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Abstract

Background: RNA silencing processes are widespread in almost all eukaryotic organisms. They

have various functions including genome protection, and the control of gene expression,

development and heterochromatin formation. RNA interference (RNAi) is the post-transcriptional

destruction of RNA, which is mediated by a ribonucleoprotein complex that contains, among

several components, RNA helicases and Argonaute proteins. RNAi is functional in trypanosomes,

protozoan parasites that separated very early from the main eukaryotic lineage and exhibit several

intriguing features in terms of the control of gene expression. In this report, we investigated the

functions of RNAi in Trypanosoma brucei.

Results: By searching through genome databases, novel Argonaute-like proteins were identified in

several protozoa that belong to the kinetoplastid order, a group of organisms that diverged early

from the main eukaryotic lineage. T. brucei possesses two Argonaute-like genes termed TbAGO1

and TbPWI1. Dual transient transfection assays suggest that TbAGO1, but not TbPWI1, is involved

in RNAi. The entire coding region of TbAGO1 was deleted by double gene knockout. TbAGO1-/-

cells turned out to be completely resistant to RNAi generated either by transfected double-

stranded RNA or by expression of an inverted repeat. TbAGO1-/- cells were viable but showed a

dramatically reduced growth rate. This was probably due to defects in mitosis and abnormal

chromosome segregation as revealed by in situ analysis. The RNAi and growth phenotypes were

complemented by the inducible expression of a GFP::TbAGO1 fusion protein that revealed the

cytoplasmic location of the protein.

Conclusions: The requirement of TbAGO1 for RNAi in trypanosomes demonstrates the

evolutionary ancient involvement of Argonaute proteins in RNAi silencing processes. RNAi-

deficient TbAGO1-/- cells showed numerous defects in chromosome segregation and mitotic spindle

assembly. We propose a working hypothesis in which RNAi would be involved in heterochromatin

formation at the centromere and therefore in chromosome segregation.

Background
RNA silencing includes a wide range of post-transcrip-

tional phenomena in eukaryotes, such as post-transcrip-
tional gene silencing in plants [1], quelling in fungi [2],
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homology-dependent gene silencing in ciliates [3] and
RNA interference (RNAi) in animals [4]. The latter is a
process in which the presence of double-stranded RNA
(dsRNA) of a given sequence induces the rapid, efficient
and specific degradation of the mRNA with the corre-
sponding sequence. In most cases, long dsRNA is frag-
mented into 21 – 26 bp dsRNAs, termed short interfering
RNAs (siRNAs) [5], by the action of Dicer, a type III ribo-
nuclease [6]. These siRNAs are part of an enzymatic com-
plex that scan RNA and target those with the identical
sequence to that of the siRNAs for destruction. Other
types of proteins involved in RNAi include RNA helicases,
Argonaute proteins, and, in some species, RNA-depend-
ent RNA polymerases [7]. Mechanistic aspects of RNA
silencing are remarkably well conserved among organ-
isms as diverse as protists, fungi, plants and animals, indi-
cating that it has important functions. One such function
appears to be the protection of the genome from
unwanted nucleic acids, such as those expressed by viruses
in plants [8,9], or those originating from transposons
[10,11]. Additional functions have been unveiled, such as
the control of gene expression during development [12],
genome rearrangement in ciliates [13,14] and the forma-
tion of heterochromatin and control of gene expression in
plants and fission yeast [15-17].

Trypanosomes are protozoan parasites belonging to the
order Kinetoplastida, which diverged very early from the
main eukaryotic lineage. These unicellular organisms are
responsible for several tropical diseases including sleeping
sickness in central Africa, which is caused by the species
Trypanosoma brucei. This species is found alternately in the
digestive tract of an insect vector, the tsetse fly, and the
bloodstream of a mammalian host. It adapts to these dif-
ferent environments by activating specific programs of dif-
ferentiation [18]. Trypanosomes develop as extracellular
parasites and escape the host immune response by means
of a sophisticated process of antigenic variation. Their sur-
face is entirely covered by a dense coat composed of a sin-
gle type of molecule, the variant surface glycoprotein
(VSG). Trypanosomes possess several hundreds of VSG
genes scattered throughout their genome but these can
only be expressed from one of ~20 expression sites, with
only a single site being active at one time [19].

Trypanosomes were among the first organisms in which
RNAi was identified. RNAi was detected in mutants
expressing dsRNA of genes coding for the paraflagellar rod
A protein (PFRA) [20] and for tubulin [21]. RNAi was rap-
idly exploited as a powerful tool for the study of gene
function [22-26]. As in other organisms, long dsRNAs are
degraded into siRNAs and incorporated into a ribonucle-
oprotein complex [27]. About 10 – 20 % of siRNAs are
associated with translating polyribosomes, suggesting a
possible interaction between RNAi and the translation

machinery [28]. Cloning and sequencing of trypanosome
siRNA has revealed a large number of endogenous short
RNAs corresponding to the INGI and SLACS retroposon
elements, suggesting that one function of RNAi could be
the control of mobile genetic elements [27]. Interestingly,
such mobile elements are missing from the genome of the
related parasite Leishmania, where RNAi does not seem to
be functional [29].

To evaluate the role of RNAi in the control of gene expres-
sion and in the general biology of trypanosomes, we
searched for molecular components of the RNAi machin-
ery and investigated their function. We identified two Arg-
onaute proteins, TbAGO1 and TbPWI1 and demonstrate
that the first is essential for RNAi. Moreover, we show that
cells deprived of TbAGO1 display numerous defects in
chromosome segregation and mitotic spindle assembly.
Finally, we propose a working model to explain the
observed results.

