the sum of the intensity arising from
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the two incoherent beams
I = Ip + Iq (3)

Assuming that (x,p) = (x,b) = π
4
, one obtains [10]

I = I0 + A cos(φ) (4)

I0 =
|E0tatntp|2

2
(1 + ǫ2a)(1 + ǫ2p) (5)

A =
|E0tatntp|2

2
(1 − ǫ2a)(1 − ǫ2p) (6)

The contrast of the interference pattern

A

I0
=

(1 − ǫ2a)(1 − ǫ2p)

(1 + ǫ2a)(1 + ǫ2p)
(7)

equals 1 for perfect polarizers (ǫa = ǫp = 0), and decreases when ǫa or
ǫp increase. Adding an error on the orientation of the polarization beam-
splitter leads to the same expression, so that the equation (4) is considered
general enough to describe real interference patterns. A typical interference
pattern obtained in water with two 70 micrometers long micro-cantilevers
and a shear distance d ≃ 50µm is shown on figure 2. The two sheared
images are clearly distinguishable. The optical phase range covers almost 15
interference fringes. The closely packed interference fringes, as well as the
quite short correlation length of the used light source (almost 15µm) reduce
the contrast of the interference pattern, thereby limiting the quantitative use
of obtained phase map. Let us assume that the optical phase φ introduced
by the path (Wollaston prism - objective - sample - objective - Wollaston
prism) may be decomposed in a term φ0 arising from the Wollaston prism
and a contribution φm arising from the object

φ = φ0 + φm (8)

The section 2.3 exhibits the phase directly arising from the Wollaston prism,
whereas the section 2.4 exhibits the phase arising from the topography of the
sample.

2.3 Optical phase arising from the Wollaston prism

2.3.1 Optical path functions

Let us consider for simplicity an “ideal” Wollaston prism, which geometry is
described in the plane defined by both the optical axis of the system and the
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y direction on figure 3. Fig. 3 shows the decomposition of a ray impinging
orthogonally on the prism into two emerging rays and the angles definition.
Snell-Descartes’ laws at the interface between the two half-prisms read

nE sin(βTM) = no sin(θ) (9)

no sin(βTE) = nE sin(θ) (10)

where no is the ordinary refractive index of the used birefringent material, and
nE is the extraordinary one. Assuming an ambiant media with a refractive
index equals to 1, Snell-Descartes’ laws for the exit face of the prism read

sin(βTMair ) = nE sin(βTM − θ) (11)

sin(βTEair ) = no sin(βTE − θ) (12)

If all the angles are small

βTMair − βTEair ≃ 2(no − nE)θ (13)

The emerging rays appear to split on a plane, called plane of apparent split-
ting (PAS), which is here located inside the prism. The use of a modified
Wollaston prism [14] allows one to move the PAS outside the prism. This
plane is considered to be perpendicular to the figure’s plane. Its position is
one of the fundamental characteristics of the prism. Investigating the imag-
ing properties of the system, let us denote α1 the angle of an impinging ray
with respect to the normal of the entrance interface in the figure’s plane.
Considering any dependance on α1 is then moving in the field of view along
the shear direction. The optical path travelled by the TE (resp. TM) polar-
ized ray through the prism lTE(y, α1) (resp. lTM(y, α1)) when the apparent
splitting occurs at position y on the PAS (the origin will be defined later)
depends on α1. Assuming that all the angles are small,

lTE(y, α1) ≃ nE

(

h

2
+ yθ

)

+ no

(

h

2
− yθ

)

+
hα1n1θ

2

(

no
nE

+
nE
no

)

lTM(y, α1) ≃ nE

(

h

2
− yθ

)

+ no

(

h

2
+ yθ

)

+
hα1n1θ

2

(

nE
no

(

2 − nE
no

)

+ 1

)

(14)

