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Abstract: In this paper a nonlinear prediction-based control approach is proposed
for stabilization of Planar Vertical Take-Off and Landing (PVTOL) aircraft. This
system has fewer control inputs than degrees of freedom (i.e. under-actuated)
and has unstable zero dynamics (i.e. non-minimum phase). The proposed control
approach is based on partial feedback linearization, which allows the emergence
of a completely linearized sub-system and internal dynamics. Then prediction
based optimal trajectories are proposed for the linearized variables, where the
optimization objective is to enhance the behavior and the stability of the internal
dynamics. Stability analysis of the closed-loop system is performed using a
graphical tool based on Poincaré’s section. The performance of the proposed
scheme is illustrated through simulations.
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1. INTRODUCTION

Vertical Take-off and Landing (VTOL) describes
flying machines that can lift off and land up verti-
cally. This class of machines includes helicopters,
balloons and few aircrafts. PVTOL aircrafts have
the same property but projected in the plane.
The simplified PVTOL is a mathematical model
of flying aircraft that evolve in the vertical plane
with three degrees of freedom. These coordinates
correspond to its position and orientation in the
frontal plane. However this system is equipped
with only two thrusters that produce a force and
a moment on the flying machine.
PVTOL stabilization represents a challenging and
a very interesting nonlinear control problem since
it includes difficulties such as under-actuation
and non-minimum phase features. Consequently
it gains more and more interest within the control
community. In the last few years, many control
strategies have been proposed to control the sim-

plified PVTOL aircraft, which has a minimum
number of states, but that retains the main fea-
tures that must be considered when designing
controls for a real aircraft.
The existing works can be subdivided into two
main classes: the first one addresses the trajectory
tracking problem, whereas the second one aimes
to solve the stabilization problem. The first set of
results dealing with trajectory tracking is chrono-
logically earlier. Hauser et al. (1992a) proposed
an approximate input-output linearization which
results in bounded tracking (and stabilization) for
the V/STOL. This approach was then extended
by Martin et al. (1996) with a flat output ap-
proach. In contrast to the approximate lineariza-
tion proposed by Hauser, the Martin’s approach
enables to take into account non-minimum phase
flat systems as well as a non zero coupling pa-
rameter. A multirate digital approach was initially
proposed in Di Giamberardino and Djemai (1994)



and then further extended. It is worth to empha-
size that these works assume that the rolling angle
remains within the interval ]− π

2 , π
2 [.

The efforts brought to achieve global stabiliza-
tion are however more recent. In Fantoni et al.
(2002), taking first the rolling angle directly as
control and after a coordinate change, the system
is transformed to a double integrator chain. Using
a result of Teel et al. (1995), this first subsystem
is stabilized with a positive and bounded thrust.
A tracking strategy is then used to force the
roll angle to converge to the trajectory required
to stabilize the first subsystem. This strategy
that initially enabled only bounded thrust was
extended in Zavala et al. (2003) to take care
also of a bounded angular acceleration. It should
be emphasized that the result obtained is global
contrary to most preceding results. Beside this
important work, a robust stabilization can be
found in Lin et al. (1999). The robust stabilization
objective is formulated as an optimal control. The
obtained Hamilton-Jacobi-Bellman (HJB) prob-
lem can then be explicitly solved for a particu-
lar parametrization of the controller, based on a
transformation that often appears in the trajec-
tory tracking framework, assumes that the rolling
angle remains in the strict positive half plane
] − π

2 , π
2 [. Furthermore, a small displacement as-

sumption is made on the angle θ in order to
simplify the HJB problem formulation.
In this paper a recently developed control scheme
(cf. Chemori and Alamir (2005)) is applied to
control the PVTOL aircraft. Simulation results
are given to state the efficiency of the proposed
control approach.
The outline of the paper is as follows. In section 2
the PVTOL aircraft is described and its dynamic
model is given. Section 3 is devoted to partial feed-
back linearization of the dynamic model. While in
section 4 the proposed feedback controller is sum-
marized. Stability analysis of the resulting closed-
loop system is discussed in section 5. Section 6
is then dedicated to simulation results, and the
paper ends with a conclusion.