Results
Identification of new Argonaute proteins

In order to investigate RNAi functions in trypanosomes,
we first searched candidate genes potentially involved in
this mechanism. We screened various protist genome
databases with the sequence of genes known to be
involved in RNAi in other organisms. The genomes ana-
lysed were from T. brucei, T. cruzi and Leishmania major (all
belonging to the order Kinetoplastida), from Giardia lam-
blia and from Plasmodium falciparum. Two distinct Argo-
naute-like proteins, TbAGO1 and TbPWI1, were
identified in T. brucei whereas single proteins were found
in G. lamblia (GlAGO1), T. cruzi (TcPWI1) and L. major
(LmPWI1). Searches through the complete genome
sequence of P. falciparum failed to identify any Argonaute-
like genes. These proteins were examined for the presence
of motifs and aligned with other members of the Argo-
naute protein family from several eukaryotic species (Fig.
1A). TbAGO1 is a protein of 892 amino acids, with a cal-
culated molecular weight of 98015 Da and with an esti-
mated pI of 9.18. It possesses a PAZ and a Piwi domain,
typical signatures of Argonaute proteins [30]. The Piwi
domain shows 20 – 31 % homology with Piwi domains
of Argonaute proteins from other species (see Additional
file: 1), whereas the PAZ domain shows weaker conserva-
tion. In addition, TbAGO1 contains an amino-terminal
RGG box (a nucleic acid-binding domain), with 10 copies
of the arginine-glycine-glycine motif. This feature has not
been observed previously in Argonaute proteins from
other species. However, detailed analysis of the poly-
glutamine (poly-Q) box present at the amino-terminal
end of the Arabidopsis thaliana AGO1 protein revealed the
presence of five copies of the RGG motif (Fig. 1B).
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Argonaute-like proteins in protistsFigure 1
Argonaute-like proteins in protists. A. Schematic representation of Argonaute-like proteins. TbAGO1, Trypanosoma brucei 
AGO1 (accession number AY433802); TbPWI1, Trypanosoma brucei PWI1 (AY433803); LmPWI1, Leishmania major AGO1 
(AL446005); GlAGO1, Giardia intestinalis AGO1 (AY142143); SpAGO1 Schizosaccharomyces pombe AGO1 (CAA19275); 
TtTWI1 Tetrahymena thermophila TWI1 (AB084111); AtAGO1, Arabidopsis thaliana AGO1 (U91995), CeRDE1, Caenorhabditis 
elegans RDE1 (AF180730); NcQDE2, Neurospora crassa QDE2 (AF217760); DmAGO2, Drosophila melanogaster AGO2 
(NM168626). The red and yellow boxes indicate PAZ and Piwi domains respectively. The TbAGO1 RGG box is shown in 
green, the DmAGO2 poly-Q box is shown in blue and the N-terminal extension of AtAGO1 is annotated as a poly-Q box but 
also containing RGG motives and is shown in blue and green. B. Amino-terminal extensions of TbAGO1 and AtAGO1 contain 
RGG boxes. The RGG motifs are shown in red and the poly-Q box in blue. C. TbAGO1 and TbPWI1 RNA are expressed in the 
culture-adapted procyclic stage of T. brucei. Total RNA extracted from wild-type trypanosomes was incubated with (+) or 
without (-) reverse transcriptase and PCR-amplified using specific primers for the indicated genes.
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TbPWI1 and LmPWI1 contain a typical Piwi domain, but
no PAZ domain could be recognised. Neither possesses an
RGG box. These two proteins show high homology in
their Piwi domain (55.4% identity), with a specific inser-
tion that is not found in Argonaute proteins from other
organisms (see supplementary data).

TbAGO1, but not TbPWI1, is required for RNAi

We explored whether TbAGO1 and TbPWI1 are involved
in RNAi silencing in T. brucei. Since trypanosomes display
different life cycle stages, each with a specific pattern of
protein expression, we first checked whether TbAGO1 and
TbPWI1 were expressed in the procyclic culture stage used
for this study. Real time PCR analysis (Fig. 1C) showed
that RNA for both TbAGO1 and TbPWI1 were expressed in
this stage.

To evaluate the possible participation of TbAGO1 and
TbPWI1 in RNAi in trypanosomes, we used a double tran-
sient transfection assay as developed in Drosophila [6,31].
Trypanosomes were first transfected with dsRNA targeting
RNA coding for proteins potentially involved in RNAi and
returned to culture for 10 h. To evaluate the consequences
of silencing the candidate protein on the behaviour of the
RNAi machinery, a second dsRNA targeting a marker gene
was introduced. We selected the PFRA gene as a marker:
this gene codes for an abundant flagellar protein that is
essential for cell motility [20]. Loss of PFRA via RNAi pro-
duces a viable and obvious paralysis phenotype that can
easily be monitored by immunofluorescence [22,32].
Candidate genes included TbAGO1 and TbPWI1, as well as
green fluorescent protein (GFP) as a control. Transfection of
GFP dsRNA did not modify the ability of PFRA dsRNA to
subsequently silence PFRA expression, producing the
usual number of paralysed trypanosomes (Fig. 2A). In
contrast, the introduction of TbAGO1 dsRNA led to a five-
fold reduction in the efficiency of RNAi generated by
PFRA dsRNA. Electroporation of TbPWI1 dsRNA led to
normal PFRA silencing (Fig. 2A). These results were repro-
duced six times, including with two different markers
(tubulin and flagellum adhesion glycoprotein-1 [FLA1]).
These data suggest that TbAGO1, but not TbPWI1, is
involved in RNAi.

To confirm that the observed reduction in RNAi silencing
activity was due to the knockdown of TbAGO1 RNA and
protein, we generated a cell line expressing TbAGO1 fused
to GFP under the control of a tetracycline-inducible pro-
moter (Fig. 3A). We fused the GFP gene upstream of
TbAGO1 as downstream fusions have turned out to be
non-functional in other organisms [33]. This construct
allows monitoring of the TbAGO1 silencing effect by vis-
ualisation of the GFP::TbAGO1 fluorescent protein. The
cell line expressing the GFP::TbAGO1 protein was trans-
fected with TbAGO1 dsRNA or with dsRNA from the unre-

lated TbGRP1 gene as control. GFP dsRNA could not be
used as a control in this experiment as the GFP gene was
fused to TbAGO1. Cells were returned to culture for 10 h
and then transfected with PFRA dsRNA. FACS analysis
revealed a ~10-fold reduction of GFP::TbAGO1 fluores-
cence after introduction of TbAGO1 dsRNA, confirming
that TbAGO1 is at least partially silenced during the assay
(Fig. 2B). In these conditions, PFRA silencing was strongly
diminished (Fig. 2B, inset), reproducing the results
obtained with wild type (WT) cells (Fig. 2A). In contrast,
cells electroporated with the control TbGRP1 dsRNA did
not show any reduction in their GFP::TbAGO1 fluores-
cence signal compared with untransfected controls, and
subsequent introduction of PFRA dsRNA produced the
usual PFRA silencing effect (Fig. 2B). These data indicate
that the observed inhibition of RNAi silencing was indeed
due to the reduction in TbAGO1 abundance.

Since RNAi effects rarely last more two generations under
these conditions, the transient nature of this type of exper-
iment, and the difficulty of using RNAi silencing to study
RNAi processes restricted further investigation. Having
demonstrated the importance of TbAGO1 for RNAi, we
decided to delete TbAGO1 by double gene knockout.