These two functions will be referred as optical path functions.
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2.3.2 Optical phase when the PAS matches the objective rear

focal plane

Assuming that the PAS of the prism matches the objective rear focal plane,
Fig. 4 presents the ray tracing for the two emerging rays of Fig. 3. These two
emerging rays intersecting the PAS at the ypas cross the PAS, after reflection
on a plane object, at the the same point yR,TE = yR,TM when the object is
orthogonal to the lens axis. This last point is symmetric of the first with
respect to the lens axis. Let us thus define the median plane of the prism πm
as orthogonal to both the figure’s plane and the PAS, passing by the O point
(see Fig. 3). This point is defined to satisfy the condition EO = OS. Let
us then consider that the distance between the πm plane and the symmetry
axis of the lens is Tw. Any point of the PAS may be described either by
the abscissa y in the prism’s frame (the origin is at the intersection with
πm) or by the abscissa ỹ = y − Tw (relative to the symmetry axis of the
lens). In the prism’s frame, the rays emerge from the PAS at ypas = Tw − ỹt,
and the reflected rays go through the PAS at yR,TE = yR,TM = Tw + ỹt. The
optical paths lTEar and lTMar travelled to the sample and back are deduced from
lTE(y, α1) and lTM(y, α1) and allow one to compute the optical phase

φW0 =
2π

λ
(lTEar −lTMar ) =

2π

λ
θ

(

4(nE − no)Tw + hα1n1

(

no
nE

+
nE
no

(
nE
no

− 1) − 1

))

(15)
The first term in (15) no longer depends on yt but on the position of the prism
with respect to the symmetry axis of the lens Tw, and is homogeneous in the
field of view. If the birefringence of the used material is denoted nE − no =
noǫ, the additional optical phase difference (second term) proportional to the
incidence angle α1 is shown to grow as ǫ2 whereas the first term scales as
ǫ, so that the added optical phase φW0 may be considered homogeneous in
the field of view. For a quartz-made Wollaston, ǫ ≃ 10−2 so that the added
optical phase may be considered homogeneous in the field of view. This
is no longer true when the PAS doesn’t match the rear focal plane of the
objective, because the reflected rays no longer cross the PAS at the same
point (see Fig. 4). Assuming that the PAS remains parallel to the rear focal
plane, at a distance δPAS and using the same method, the additional optical
phase difference φPAS is

φPAS ≃ 8π

λ
θα1δPAS(nE − no) (16)
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thus introducing a linear phase along the Wollaston shear direction.

2.4 Optical phase arising from the object topography

2.4.1 Optical phase arising from height variations

The previous ray tracing is shown in the case of a stepped sample (height
∆z) in Fig. 5. Thanks to the Fermat’s principle, tilting the sample doesn’t
induce an extra phase shift in the objective-sample path (i.e., regardless of
the phase shift induced by the Wollaston prism). The dot line is for the
ray reflected under the previous conditions. The optical phase difference φh
arising from the step corresponds to a travel along [AB] and [BC], where
C is the orthogonal projection of A on [BD]. In a medium which refractive
index is n, this optical phase difference reads

φh =
2π

λ
n× (AB +BC) =

4π

λ
n∆z cos(α) (17)

where α is the incidence angle on the object. If the numerical aperture of the
objective is low enough, α remains small and the above expression expands

φh ≃
4πn∆z

λ
(18)

As the numerical aperture of the objective increases, the previous expansion
is no longer valid and the equation (18) is replaced, for numerical apertures
less than 0.3, by

φh =
4πn∆z

ιλ
(19)

where ι is a scale parameter depending on the numerical aperture (see ap-
pendix A).

2.4.2 Optical phase arising from the local surface orientation

In section D2.4.1, the two orthogonally polarized rays cross on the PAS. This
is no longer true if the two rays experience a different surface orientation.
Let us denote by γTE (resp. γTM) the local surface orientation experienced
by the TE (resp. TM) ray. For a ray emerging from the PAS at the position
y (in the prism’s frame), the reflected rays cross the PAS at the abscissa
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(figure 6)

yR,TE =
−y + f tan(2γTE)

1 + y

f
tan(2γTE)

(20)

yR,TM =
−y + f tan(2γTM)

1 + y

f
tan(2γTM)

(21)

Where f is the focal length of the objective lens. The optical path travelled
by the two rays reads (with α1 = 0)

lTEar ≃ lTE(Tw + y, 0) + lTE(Tw + yR,TE, 0) (22)

lTMar ≃ lTM(Tw + y, 0) + lTM (Tw + yR,TM , 0) (23)

and the optical phase difference reads (to the first order with respect to the
surface orientation)

φW =
2π

λ
(lTEar −lTMar ) =

4π

λ
(nE−no) tan(θ)

(

1 +

(

y

f

)2
)

f(γTE+γTM) (24)