2. DESCRIPTION & DYNAMICS OF THE
PVTOL AIRCRAFT

Consider the nonlinear simplified dynamics of the
PVTOL aircraft initially proposed in Hauser et al.
(1992b), and widely used since:

ẍ =− sin(θ)u1 + ε cos(θ)u2 (1)

ÿ = cos(θ)u1 + ε sin(θ)u2 − 1 (2)

θ̈ = u2 (3)

where x and y represent respectively the hori-
zontal and vertical position of the aircraft center

of mass as shown in figure 1. θ is the roll angle
that the aircraft makes with the horizon. The
control inputs u1 and u2 represent the normalized
quantities related to the vertical thrust directed
upwards with respect to the aircraft and the an-
gular acceleration (rolling moment).
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Fig. 1. View of the PVTOL aircraft

The parameter ε is a coefficient which charac-
terizes the coupling between the rolling moment
and the lateral acceleration of the aircraft. For
usual aircrafts, this parameter is small but on
recent applications like Unmanned Air Vehicles
(UAV) or flapping robots, this parameter may
have a non negligible influence. The coefficient
′−1′ in equation (2) corresponds to the normalized
gravitational acceleration. The different model pa-
rameters listed above are illustrated in figure 1.

3. FEEDBACK LINEARIZATION

Consider the simplified dynamic model (1)-(3) of
the PVTOL aircraft, and the two outputs y1 =
x, y2 = y. Let us now derive the outputs until at
least one of the inputs appear. The two outputs
derived twice give:

[
ẍ
ÿ

]
=

[
0
−1

]
+

[
− sin(θ) ε cos(θ)
cos(θ) ε sin(θ)

] [
u1

u2

]
(4)

where the matrix D =
[
− sin(θ) ε cos(θ)
cos(θ) ε sin(θ)

]
is

called the decoupling matrix. It is non singular
since det(D) = −ε.

Remark 1. In the case where ε = 0, it exists
a bijective coordinate transformation that brings
the dynamics with ε = 0 to the dynamics (1)-
(3) Olfati-Saber (2000). Then, even though ε = 0,
with this transformation the decoupling matrix is
always non singular.

Consider now the control inputs chosen as :u1 = − sin(θ)v1 + cos(θ)(1 + v2)

u2 =
1
ε

cos(θ)v1 +
1
ε

sin(θ)(1 + v2)
(5)

These controls injected in the dynamics (1)-(3)
give the following partial linearized system:



ẍ = v1 (6)

ÿ = v2 (7)

θ̈ =
1
ε
(sin(θ) + cos(θ)v1 + sin(θ)v2) (8)

which could be written in the standard form of
partially linearized systems (Khalil (1996))

ζ̇ = Aζ + Bv ; ζ ∈ Rnζ (9)

η̇ = Z(ζ, η) ; η ∈ Rnη (10)

with ζ =
[
x ẋ y ẏ

]T
η =

[
θ θ̇

]T
. The com-

pletely linearized part is controllable, that is
rank(C(A,B)) = nζ . Equation (10) defines the
internal dynamics of the PVTOL system. Since
the internal dynamics is unstable, then the system
is called non-minimum phase.

4. THE PREDICTION BASED FEEDBACK
CONTROLLER

The control approach used to control the PV-
TOL aircraft is that proposed in Chemori and
Alamir (2005) for systems with jumps, but it re-
mains applicable for classical jump-free nonlinear
systems, insofar as any classical n-dimensional
jump-free system may be embedded in an (n +
1)−dimensional system with virtual jump (cf.
lemma 1 in Chemori and Alamir (2005)). In this
section the basic principle of the approach is sum-
marized, while the forthcoming section is devoted
to the stability analysis of the resulting closed-
loop system. Roughly speaking, the basic idea of
the proposed nonlinear predictive control scheme
is to use the completely linearized sub-states ζ to
enhance the stability of the internal dynamics η
of the system. This principle is illustrated on the
block diagram of figure 2. The algorithm of the
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Fig. 2. The control approach principle

proposed scheme basically consists in the follow-
ing steps :