Deletion of TbAGO1 completely inhibits RNAi

Data from the T. brucei genome sequencing project, as
well as our Southern blotting analysis (data not shown)
showed that TbAGO1 is a single copy gene. As trypano-
somes are diploid organisms, we produced two separate
constructs for targeted gene replacement of the whole cod-
ing sequence of TbAGO1 by the drug resistance markers
blasticidin S deaminase (BSD) and neomycin phospho-
transferase (NEO) (Fig. 3A). The first allele of TbAGO1
was replaced by the BSD marker before the obtained cell
line was transfected with the NEO construct to replace the
second allele. Viable double-resistant cells were obtained
and further characterised. Southern blotting (Fig. 3B) and
PCR analysis (data not shown) of genomic DNA from the
double-resistant cells confirmed that both constructs had
integrated at the expected locus and that all endogenous
copies of TbAGO1 had been deleted. The cell line was sub-
cloned and termed TbAGO1-/-. TbAGO1-/- cells were fur-
ther transfected with plasmid pGFPTbAGO1430 for
expression of the fusion protein GFP::TbAGO1 in order to
attempt functional complementation experiments (Fig.
3A). As the GFP::TbAGO1 fusion gene in this plasmid is
expressed via a tetracycline-inducible promoter, we fur-
ther transformed these cells with plasmid pHD360 [34]
that expresses the tet-repressor, allowing tetracycline-
inducible control of expression of GFP::TbAGO1. The cell
line was named TbAGO1-/-+GFP::TbAGO1Ti. Northern
blotting analysis confirmed that the GFP::TbAGO1 RNA
was expressed in the presence of tetracycline (Fig. 3C).
Fluorescence-activated cell sorter (FACS) analysis
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TbAGO1 is required for RNAi in transient transfection assaysFigure 2
TbAGO1 is required for RNAi in transient transfection assays. A. Wild-type trypanosomes were first electroporated with 
dsRNA corresponding to the indicated genes, returned to culture for 10 h and then transfected with PFRA dsRNA. Samples 
were fixed 15 h later and cells exhibiting PFRA silencing were identified by immunofluorescence using an anti-PFRA specific 
monoclonal antibody. The experiment was repeated six times, yielding similar results. B. FACS analysis of trypanosomes trans-
formed with plasmid pGFPTbAGO1430 grown in the absence (non-induced; thin green line) or in the presence of tetracycline 
(induced; thick lines). Induced cells were not transfected (thick green line) or transfected with TbAGO1 dsRNA (thick red line) 
or with TbGRP1 dsRNA as negative control (thick blue line). GFP::TbAGO1 protein levels were monitored by FACS analysis. 
Only TbAGO1 dsRNA was able to reduce GFP::TbAGO1 fluorescent protein levels (notice shift of thick red line compared to 
blue or green thick lines). Cells were transfected with the PFRA dsRNA 10 h later and PFRA silencing was monitored as above 
(inset). This experiment was carried out twice and yielded similar results.
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Generation of TbAGO1-/- (KO) and TbAGO1-/- +GFP::TbAGO1Ti cell linesFigure 3
Generation of TbAGO1-/- (KO) and TbAGO1-/- +GFP::TbAGO1Ti cell lines. A. Schematic representation of the endogenous 
TbAGO1 locus (top), and of the constructs used for double TbAGO1 knock-out (middle) and for expression of GFP::TbAGO1 
fusion protein (bottom). Large and small boxes represent protein coding sequences and TbAGO1 flanking regions used for the 
knockout construct. The tetracycline-inducible EP promoter of the pGFP::TbAGO1430 vector is indicated by a star. B. South-
ern blot analysis showing the absence of TbAGO1 from the TbAGO1-/- (KO) cell line. Genomic DNA was purified from the 
indicated cell lines, digested with Sca I and Xba I, and fragments were separated and transferred on a nylon membrane for 
hybridisation with a TbAGO1 probe. C. Northern blot analysis. Total RNA (10 µg) from the indicated cell lines was run on a gel 
and transferred onto a nylon membrane for hybridisation with a TbAGO1 probe (top panel) or with an α-tubulin probe (central 
panel). The bottom panel shows ethidium bromide staining of the membrane after transfer.
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TbAGO1-/- cells are resistant to RNAiFigure 4
TbAGO1-/- cells are resistant to RNAi. A. FACS profile of TbAGO1-/- (KO), or of TbAGO1-/- +GFP::TbAGO1Ti cells grown in the 
absence (-TET, non-induced, thin green lines) or in the presence of tetracycline (+TET, induced, thick green lines). B. The indi-
cated cell lines were transfected with PFRA dsRNA and returned to culture for 15 h before fixation and monitoring of the 
RNAi phenotype by immunofluorescence.
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demonstrated that the GFP::TbAGO1 protein was only
expressed in the presence of tetracycline (Fig. 4A).

To determine the involvement of TbAGO1 in RNAi, WT,
TbAGO1-/- and TbAGO1-/-+GFP::TbAGO1Ti cells grown
either in the presence or absence of tetracycline were
transfected with PFRA dsRNA (Fig. 4B) or with tubulin
dsRNA (data not shown). Immunofluorescence analysis
with a PFRA-specific antibody failed to detect a single cell
with reduced PFRA abundance. Therefore, RNAi silencing
was completely abolished in the knockout cell line, dem-
onstrating that TbAGO1 was essential for RNAi. A similar
result was observed in the TbAGO1-/-+GFP::TbAGO1Ti cell
line as long as the fusion protein was not expressed. In
contrast, expression of GFP::TbAGO1 was sufficient to
restore PFRA silencing (Fig. 4B), therefore complementing
the phenotype and confirming that TbAGO1 is required
for RNAi in trypanosomes. Similarly, when TbAGO1-/-
cells were transfected with plasmid pααPFRA430, express-
ing a PFRA dsRNA as a hairpin [22], no PFRA silencing at
all could be observed (data not shown). These data dem-
onstrate that TbAGO1 is required for RNAi generated both
by endogenously-expressed hairpin dsRNA and by exoge-
nously dsRNA synthesised in vitro.

RNAi-deficient trypanosomes show mitotic defects

Although TbAGO1-/- cells were viable, they showed
reduced growth rate and morphological defects. The dou-
bling time of the knockout cell line was ~15 h as opposed
to 8–9 h for WT or complemented cells (Fig. 5A). In an
effort to understand the reduced growth rate of mutant
cells, we monitored their cell biological behaviour. Dur-
ing the cell cycle, trypanosomes need to replicate two sin-
gle unit genomes: the nuclear and the mitochondrial
genomes [35]. Trypanosomes possess a single mitochon-
drion, the kinetoplast, which contains a large DNA net-
work that is visible under light microscopy. The
kinetoplast duplicates first, followed by the nucleus,
defining three cell cycle stages: cells with one kinetoplast
and one nucleus (1K1N), cells with two kinetoplasts and
one nucleus (2K1N) and cells with two kinetoplasts and
two nuclei (2K2N) [35,36]. Cultures of TbAGO1-/- cells
showed normal proportions of these three sub-popula-
tions compared to WT or TbAGO1-/-+GFP::TbAGO1Ti cells
grown in the presence of tetracycline (Fig. 5B), despite the
presence of discrete modifications. However, TbAGO1-/-
cultures exhibited a >30-fold increase in the proportion of
cells with one kinetoplast but with no nucleus, also called
zoids [37,38], and a >20-fold increase in the proportion
of cells with one kinetoplast but with two nuclei (Fig. 5B).
These cell types are rare in normal, healthy cultures and
are the consequences of a defect in nuclear mitosis. The
classic nuclear mitosis / cytokinesis checkpoint is absent
in trypanosomes, where cytokinesis is linked to kineto-
plast duplication and segregation [38]. Therefore cells

with delayed nuclear mitosis that have managed to dupli-
cate and segregate their kinetoplasts can undergo cytoki-
nesis to produce one daughter cell without a nucleus but
with a kinetoplast and another daughter cell with a kine-
toplast and one or two nuclei, if mitosis can be
completed.