One should highlight that this optical phase difference doesn’t arise from the
sample itself, but from the optical phase imbalance it introduces when the
rays travel back through the Wollaston prism. Moreover, this phase difference
depends on the abscissa y, and then on the angle α. It’s also worth noting
that a global tilt of the specimen (i.e., γTE = γTM 6= 0) induces an extra
optical phase. It arises from the previous remarks that the relation between
the local surface orientations and the induced optical phase depends on the
prism-objective group. This relation may be rewritten

φW = φori + φtilt =
∂φW
∂γ

(γTE − γTM) + φtilt (25)

with

φtilt = 2
∂φW
∂γ

γTM (26)

The scalar ∂φW

∂γ
then describes the prism-objective group. It may be obtained

when measuring the optical phase when tilting a reasonably flat mirror. The
figure 7 shows the result of such a calibration for a quartz Wollaston prism
(θ ≃ 18◦) and a water immersion objective lens (focal length 18mm, NA 0.3,
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used to obtain the interference pattern in Fig.2). The relation is linear, and
the fitted slope is

2
∂φW
∂γ

= 1.1 × 103 (27)

This simple experiment allows one to obtain the sensibility ∂φW

∂γ
to a local

orientation gap by tilting the whole sample.
Finally, the total measured optical phase difference φ may be written as

the following sum

φ = φW0(Tw) + φPAS(δPAS) + φh(∆z) + φW (γTE, γTM) (28)

where the two first terms (related to φ0) account for the path difference
introduced by the Wollaston prism itself : an homogeneous term φW0 and
a linear term along the shear direction φPAS which vanishes when the PAS
matches the rear focal plane of the objective lens. The two last field terms
(related to φm) originate from the surface topography : height variations φh
and slope field, φW including the contribution of the mean tilt of the sample
φtilt as well as slope variations φori.

3 Phase integration, retrieval and unwrap-

ping

3.1 Principle

The optical flux collected by the pixel indexed by (l,m) on the CCD matrix
can be formally written according to (4) as

I(l,m, t) = I0 + A cos[φ(l,m) + ψmod(t)], (29)

where φ(l,m), which is to be determined, is the optical phase introduced by
the sample and the Wollaston prism. The phase modulation introduced by
the photoelastic modulator reads

ψmod(t) = ψ0 sin(2πfmodt+ θmod). (30)

The angles ψ0 et θmod are two parameters that can be chosen among many
couples. The algorithm to obtain φ uses four integrating buckets [15]: if T = 1/fmod
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is the modulation period, four images of the interference pattern can be cap-
tured during the period T , so that each image results from the integration
of the optical flux during a quarter of one period. One obtains four images
Ep, for p = 1, 2, 3, 4

Ep =

∫
pT

4

(p−1)T
4

I(t)dt (31)

Combining with Eq. (29) allows one to obtain

Ep =
T

4
(I0 + AJ0(ψ) cos(φ))

+
TA cos(φ)

π

∞
∑

n=1

J2n(ψ0)

2n
[sin(npπ + 2nθmod) − sin(n(p− 1)π + 2nθmod)]

− TA sin(φ)

π

∞
∑

n=0

J2n+1(ψ0)

2n+ 1

×
(

cos(
π

2
(2n+ 1)(p− 1) + (2n + 1)θmod)

− cos(
π

2
(2n+ 1)p+ (2n+ 1)θmod)

)

(32)

where Jn is the first kind Bessel function of n order. The images Ep depend
on I0, cos(φ) and sin(φ), so that using four independent images provides
enough information to recover φ. Classical algorithms [15] use particular
linear combinations

Σs = −(E1 − E2 −E3 + E4) = 4TA
π

Γs sin(φ)
Σc = −(E1 − E2 + E3 −E4) = 4TA

π
Γc cos(φ)

(33)

with
Γs =

∑

∞

n=0(−1)n J2n+1(ψ0)
2n+1

sin [(2n+ 1)θmod]

Γc =
∑

∞

n=0
J4n+2(ψ0)

2n+1
sin [2(2n+ 1)θmod]

(34)

The optical phase is then usually recovered by using an “atan2” function
with the arguments provided by the equations (33) with a (ψ0, θmod) couple
satisfying Γs = Γc. The indicator

Υ2 = Σ2
c + Σ2

s (35)

is then independent of the phase φ and defines the intensity of the signal
experiencing the phase φ. As a consequence, the phase obtained from the
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previous algorithm is reliable provided that Υ2 is high enough, i.e., if the
fringe contrast A

I0
is sufficient. This condition may be difficult to satisfy when

the topography is described by a large number of closely packed interference
fringes (see Fig.2). It’s worth noting that the set of four images provides an
over-determinated set of data. This redundancy is then exploited to provide
a more reliable phase measurement.