Step 1 : Definition of B-spline p−parameterized
trajectories on the directly controlled variables
ζ (cf. figure 3). These trajectories should link
the two points ζ0, ζf in the space Rζ . ζ0 is the
initial sub-state, whereas ζf (= 0 for stabiliza-
tion) is the desired final one. The sampling time
is denoted by T , whereas the virtual jumps are
τc-equispaced, that is tk = kτc. The decision

instants over each interval [tk, tk+1] are defined
by τ j

k = tk + j τc

m ; j = 0, . . . ,m − 1. Where
m is a design parameter which denotes the
number of times that the optimal trajectoires
are updates between each two successive virtual
jumps (for the PVTOL aircraft it is fixed to
m = 2, cf. simulations later on).

Step 2 : Computation of the optimization pa-
rameter p based on a prediction of the internal
dynamics, this is done by optimization of the
following performance index:

p̂k := Arg min
p∈P

‖η(t−k+1)− ηf‖2
Q (11)

where ηf defines some desired sub-states on the
internal dynamics. The optimization parameter
p̂k is that invoked in step 1 which parameterizes
the reference trajectories. It is chosen scalar in
order to reduce the computation time. In doing
so, the proposed control approach could easily
be applied to fast systems control.
η(t−k+1) that appears in (11) can be expressed
by the following relation :

η(t−k+1) = F (η(t−k ), pk, ζf ) (12)

F is a prediction function of the internal dy-
namics over the interval [tk, tk+1]. The times t−k
and t−k+1 that appear in the relations (11),(12)
represent instants just before the virtual jumps
occurring at times tk, tk+1 (respectively).

Step 3 : Tracking of the optimal reference tra-
jectories until next decision instant τ j+1

k by
means of the following feedback :{

v1 = ẍd + kd(ẋ− ẋd) + kp(x− xd)
v2 = ÿd + k′d(ẏ − ẏd) + k′p(y − yd)

(13)

where the subscript d denotes the reference
trajectory, kd, kp, k

′
d, k

′
p are positive feedback

gains. Then consider the actual state of the
system as initial state and go to step 1.

.    .    .    .

T : Sample time

Fig. 3. Trajectories illustration

These three steps of the algorithm are to be ex-
ecuted at each decision instant τ j

k . Even though
the second step includes an optimization problem
to resolve, a real time application of the approach
is possible, since the computation time is signifi-
cantly reduced (cf. simulations).



5. STABILITY ANALYSIS

The stability of the closed-loop system (composed
of completely linearized part and internal dy-
namics) depends on the stability of the internal
dynamics under the chosen time varying feed-
back. To do that, a graphical tool based on the
Poincaré’s section is used (cf. Chemori and Alamir
(2005)). The basic idea consists in plotting the
following multi-step function for increasing values
of r = ‖η − ηf‖2

Q:

ΨQ
k0

(r) :=

[
sup

‖η−ηf‖2
Q

=r

‖F k0
cl

(η, ζf , ηf )− ηf‖2Q
]

(14)

where F k0
cl is obtained by two operations. The

first one consists in injecting (11) in (12) which
gives η(t−k+1) = F (η(t−k ), p̂(η(t−k ), ζf , ηf ), ζf ),
then the later is expressed in multi-step from
by k0 successive compositions as η(t−k+k0

) =
F k0

cl (η(t−k ), ζf , ηf ).
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Fig. 4. Stability analysis tool : convergence to a
stable limit cycle

According to the obtained curve, two cases are
possible, they are illustrated in figures 4 and 5.
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Fig. 5. Stability analysis tool : convergence to a
neighborhood of a stable limit cycle

In the first case (cf. figure 4), a convergence to
a stable limit cycle is obtained (in the case of
stabilization this limit cycle should degenerate to
a point on the phase portrait). However in the
second case (cf. figures 5), a convergence to a
neighborhood of a limit cycle is obtained. It is
worth noting that the proposed graphical tool,
besides stability analysis, enables the estimation
of a region of attraction (cf. figures 4, 5). For the

PVTOL aircraft, the stability analysis falls in the
first case (cf. next section, especially figure 6).