These results indicate potential mitosis defects in
TbAGO1-/- cells. We therefore examined the state of
mitotic cells in cultures from WT, TbAGO1-/- and
TbAGO1-/-+GFP::TbAGO1Ti cells grown in the presence of
tetracycline (Fig. 6). Trypanosomes were fixed and stained
with 4',6'-diamidino-2-phenylindole (DAPI) to visualise
kinetoplast and nuclear DNA and with the anti-tubulin
KMX-1 antibody to identify the mitotic spindle. In WT
trypanosomes, mitotic cells are identified by the presence
of a large nucleus and two well-separated kinetoplasts
(2K1N cells). The mitotic spindle is easily recognisable,
stretching in the direction of the long axis of the cells (Fig.
6, top panel). The vast majority of such 2K1N wild-type
cells displayed a normal spindle (Table 1), as expected
from previous observations [39]. In contrast, more than
20 % of the TbAGO1-/- cells at the 2K1N stage did not pos-
sess a recognisable spindle at all, and of those with a spin-
dle, almost half displayed various abnormalities (Fig. 6
and Table 1). In many cases, the spindle was not fully
assembled and failed to show the typical elongation seen
in WT trypanosomes. For example, the TbAGO1-/- cell
shown on the central panel of Fig. 6 is at the same stage of
its cell cycle as its WT counterpart shown on the top panel,
judging from the distance separating the two kinetoplasts.
Intriguingly, in the knockout cell, the spindle was barely
formed, being very short and with no recognisable spindle
poles when compared with the WT cell in the top panel.
Another frequent defect was the presence of a large bent
spindle, showing a bundle of microtubules present on
only one side of the nucleus (Fig. 6, bottom panel). In sev-
eral cases, the DNA staining pattern of the mitotic nucleus
also looked unusual. Instead of a large, relatively homog-
enous amount of DNA (trypanosome chromosomes do
not condense at mitosis), patches of disperse intense
staining were frequently observed (Fig. 6, central panel).

The above data suggest significant mitotic defects in the
TbAGO1-/- cell line. To assess whether nuclear segregation
was complete, we used the monoclonal antibody L1C6,
which recognises an unknown antigen localised to the
nucleolus (L. Kohl and K. Gull, unpublished observa-
tions). In trypanosomes, the nucleolus is not dispersed at
mitosis, which is intranuclear, but it is segregated along
the mitotic spindle. In non-mitotic WT cells, this antibody
stained the nucleolus, producing one bright spot per
nucleus (data not shown). During early anaphase, the sig-
nal looked like a bright bar (Fig. 7A, left), corresponding
to the nucleolus that is being segregated, since the
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TbAGO1-/- cells show delayed growth rate and abnormal cell typesFigure 5
TbAGO1-/- cells show delayed growth rate and abnormal cell types. A. Growth curve of wild type (W.T., red squares), TbAGO1-
/- (K.O., blue crosses), or of TbAGO1-/- +GFP::TbAGO1Ti cells grown in the absence (-TET, non-induced, open diamonds and dot-
ted green line) or in the presence of tetracycline (+TET, induced, closed diamonds and full green line). B. Analysis of cell types 
within populations of wild-type (W.T.), TbAGO1-/- (K.O.), or of TbAGO1-/- +GFP::TbAGO1Ti cells grown in the presence of tetra-
cycline (K.O.+GFP::TbAGO1+TET). 1K1N, cells with one kinetoplast and one nucleus; 2K1N, cells with two kinetoplasts and 
one nucleus; 2K2N, cells with two kinetoplasts and two nuclei; 1K0N, cells with one kinetoplast but without nucleus (zoids) 
and 1K2N, cells with one kinetoplast and two nuclei. More than 1 000 cells were counted per experiment.
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Spindle formation is frequently aberrant in TbAGO1-/- cellsFigure 6
Spindle formation is frequently aberrant in TbAGO1-/- cells. Trypanosomes were stained with the anti-tubulin KMX-1 mono-
clonal antibody and counterstained with DAPI to show nuclear and mitochondrial DNA. Mitotic cells from wild type (WT, top 
panels) or TbAGO1-/- (KO, central and bottom panels). From left to right, phase contrast image, DAPI staining (blue), tubulin 
staining (red) and merged DAPI and tubulin staining. The typical elongated mitotic spindle found in wild-type trypanosomes is 
frequently poorly developed (central panels) or completely bent on one side of the nucleus (bottom panels) in TbAGO1-/- cells.
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nucleolus and nuclear membrane remain present
throughout the trypanosome cell cycle. At telophase, both
nuclei contained a well-defined nucleolus, recognisable as
a bright spot (Fig. 7A, centre and right). Observation of
binucleated cells of the TbAGO1-/- mutant revealed that
one third of them displayed unequal distribution of the
L1C6 nucleolar marker, suggesting that nuclei did not
inherit the same amount of nucleolar material (Table 1
and Fig. 7B). In some cells, spots of staining appeared in
the cytoplasm between the two nuclei, suggesting delayed
or lost material (Fig. 7B, central panels). In addition,
DAPI staining showed that the two nuclei often had differ-
ent morphologies (Fig. 7B, right panels).