3.2 Least-square phase retrieval

For each pixel of the CCD array, the set of Eq. (32) may we rewritten as a
linear system of equations

MP = E (36)

where the parameters vector P reads ((·)t denotes the transpose of (·))

Pt =

[

TI0
4
,
TA

π
cos(φ),

TA

π
sin(φ)

]

(37)

and the images vector
Et = [E1, E2, E3, E4] (38)

The matrix M is built from the modulation parameters

M =









1 c(1, ψ0, θmod) s(1, ψ0, θmod)
1 c(2, ψ0, θmod) s(2, ψ0, θmod)
1 c(3, ψ0, θmod) s(3, ψ0, θmod)
1 c(4, ψ0, θmod) s(4, ψ0, θmod)









(39)

with

c(p, ψ0, θmod) =
∞
∑

n=1

J2n(ψ0)

2n
[sin(npπ + 2nθmod) − sin(n(p− 1)π + 2nθmod)](40)

s(p, ψ0, θmod) = −
∞
∑

n=0

J2n+1(ψ0)

2n+ 1

×
(

cos(
π

2
(2n+ 1)(p− 1) + (2n + 1)θmod)

− cos(
π

2
(2n+ 1)p+ (2n+ 1)θmod)

)

(41)
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The matrix M is then independent of the considered point. For each pixel
of the CCD array, the four images describe the vector E, and the solution
parameters vector Psol is obtained as a minimizer of

η2(P) = (MP−E)t (MP −E) (42)

and is the solution of the square linear system

MtMPsol = MtE (43)

The couple
(

TA cos(φsol)
π

, TA sin(φsol)
π

)

is then extracted, and used as the argu-

ment of a standard “atan2” function to provide a less corrupted value of the
phase. The figure 8 shows the phase map obtained from the scene presented
in Fig. 2 using the least-square algorithm.

3.3 Phase unwrapping

The use of the phase integration technique also allows one to reconsider the
phase unwrapping problem. In the previous section, the information derived
from the experiments is a couple (X, Y ) proportional to (cos(φ), sin(φ))

(X, Y ) = C(cos(φ), sin(φ)) (44)

where C = 4TA
π

Γs,c when the linear combinations (33) are used, and C = TA
π

when the least-square algorithm is used. In the first case, the couples (X, Y )
and (Σc,Σs) are equal. For a sake of simplicity, let us consider that a wrapped
value of the phase φp is then obtained by using

φp = atan2(Y,X) (45)

φp lies then in [−π, π]. Recovering the unwrapped value of the phase may
turn into a brain-racking task when the phase-map is poorly discretized and
the phase jumps are densely packed. Numerous algorithms are available in
the literature, based either on local phase unwrapping [16] or on global phase
unwrapping [17]. Contrary to most of these algorithms, which use a wrapped
phase map as an input, we propose here to use the two fields X and Y .

The figure 9 shows a typical case of phase jump between two adjacent
points 1 and 2. Their true phase φ1 and φ2 is under scrutiny. AsX1 ≃ X2 6= 0
and Y1Y2 < 0, using the “atan2” function induces a phase jump when moving
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from 1 (φp,1 ≃ π) to 2 (φp,2 ≃ −π). Let us then define the frame (
−→
Xb,

−→
Y b),

obtained by rotating the (
−→
X,

−→
Y ) frame until the point 1 (X1, Y1) belongs to

the (Ω,
−→
Xb) axis. The phase φ2 − φ1 of the point 2 in the frame (

−→
Xb,

−→
Y b) is

then obtained according to

tan[φ2 − φ1] =
−X2sin(φ1) + Y2cos(φ1)

X2cos(φ1) + Y2sin(φ1)
(46)

providing the gap between the true phase values φ1 and φ2, thus defining
(if 1 and 2 are for adjacent pixels), the true phase gradient, modulo 2π.
The couple (X2, Y2) is obtained of the four images using one of the two
algorithms previously described. cos(φ1) and sin(φ1) are deduced from the
wrapped value φp,1. The phase gradient may then be integrated to provide
a true phase map. The figure 10 shows the phase map obtained from the
wrapped phase map shown in Fig.8 using the described phase unwrapping
technique.