6. SIMULATION RESULTS

Consider the PVTOL aircraft dynamic model
(1)-(3) with the coupling parameter ε = 0.5,
the different parameters of the proposed control
approach are summarized in table 1.

Parameter Significance value

tf The horizon length 1.85sec

Q Weighting matrix Diag(1, 0.3)

p Optimization parameter x(tf /4)

m Trajectories updates 2

Table 1. Control approach parameters

Two simulation case studies are proposed in the
sequel. In the first simulation, the objective is
to stabilize the PVTOL aircraft. The second one
aimes to show the robustness of the proposed
control strategy against parameters uncertainties.

6.1 Stabilization control

In this simulation the stabilization problem of the
aircraft is considered from the initial condition
defined by x0 =

[
1 1 30 0.2 −0.5 20

]T . The
optimal trajectories on the directly controlled
variables are updated twice over each interval
[tk, tk+1], that is m = 2.

6.1.1. Stability analysis and computing time
The stability analysis of the closed-loop system is
carried out using the graphical tool based on the
Poincaré section, explained in section 5. Figure
6 displays the multi-step function Ψ. According
to the obtained curve, the sufficient conditions of
point 1 of proposition 1 (cf. Chemori and Alamir
(2005)) are satisfied for k0 = 5. The evaluation
of the computing time is plotted in figure 7. The
maximum computing time is tmax = 0.091sec.

6.1.2. Other simulation results The obtained
simulation results are plotted in figures 8-11. Be-
cause of the normalized nature of the system vari-
ables, their artificial units are omitted.

In figure 8, the evolution of the position and orien-
tation of the aircraft is plotted versus time, where
it could be seen that the aircraft is stabilized over
3.5sec. The evolution of the internal dynamics of
the system is shown in figure 9, which displays
the phase portrait (θ, θ̇). Figure 10 displays the
movement of the aircraft in the vertical plane
during the stabilization. The control actions gen-
erated by the proposed controller are shown in
figure 11. According to this figure it could be



clearly seen that the constraints on the control
inputs are satisfied, namely the thrust is directed
upwards the aircraft (i.e. u1 > 0) throughout the
stabilization operation.

6.2 Robustness towards parameters uncertainties

To attest the efficiency of the proposed control
approach, let us consider uncertainties on the
system model parameters, and especially on the
coupling parameter ε, since it is often unknown
and could not be measured.

εu = ε + ∆ε

Let the uncertainty ∆ε be 10% of the nomi-
nal value. The system will simulated with the
same parameters of control approach as the above
simulation. The obtained results are illustrated
through the simulation curves of the nominal
system superimposed on those of the uncertain
system. This will enables us to see the effect
of the introduced uncertainty. Figure 12 displays
the evolution of the aircraft coordinates (x, y, θ)
versus time. It is worth noting that the uncertain
system is stabilized over 3.5sec too, despite the
considered uncertainty on ε. The phase portrait
of the system’s internal dynamics is depicted in
figure 13, where the evolution of the velocity of
the roll angle is plotted versus its position. The
generated control inputs are shown in figure 14
for both nominal and uncertain system. It could
be concluded that, despite the uncertainty consid-
ered, the controller is able to stabilize the system.
This fact attests the robustness of the proposed
control scheme against parameters uncertainties.

7. CONCLUSION

Planar Vertical Take-Off and Landing (PVTOL)
aircraft is an interesting illustration example
of nonlinear under-actuated non-minimum phase
systems that gains increasing interest within the
control community. In this paper a nonlinear pre-
diction based control approach is proposed to
resolve the stabilization problem. The proposed
control approach is based upon partial feedback
linearization, and optimal trajectories generation
to enhance the behavior and the stability of the
system’s internal dynamics. The stability analysis
of the resulting closed-loop system is performed
using a graphical tool based on the Poincaré’s sec-
tion. The approach performance and robustness
are illustrated through simulation case studies.
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