Further observations of DAPI staining in binucleated cells
from the TbAGO1-/- mutant revealed the presence of lag-
ging DNA material during mitosis (Fig. 7B and data not
shown). These data suggest possible difficulties in chro-
mosome segregation, a defect previously reported in yeast
RNAi mutants [40,41]. To evaluate this possibility, we
performed fluorescence in situ hybridisation (FISH), using
a probe recognising the tandem repeats of 5S ribosomal
DNA, to visualise chromosome I at mitosis [42]. In WT
trypanosomes, two spots could be identified in G1 cells
(Fig. 8A). Progression through mitosis can be monitored
by DAPI staining using both nuclear and mitochondrial
genomes as markers [35]. In early (Fig. 8B) and late (Fig.
8C) anaphase, WT cells showed four spots migrating
towards the spindle poles, reproducing published find-
ings [42]. In contrast, this pattern was frequently modified
in TbAGO1-/- mitotic cells (Fig. 8D,8E,8F). Judging from
the distance separating the two kinetoplasts, the TbAGO1-
/- cell shown in Fig. 8D is at the same stage of the cell cycle
as its WT counterpart presented in Fig. 8B. However, chro-
mosome I segregation appeared to be delayed, with all the
chromosomes found in the centre of the mitotic spindle.
This defect was the most frequent in TbAGO1-/- mitotic
cells. In other cases, unequal chromosome segregation
was observed, with three chromosomes migrating
towards one pole of the spindle and only one towards the
opposite pole (Fig. 8E). In more remarkable cases, DAPI
staining revealed the presence of several DNA entities con-
taining variable numbers of chromosome I (Fig. 8F).

These data strongly suggest that, in addition to spindle
formation defects and to nucleolar segregation defects,
chromosome segregation is also affected in the absence of
TbAGO1. Taken together, these data indicate that the
growth delay measured in the TbAGO1-/- mutant is very
likely to be due to a mitotic defect and suggest a possible
involvement of the RNAi machinery in this process.

Finally, as the GFP::TbAGO1 fusion protein is functional
as it is able to complement the double mutant, it can be
used as a tool to determine TbAGO1 localisation. Direct
observation of live TbAGO1-/-+GFP::TbAGO1Ti cells
grown in the presence of tetracycline without any fixative
under the microscope revealed that the GFP::TbAGO1
fusion protein was mostly cytoplasmic (Fig. 9). However,
some redistribution seemed to occur at mitosis, when the
protein was concentrated around the nucleus and it was
spread between the two nuclei at the end of mitosis. A
similar distribution was observed at different levels of
induction, irrespective of the amount of GFP::TbAGO1
fusion protein present.

Discussion
Identification of novel Argonaute proteins

Searches through protist genome databases identified four
novel Argonaute protein members: TbAGO1 and TbPWI1
in T. brucei, TcPWI1 in T. cruzi, LmPWI1 in L. major and
GlAGO1 in G. lamblia. These protists belong to the orders
Kinetoplastida and Diplomononida, which diverged very
early from the main eukaryotic lineage, revealing the
ancient origin of the Argonaute proteins. Since genome
sequencing of these organisms has not yet been com-
pleted, other members of the Argonaute family may be
uncovered. We could not identify any Argonaute protein
in the database of P. falciparum or in other Plasmodium
species, although genome sequencing is complete. Plas-
modium is a parasite that belongs to the apicomplexan
group that appeared later than kinetoplastids in evolu-
tion. It is possible that Argonaute proteins have been lost
in this group, as they have in the budding yeast Saccharo-
myces cerevisae [43]. Alternatively, they could have
diverged too much to be recognised by conventional

Table 1: Proportion of various aberrant cell types.

Mitotic cells without spindle1 (%) Abnormal spindles2 (%) Unequal distribution of nucleolar 
marker3 (%)

W.T. 3.2 0.0 8.2

K.O. 21.0 43.9 33.0

K.O. + GFP::TbAGO1 13.6 16.7 18.0

12K1N cells were scored for the presence or the absence of a recognisable mitotic spindle after KMX-1 staining, n > 118. 2In cells with recognisable 
spindle, n > 118 3Binucleated cells were scored, n > 100



BMC Biology 2003, 1 http://www.biomedcentral.com/1741-7007/1/2

Page 12 of 20

(page number not for citation purposes)

Nucleolus segregation is not equal in TbAGO1-/- cellsFigure 7
Nucleolus segregation is not equal in TbAGO1-/- cells. Immunofluorescence of trypanosomes stained with the anti-nucleolus 
marker L1C6 monoclonal antibody and counterstained with DAPI to show nuclear and mitochondrial DNA. A. Wild-type 
trypanosomes, B. TbAGO1-/- trypanosomes. In both cases, the top series shows a phase contrast image superimposed onto the 
DAPI image (blue), and the bottom series shows the DAPI image (blue) merged with nucleolus staining (red). Left panels, cells 
at the anaphase stage of nuclear mitosis. Middle and right panels, cells at the telophase stage of nuclear mitosis. In wild-type 
cells (A), both nuclei inherit similar amounts of nucleolar material, whereas clear differences are visible between the two nuclei 
in a large number of binucleated cells from the TbAGO1-/- mutant (B).
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Chromosome segregation is modified in TbAGO1-/- cellsFigure 8
Chromosome segregation is modified in TbAGO1-/- cells. Wild-type (A-C) and TbAGO1-/- (D-F) cells were fixed and processed 
for FISH using a probe for the 5S tandem repeats, localised on chromosome I and stained with DAPI. Left, phase-contrast 
image merged to DAPI (blue), middle, chromosome I signal (yellow) and right, merged DAPI-FISH signals. A. G1 cell; B-F. 
Mitotic cells. Defects in chromosome segregation are frequently observed in mutant cells.
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BLAST searches, especially since the genome of Plasmo-
dium species is AT-biased.

All four proteins contained a typical Piwi domain [30],
one of the signatures of the Argonaute protein family. The
function of this domain is unknown but deletion
experiments in mammalian cells suggest that it could be

involved in interactions with the type III ribonuclease
Dicer [44]. The PAZ motif usually shows weaker conserva-
tion [13,45] and could only be unambiguously identified
in TbAGO1. The function of this domain is also
unknown, although interestingly, it is present in Dicer [6].
The PRP motif, identified in the mammalian Argonaute
subfamily eIF2C [44], could not be found in any of the

GFP::TbAGO1 is localised in the cytoplasmFigure 9
GFP::TbAGO1 is localised in the cytoplasm. Live cells from cell line TbAGO1-/- +GFP::TbAGO1Ti were observed by phase con-
trast (top panels) or by direct GFP fluorescence (bottom panels, images were not digitally enhanced). The position in the cell 
cycle can be evaluated by the number and position of flagellar pockets (indicated by yellow stars) and the distance separating 
them. Arrows indicate the position of the nucleolus (dark spot within the nucleus). A. Cell with one kinetoplast and one 
nucleus. B, C. Cells with two kinetoplasts and one mitotic nucleus. D. Post-mitotic cell with two kinetoplasts and two nuclei.
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four protist Argonaute proteins, suggesting that it
appeared later in the evolution of multicellular
organisms.