3.4 Reproducibility of the phase measurement

The phase measurement reproducibility is assessed by measuring twice the
phase map arising from the same differential topography of a reflective object.
One gets two phase fields φ−(l,m) and φ+(l,m). Assuming that each of these
fields is the sum of deterministic part φd(l,m) and of a random part

φ−(l,m) = φd(l,m) + b−(l,m) (47)

φ+(l,m) = φd(l,m) + b+(l,m) (48)

the difference between the two phase fields provides then a realization of the
difference between two realizations of the noise b(l,m)

(φ+ − φ−)(l,m) = (b+ − b−)(l,m) (49)

The figure 11 shows a typical probability density of the variable (φ+ −
φ−) obtained with the set-up described in Section 2.1. The dots are the
experimental distribution, whereas the solid line is a least-square fit using a
Gaussian, zero-mean, distribution. The agreement is excellent, and allow us
to consider (φ+−φ−) as a random real number of variance 2σ2, if b is a random
variable which variance is σ2. The figure 12 shows the evolution of

√
2σ2

(converted to heights variation assuming (18)) as a function of the exposure
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time texp used to form each intensity image. The experimental variance

grows as t
−

1
2

exp, until the exposure time reaches several tens of seconds. The
reproducibility is therefore controlled by the exposure time, and the achieved
level is (converted to height variations) close to 10 pm.

4 Recovering the displacement field

4.1 Principle

The calculations presented in sections 22.3 and 22.4 allow one to derive an
expression for the measured phase φ as a function of the surface topography.
Assuming that the pixel size (in the object plane) is small enough comparing
to the object’s size, one proposes for a sake of simplicity to formulate the
inversion problem in the object’s plane. Inserting Eq. (19) and Eq. (25) into
Eq. (28) allows one to write the total measured phase difference at the point
(x, y)

φ(x, y) = φ0(x, y) + φtilt + Φ(x, y) (50)

Assuming that the shear direction is parallel to the y axis, and that the
local surface orientation γ in Eq. (25) is given by the first derivative of
the topography, the relation between the measured information Φ and the
topography reads, for a shear distance d

Φ(x, y) =
4πn

ιλ

(

z(x, y +
d

2
) − z(x, y − d

2
)

)

+
∂φW
∂γ

(

∂z

∂y
(x, y +

d

2
) − ∂z

∂y
(x, y − d

2
)

)

(51)
where z(x, y) is the topography. To discriminate between the phase aris-
ing from the slope variations and those arising from height variations, one
proposes to expand the topography on a functions basis

z(x, y) =
∑

s

µszs(x, y) (52)

so that the reference (initial) measured phase field reads

φref(x, y) = φ0(x, y) + φtilt +
∑

s

µsΦs(x, y) (53)

One should highlight that the shearing amount d is here introduced explicitly
to compute the functions basis Φs(x, y) by inserting Eq.(52) into Eq.(51). If
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the topography is subjected to an out-of-plane displacement field w(x), φref
is changed into φw and the new topography is described by

z(x, y) + w(x, y) =
∑

s

(µs + νs)zs(x, y) (54)

so that the displacement field is also expanded on the same functions basis

w(x, y) =
∑

s

νszs(x, y) (55)

The knowledge of the numerical coefficients involved in the definition (51) of
Φ(x, y) combined with the choice of a functions basis allows one to recover
the displacement field by computing the νs coefficients minimizing

η2
ν(ν) =

∫

(

∑

s

νsΦs(x, y) − (φw − φref)(x, y)

)2

dxdy (56)

that is solving the linear system

N ν = F (57)

with

Nsi =

∫

Φs(x, y)Φi(x, y)dxdy (58)

Fs =

∫

Φs(x, y)(φw − φref)dxdy (59)

4.2 Example

The micro-cantilevers shown on Fig.2 are placed into a fluid cell, filled with
milliQ water which temperature is controlled thanks to a feedback loop con-
trolled Peltier device. These cantilevers are multi-layer cantilevers, made
of a silica layer (770 nm), a titanium layer (20 nm) and a gold layer (50
nm). These cantilevers are then subjected to a bimaterial effect, since the
coefficient of thermal expansion of the gold layer is almost ten the one of
the silica layer. The optical set-up is also used with the Wollaston prism-
objective couple calibrated in Section 2.4.2. A reference phase map of the
cantilever is captured at 22.6˚C. The temperature is then increased to reach
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24.1˚C, and a new phase map is captured. The phase gradients are com-
puted according to the algorithm described in Section 33.3. Recovering the
two-dimensional phase map from the phase gradients is an over-constrained
problem, so that it is possible to avoid some unreliable data. Reliable data
are then located where the indicator defined by Eq.(35) is greater than a
user-defined threshold. The figure 13 shows the measured phase map change
when the cantilever is submitted to bimaterial effect. One distinguish the
substrate, which is not subjected to any modification. One then remark the
phase change is not homogeneous across the cantilever.

The displacement field is then recovered using the algorithm described in
Section 44.1. The function basis is chosen to be able to represent the expected
mechanical effects. As a consequence, one chooses cubic hermite polynomials
[18] by part along the y direction. In the present example, four elements along
the cantilever are found to be sufficient to describe heterogeneous effects,
and the projection is made independently for each line across the beam.
The figure 14 shows the resulting displacement field, which clearly exhibits
an heterogeneous behavior across the cantilever. One should emphasize,
that the free end of the cantilever experiences a phase change of 0.8 rad
(Fig.13). This value is to be compared to the one arising only from a 12 nm
height modification (Fig. 14), which is 0.18 rad (first term in Eq.(51)) ; thus
demonstrating the necessity of taking both height and slope changes into
account. Moreover, the displacement field shows the cantilever part close to
the anchoring rises up as the temperature increases, whereas the cantilever as
a whole bends down. This is thought to be the signature of an under-etched
cantilever, as the remaining silica pedestal dilates and pushes the surface
up. This example typically illustrates the extensive amount of informations
provided by full-field measurement compared to pointwise ones.

5 Conclusions

A Nomarski imaging interferometer is used to measure the differential topog-
raphy of reflective objects. A phase modulation is introduced to measure the
phase map arising from the object with a sensitivity independent on the ac-
tual phase value. The phase measurement is shown to be shot-noise limited,
and a measurement reproducibility of almost 10 pm is achieved. The use of
four integrating buckets with a least-square algorithm is shown to improve
the phase retrieval in case of low fringe constrast. Moreover, this allows to

16



reconsider the phase unwrapping problem, so that it is easy to deal with
highly curved objects.

The physical origin of the measured optical phase is calculated, and ex-
hibits that the phase difference is due to both height and slope variations.
A simple calibration procedure allows one to check for the phase sensitiv-
ity to slope variations. These two effects are then decoupled expanding the
displacement field onto a chosen functions basis.

The out-of-plane displacement field of a MEMS cantilever subjected to
bimaterial effect is then recovered thereby proving the ability of such a set-up
to provide a reliable full-field kinematic measurement without surface mod-
ification. This tool provides then a full displacement field using a common-
path interferometer. Moreover, its stability, as well as its ability to operate
through a wide range of media make this set-up a very powerful tool for
the study of the mechanical behavior of micro-electro-mechanical systems,
providing an extensive amount of reliable information.
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A Appendix : Effect of the numerical aper-

ture

The section 22.4 is devoted to the calculation of the optical phase difference
arising from the topography of the object under scope. This difference de-
pends on the incidence of the ray on the surface. When using an imaging
system, this difference depends therefore on the numerical aperture of the
objective lens. The expression (18) was obtained under the assumption that
the incidence angle is low enough. To assess this assumption’s validity, let us
consider the contribution of each incidence in the figure’s plane to the total
intensity in Eq.4

dI(α) =

(

dI0 + dA cos

[

4nπ∆z

λ
cos(α) + ψ

])

dα (60)

where ψ stands for the optical phase independent from the topography. As
the fringe spacing depends on the angle α between the ray and the optic axis,
the optical phase arising from the step in Fig. 5 is obtained by weighting
and summing the contributions of each rays impinging on the sample at a
point of the field of view

I = I0 + A
2

sin2(αmax)

∫ αmax

0

cos

[

4nπ∆z

λ
cos(α) + ψ

]

P (α)2 sin(α)dα (61)