In addition to PAZ and Piwi domains, TbAGO1 possesses
an RGG box, containing 10 copies of the arginine-glycine-
glycine motif in the first 60 amino acids. This motif is
involved in nucleic acid binding and has been identified
in numerous proteins including nucleolin and the heli-
case Vasa. RNA binding proteins bearing RGG motifs have
already been identified in the T. brucei proteins NOP40/
44, a nucleolar protein [46] and the mitochondrial pro-
tein RBP16 [47]. In the latter case, extensive arginine
methylation of RBP16 has been demonstrated, although
its function remains to be determined [48].

TbAGO1 is required for RNAi

Dual transient transfection assays and TbAGO1 gene dele-
tion followed by transformation or endogenous expres-
sion of dsRNA clearly demonstrated that TbAGO1, but
not TbPWI1 is required for RNAi. This shows that the two
proteins are not redundant, since TbPWI1 could not sub-
stitute for TbAGO1 in any of the RNAi assays we used.
Similarly, inactivation of Caenorhabditis elegans RDE1
abolishes RNAi completely despite the presence of at least
22 other Argonaute members in the genome [11,12].
Interestingly, Leishmania is not able to carry out RNAi [29]
and possesses only a single Argonaute gene, LmPWI1 that
is much closer to TbPWI1 than to TbAGO1.

A role for Argonaute proteins in RNA silencing processes
has been shown in C. elegans [11], Neurospora crassa [45]
and A. thaliana [49] by direct mutagenesis, and in D. mel-
anogaster after purification of a ribonucleoprotein com-
plex involved in RNAi, followed by functional
characterisation in double transient transfection assays
[31]. Involvement of the four mammalian Argonaute pro-
teins of the eIF2C subfamily has also been shown by dou-
ble transfection assays, this time using siRNA [44].
Trypanosomes are the first organisms for which a full
knockout of an Argonaute protein involved in RNAi has
been reported.

It is not yet clear how Argonaute proteins participate in
RNAi. It should be noted that three of the Argonaute pro-
teins proven to be involved in RNAi (AtAGO1, DmAGO2
and TbAGO1) possess amino-terminal extensions. The
RGG box of TbAGO1 could be involved in RNA binding
activities, supporting the hypothesis that Argonaute pro-
teins could retain RNA molecules in the RNAi complex
[28,50]. Interestingly, several RGG motifs are also present
in the poly-Q box of A. thaliana (Fig. 1B), although no
mutants affecting this domain have yet been reported
[49,51].

TbAGO1 is required for proper chromosome segregation

Despite being completely resistant to RNAi generated by
exogenous (in vitro synthesised) dsRNA or by endogenous
(expressed hairpin) dsRNA, TbAGO1-/- mutant cells are
viable, showing that RNAi activity is dispensable for pro-
cyclic trypanosomes in culture. Similarly, several mutants
of the RNAi pathway in N. crassa, A. thaliana and C. elegans
survive normally under laboratory conditions [2,8,9,11].
A noticeable exception is found in A. thaliana where muta-
tions in the AGO1 gene have severe consequences on both
RNA silencing and development [49,51]. In trypano-
somes, detailed analysis demonstrated that TbAGO1-/-
mutant cells encountered significant difficulties in cell
cycle progression, resulting in reduced growth rate. Four
lines of evidence indicated that the Argonaute protein is
essential for mitosis and proper chromosome segregation
in T. brucei. Firstly, the mutant showed a 20–30-fold
increase of zoids and 1K2N cells, aberrant cell types
typical of problems with mitosis such as those caused by
the microtubule inhibitor rhizoxin [37,38]. Treatment of
WT trypanosomes with low concentrations of this drug
selectively interferes with spindle formation, resulting in
severe deficits in mitosis. However, mitochondrial
genome duplication and segregation are not affected and
cytokinesis can occur. This produces progeny with one
kinetoplast but without a nucleus (zoids), and progeny
with either one kinetoplast and one nucleus (if mitosis is
completely inhibited) or with one kinetoplast and two
nuclei (if mitosis is perturbed but not abolished). Signifi-
cant production of zoids is also observed when mitosis
progression is inhibited via RNAi targeting either cyclins
or proteasome components potentially involved in cyclin
control [52-54]. A delay in mitosis is further corroborated
by the observation that, in the mutant TbAGO1-/- cell line,
the proportion of 2K1N cells is increased, whereas that of
2K2N cells is reduced (Fig. 5B). Secondly, the spindle was
frequently not recognisable in mitotic mutant cells and,
when present, it exhibited significant defects in forma-
tion, being too short, without poles or bent. Thirdly, fol-
lowing mitosis, around one third of the binucleated
mutant cells showed an unequal distribution of a nucleo-
lar marker. Fourthly, and most significantly, FISH analysis
revealed frequent chromosome segregation defects in
TbAGO1-/- mitotic cells. Taken together with the presence
of lagging DNA material and the frequent occurrence of
apparently unequal DNA amounts in the two nuclei fol-
lowing mitosis, these data indicate significant problems in
chromosome segregation and nuclear mitosis. It now
remains to be seen whether these defects are related to the
inability to carry out RNAi or to another function per-
formed by TbAGO1.

These results are reminiscent of those reported in the fis-
sion yeast Schizosaccharomyces pombe, in which genetic
deletion of AGO1 (the only Argonaute protein) or RDP1
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(a homologue of RNA-dependent RNA polymerase) or
DCR1 (a homologue of Dicer) leads to chromosome
segregation defects and a reduced growth rate [40,41].
RNAi has recently been shown to be functional in yeast
[55]. However, it has not been reported whether any of
these three proteins are involved. Intriguingly, AGO1,
RDP1 and DCR1 are all essential for heterochromatin for-
mation at the centromere, transcriptional gene silencing
of this same area and proper centromere function [16,56].
It has been suggested that the RNAi machinery is required
to process non-coding transcripts from the centromere,
targeting these genomic sequences for formation of hete-
rochromatin mediated by histone H3 methylation and
recruiting Swi6/HP1 followed by cohesin protein com-
plexes [16,17,57]. These results are also supported by the
sequencing of yeast siRNAs, revealing a significant abun-
dance of centromere-derived RNAs [58]. Defects in hete-
rochromatin formation at the centromere interfere with
kinetochore and mitotic spindle formation, probably
explaining the mitotic segregation defects reported
[40,41]. Interestingly, csp9, a fission yeast mutant
impaired in chromosome segregation and transcriptional
silencing at the centromere [59] turned out to be an allele
of AGO1 (cited as personal communication by R.C. All-
shire in [16]).

In T. brucei, one could imagine a similar involvement of
the RNAi machinery in heterochromatin formation at the
centromere, contribution to kinetochore assembly and
chromosome segregation at mitosis. Unfortunately, cen-
tromeres have not yet been identified in trypanosomes
and full sequencing and assembly of chromosomes I and
II did not reveal any typical centromeric sequences
[60,61], thereby preventing direct testing of this hypothe-
sis. One may wonder how the related kinetoplastid Leish-
mania behaves during mitosis, as the RNAi machinery
appears to be absent [29]. This situation is reminiscent of
observations in yeast. Indeed, all the components of the
RNAi machinery are present in fission yeast, whereas none
of them have been found in budding yeast, although both
genomes have been fully sequenced [43]. This observa-
tion could be related to the striking difference between
centromere structure in these two organisms [62]. Simi-
larly, trypanosomes and Leishmania separated a long time
ago and could have developed separate systems to per-
form centromeric functions. Unfortunately the lack of
information on centromere identity in both organisms
prevents further investigation.

Finally, there is little information about heterochromatin
structure in trypanosomes, despite the fact that it appears
to play critical roles in the control of gene expression [63].
Understanding the mechanisms of heterochromatin for-
mation will no doubt be a crucial advance in unveiling the

complex mechanisms of gene regulation in the
Kinetoplastida.

Conclusions
We have identified novel Argonaute-like proteins in pro-
tozoa and demonstrated the essential role of one of them,
TbAGO1, in RNAi in Trypanosoma brucei. Our data also
reveal the importance of TbAGO1, probably via the RNAi
machinery for proper chromosome segregation and spin-
dle formation. Recent literature on the fission yeast S.
pombe shows that AGO1 and two other components of the
RNAi machinery are required for heterochromatin forma-
tion at the centromere and transcriptional gene silencing.
Under these conditions, centromeres do not operate nor-
mally, leading to problems during mitosis. We postulate
that a similar mechanism might operate in T. brucei, indi-
cating the evolutionary ancient origin of Argonaute pro-
teins involvement in RNAi and possibly in
heterochromatin formation and centromere function.

Methods
Trypanosome cultures

The procyclic stage Trypanosoma brucei brucei strain 427
was used throughout this study. Cells were cultured at
27°C in semi-defined medium 79 containing 10 % foetal
calf serum at densities of 1–8 million per ml. The PTH cell
line that expresses the tet-repressor and allows tetracy-
cline-inducible expression [64] was cultured under the
same conditions.

Identification of Argonaute genes

The TIGR http://www.tigr.org/tdb/mdb/tbdb and Sanger
Centre T. brucei databases http://www.sanger.ac.uk/
Projects/T_brucei/, the L. major database http://
www.sanger.ac.uk/Projects/L_major/, the T. cruzi data-
base http://tcruzidb.org/, the P. falciparum database http:/
/www.plasmodb.org/ and the G. lamblia database http://
www.mbl.edu/Giardia were screened by BLAST search for
the presence of Argonaute-like genes using the full-length
sequence of the Paramecium PAP gene. Homologous
sequences were identified and when required the genes
were re-constructed. TbAGO1 and TbPWI1 were PCR-
amplified using the high fidelity enzyme Pwo (Roche) and
control-sequenced. Sequences were submitted to the Gen-
Bank database as AY433802 (TbAGO1) and AY433803
(TbPWI1).

Plasmid construction and mutant cell line generation

For expression of GFP::TbAGO1, a fusion gene was con-
structed in plasmid pGFPPFRC430 (P.B., unpublished).
This plasmid is a derivative of pHD430 [34] and contains
the tetracycline-inducible EP1 promoter, followed by the
EGFPN2 gene (Clontech) from which the stop codon was
deleted, immediately followed by an XbaI site, in frame
with the PFRC gene, followed by the 3' untranslated

http://www.tigr.org/tdb/mdb/tbdb
http://www.sanger.ac.uk/Projects/T_brucei/
http://www.sanger.ac.uk/Projects/T_brucei/
http://www.sanger.ac.uk/Projects/L_major/
http://www.sanger.ac.uk/Projects/L_major/
http://tcruzidb.org/
http://www.plasmodb.org/
http://www.plasmodb.org/
http://www.mbl.edu/Giardia
http://www.mbl.edu/Giardia
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region of aldolase and by a cassette with the phleomycin
gene resistance marker. The complete coding sequence of
TbAGO1 was amplified by PCR with Pwo DNA polymerase
(Roche) from genomic DNA using primers GCACGTCTA-
GAATGTCTGACTGGGAACGTGG (XbaI site underlined)
and GCACGGGATCCTTATAGATAATGCATTGTTGT (Bam
HI site underlined). The PCR product was cloned in pCR-
Blunt-II-TOPO (Invitrogen) and the TbAGO1 coding
sequence (including its stop codon) was cloned in frame
with the EGFPN2 gene in the pGFPPFRC430 vector using
Xba I and Bam HI sites to generate plasmid
pGFPTbAGO1430. This plasmid was linearised with Eco
RV and transformed in the PTH cell line that expresses the
Tet-repressor [64] to generate a cell line that expresses the
GFP::TbAGO1 fusion protein only in the presence of tet-
racycline (1 µg per ml).

For TbAGO1 gene deletion, TbAGO1 flanking sequences
were amplified by PCR with Pfu DNA polymerase from
genomic DNA using primers
CGCCAACTGTACACTCGTATT and TTTATTTAAATC-
CTTTTTATTAAGTTGCTT (upstream region, amplifying a
sequence of 500 bp terminating immediately ahead of
TbAGO1 start codon) and ACCACCGCTTCTCCG-
GGGAAAGCAA and ACCACGAAACTCACACTGCTGT-
CAG (downstream region, amplifying a sequence of 453
bp, starting immediately downstream of TbAGO1 stop
codon). The full coding sequences of gene resistance
markers BSD and NEO were amplified with Pfu (Invitro-
gen) from plasmid DNA using primers
ATGGCCAAGCCTTTGTCTCA and TTAGCCCTCCCACA-
CATAAC (BSD) or ATGCGCGAAATCGTCTGCG and TCA-
GAAGAACTCGTCAAGAAGG (NEO). PCR products were
ligated and re-amplified using the PCR-ligation protocol
as described [65] with a few modifications. We used bolt-
ing primers CGCCAACTGTACACTCGTATT (upstream
region, position in the sequence: -466) and GAAACT-
CACACTGCTGTCAGC (downstream region, position in
the 3' flanking sequence: +448) for amplification after the
second ligation. Final products used for transfection were
therefore composed of 466 bp from the TbAGO1
upstream flanking region, the gene resistance marker BSD
or NEO and 448 bp from the TbAGO1 downstream flank-
ing region. First, the first allele of TbAGO1 was replaced
by transformation of wild-type T. brucei (strain 427) with
the BSD construct followed by selection with 10 µg/ml
blasticidin (Sigma). Resistant cell lines were obtained at
the expected frequency and further transformed with the
NEO construct to replace the second TbAGO1 allele. Cells
were selected with 10 µg/ml of blasticidin and 15 µg/ml
of G418 (Calbiochem). Double resistant cells were
obtained at the expected frequency and analysed by
Southern blotting. A transformant cell line was selected,
subcloned by limited dilution and termed TbAGO1-/- cell
line.