αmax is related to the numerical aperture of the objective lens NA

NA = n sin(αmax) (62)

and to the apodization function P (α). The choice of this function has been
widely discussed [19, 20, 21] and let us the assume

P (α) = (cos(α))m (63)

where m is a parameter used to describe the apodization effect. The equation
(4) turns into

I = I0 + AmFNA,m(∆z, ψ) (64)

for m = 0 (Herschel condition),

FNA,0(∆z, ψ) ≃ sin(k∆z(1 − cos(αmax)))

k∆z(1 − cos(αmax))
cos(k∆z(1+cos(αmax))+ψ) (65)
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where k = 2nπ
λ

. If m 6= 0, one can derive the Taylor expansion of (64) with
respect to αmax

FNA,m(∆z, ψ) =
2

sin2(αmax)

∫ αmax

0

cos(2k∆z cos(α) + ψ)P (α)2m sin(α)dα

≃ cos(2k∆z + ψ) +

(

1 − 2m

4
cos(2k∆z + ψ) +

1

2
sin(2k∆z + ψ)k∆z

)

α2
max

+

(

1 + 4(m2 −m− k2∆z2)

24
cos(2k∆z + ψ)

+
k∆z(1 − 4m)

12
sin(2k∆z + ψ)

)

α4
max + . . . (66)

Let us define the fringe spacing iinterf , as the value of k∆z where the intensity
(64) reaches its first local maximum. As the numerical aperture increases,
iinterf 6= π. Let us thus define the gap

ǫinterf = 1 − iinterf
π

(67)

Computing ǫinterf , when the numerical aperture ranges from 0 to 0.6, and m
ranges from 0 to 2 shows that ǫinterf < 0 so that the fringe spacing increases
with the numerical aperture (see equation (67)). if the numerical aperture
is less than 0.4, ǫinterf no longer depends significantly on m, so that the
numerical aperture value is sufficient to retrieve ∆z from the intensity value.
The above correction of the equation (18) is easy as long as FNA,m(∆z, ψ) is
pseudo-periodic in a ∆z range sufficient to describe the topography. This is
assessed by defining the ratio

ri =
i10

10iinterf
(68)

where i10 is the k∆z value for which FNA,m(∆z, ψ) reaches its tenth local
maximum If the numerical aperture is less than 0.3, ri is 1, thereby proving
that FNA,m(∆z, ψ) is pseudo-periodic on the defined range. The correction
of Eq. (18) then reads

φh =
4πn∆z

ιλ
(69)

where ι depends on the numerical aperture and the apodization function.
The figure 15 shows the value of ι as a function of both the numerical aperture
and m. If the numerical aperture is less than 0.3, ι no longer depends on m,
and therefore allows for a direct retrieval of the phase φh.
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(Paris) 25, 207–224 (1994).

[12] P. Gleyzes, F. Guernet and A.C. Boccara, “Profilométrie picométrique.
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Figure 1: Schematic view of the basic interferential microscopy imaging set-
up.
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Figure 2: Typical interference pattern obtained in water with two 70× 20×
0.84µm3 microcantilevers and a shear distance d ≃ 50µm (NA=0.3).
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Figure 3: Schematic view of a Wollaston prism.
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Figure 4: Ray tracing for a plane object.
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Figure 5: Ray tracing in the case of a tilted and stepped sample (height ∆z).
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Figure 6: Ray tracing for a sample subjected to slope variations.
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Figure 7: Calibration measurement of the mean phase induced by a sample
as a function of its tilt.
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Figure 8: Typical wrapped phase map obtained in water with two 70× 20×
0.84µm3 microcantilevers and a shear distance d = 53.4µm (NA=0.3).
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Figure 9: Phase unwrapping principle.
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Figure 10: Typical unwrapped phase map obtained in water with two 70 ×
20 × 0.84µm3 microcantilevers and a shear distance d = 53.4µm (NA=0.3).
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Figure 11: Typical experimental phase noise probability density (dots) and
its fit by a Gaussian distribution (solid line).
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Figure 12: Estimation of the reproducibility on the measurement of a differ-
ential topography as a function of the exposure time.
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Figure 13: Measured phase map change when the cantilever is subjected to
bimaterial effect.
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Figure 14: Displacement field calculated from the measured phase map
change shown in Fig.13.
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Figure 15: Evolution of the correction factor ι when the numerical aperture
ranges from 0 to 0.4, and the exponent m ranges from 0 to 2.
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