For complementation, the TbAGO1-/- cell line was trans-
formed with the pGFPTbAGO1430 plasmid and selected
with 2 µg/ml phleomycin (Sigma), 10 µg/ml of blasticidin
and 15 µg/ml of G418. Transformant cell lines were
screened by FACS analysis detecting GFP fluorescence. To
obtain tetracycline-regulatable expression of
GFP::TbAGO1 in the knock-out background, this cell line
was further transformed with plasmid pHD360 (line-
arised with Not I), that expresses the tet-repressor after
integration in the tubulin locus [34]. TbAGO1-/-
+GFP::TbAGO1Ti cell lines were selected in the presence of
1 µg/ml tetracyline, 20 µg/ml hygromycin (Sigma), 2 µg/
ml phleomycin, 10 µg/ml blasticidin and 15 µg/ml G418.
Transformants were screened by FACS analysis before
being grown in the absence of tetracycline to select cell
lines with optimal control of expression. In all cases, cell
lines were subcloned before any detailed analysis. For
measurements of growth rates, cells were always grown
without antibiotics (with the exception of tetracycline
when required) for at least 7 days before the experiments
and for the duration of the whole experiment.

RT-PCR, Northern and Southern blotting

RT-PCR was performed as described previously [32] using
250 ng of total RNA (DNA-free) and the following prim-
ers: ACGCCAAGCTTGGCGGTAGCGAAGACGCATTTG
and GCACCCTCGAGACGCTCGTCGGATACTACCGCG
(TbAGO1 segment from the nucleotide coding sequence
425 to 936); GCATCCAAGCTTCCATAGGTCGTTACT-
GTCG and CGTCGTCTCGAGCCACCGGAAGATGT-
GCCTGC (TbPWI1 segment from the nucleotide coding
sequence 2228 to 2847). Northern blotting was carried
out as described [32], except that DNA probes were radi-
olabelled by random priming. For Southern blotting, 20µg genomic DNA was extracted from the various trypano-
some cell lines and digested with the appropriate
restriction enzymes, before separation on an 0.8 % agar-
ose gel. Samples were transferred by capillarity to a
HybondN+ (Amersham) membrane. The membrane was
washed in 2x SSC, prehybridised in RapidHyb buffer
(Amersham) at 65°C for 30 min and hybridised with radi-
olabelled probes overnight at 65°C. The membrane was
washed twice for 5 min in 2x SSC and once for 20 min
with 2x SSC, 0.1% SDS at 65°C. Radioactive signals were
identified by Typhoon 9410 (Amersham) analysis and
quantified using ImageQuant 5.2 software.

RNAi assays by transient transfection

RNA was synthesised in vitro with T3 and Sp6 polymerases
using PCR products as templates. The following primers
(incorporating T3 or Sp6 promoters) were used: for
TbAGO1 (from the nucleotide coding sequence 604–
903), AATTAACCCTCACTAAAGGGAGATCGTTGAAC-
CCCAAAGAGAG (T3 promoter underlined) and
ATTTAGGTGACACTATAGAAGAGCGCTCGCCGGATAC-
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TACCGC (Sp6 promoter underlined); for TbPWI1 (from
the nucleotide coding sequence 2228–2848),
AATTAACCCTCACTAAAGGGAGACCATAGGTCGTTACT
GTCGT (T3 promoter underlined) and
ATTTAGGTGACACTATAGAAGAGCCACCGGAAGATGT-
GCCTGC (Sp6 promoter underlined); for TbGRP1 (gly-
cine-rich protein, from the nucleotide coding sequence
604–990), AATTAACCCTCACTAAAGGGAGACAGCGT-
GTGCAGGTGTCTGG (T3 promoter underlined) and
ATTTAGGTGACACTATAGAAGAGCACCTTCTGACT-
GGCATCAC (Sp6 promoter underlined); for EGFPN2
(from the nucleotide coding sequence 476–691),
AATTAACCCTCACTAAAGGGAGAAGAACGGCATCAAG-
GTGAAC (T3 promoter underlined) and
ATTTAGGTGACACTATAGAAGAGTGATCCCGGCGGCG-
GTCACG (Sp6 promoter underlined) and finally PFRA
(from the nucleotide coding sequence 1084–1358),
ATTTAGGTGACACTATAGAGAGGTGAAGCGCCGTATT-
GAGGA (Sp6 promoter underlined) and
AATTAACCCTCACTAAAGGGAGAGTTTTGTACAGGCGA
CGGAA (T3 promoter underlined). Amplified regions
were selected to avoid cross-RNAi with any other
sequence present in the T. brucei database [32]. Single-
stranded RNAs were mixed, heated at 90°C for 5 min and
annealed in the RNA transcription buffer at 65°C for 30
min. Annealed dsRNA were sterilised by addition of 2.5
volumes of ethanol and 0.1 volume of 3 M sodium acetate
(pH 5.0) followed by precipitation and resuspended in
sterile water. Annealed dsRNA was introduced into
trypanosomes by electroporation as described [21]. For
direct transfection assays, cells were transformed with
PFRA, FLA1 or α-tubulin dsRNA, and returned to culture
for 15–18 h before fixation and analysis by immunofluo-
rescence. For dual transfection assays, cells were first elec-
troporated with dsRNA from the gene to be tested,
returned to culture for 10 hours and transfected with
PFRA, FLA1 or tubulin dsRNA, grown for 15–18 h and
processed as above. When GFP fluorescent proteins were
used, cells were analysed by FACS (FACSort, Becton Dick-
inson) before transfection and immediately before
fixation.

Immunofluorescence, FISH, image acquisition and analysis

For indirect immunofluorescence with the anti-PFRA spe-
cific monoclonal antibody L8C4 [66] or with the anti-
nucleolar antibody L1C6 (L. Kohl and K. Gull, University
of Manchester, unpublished), cells were spread on poly-L-
lysine coated slides and fixed in methanol at -20°C before
processing as described [67]. For indirect immunofluores-
cence with the anti-β tubulin monoclonal antibody KMX-
1 [68], trypanosomes were fixed in 4 % (w/v) fresh para-
formaldehyde in phosphate-buffered saline (PBS) at
room temperature for 10 min, permeabilised for 10 min-
utes in 0.1 % Nonidet P-40 and processed as described
[67]. FISH was performed as described [42] except that

probes were directly labelled with Alexa 546-dUTP
(Molecular Probes). Slides were viewed using a DMR Leica
microscope and images were captured with a Cool Snap
HQ camera (Roper Scientific). Images were analysed
using the IPLab Spectrum software (Scanalytics).
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