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Permeability dependence of streaming potential in rocks for 

various fluid conductivities

Laurence Jouniaux and Jean-Pierre Pozzi
Laboratoire de Géologie & CNRS URA 1316, École Normale Supérieure, Paris, France.

Abstract.  Streaming potentials have been measured on sandstone and limestone samples in a large range of 
permeabilities. The electrokinetic coupling coefficient increases with permeability and we explain this effect 
by the related variation of surface conductivity. A model is proposed to study this effect for various fluid 
conductivities and it is shown that the dependence of the electrokinetic coupling coefficient on permeability 
is stronger for high fluid resistivity and is weaker for lower fluid resistivity. When fluid resistivity is below 
1 Ω.m permeability and streaming potential are no more related.

Introduction

 Observations of self-potential (SP) anomalies by surface measurements have been reported from numerous 
tectonically active areas  in the world. The streaming potential effect in the crust  may be promising to 
explain low frequency electric and magnetic precursors to earthquakes [Mizutani et al.,  1976; Bernard, 
1992]. Electrokinetic effects are often proposed to explain SP anomalies on volcanoes [Zlotnicki and Le 
Mouël, 1990; Aubert and Dana, 1994] and in geothermal areas [Corwin and Hoover, 1979], or used to 
monitor subsurface flow in geotechnical constructions [Merkler et al., 1989]. Streaming potentials can be 
quantified through experimental results. Few streaming potential data of geophysical interest are available 
[Somasundaran and Kulkarni,  1973;  Ishido and Mizutani,  1981;  Morgan et al.,  1989;  Antraygues and 
Aubert,  1993].  Effects  of  high pressure,  high temperature,  or  changes  of  permeability  on  streaming 
potential have not been systematically analysed. Note that permeability varies by 11 orders of magnitude in 
the Earth's crust and can vary by 5 orders of magnitude in a given geological layer. We present streaming 
potential measurements on sandstone and limestone samples covering a large range of permeabilities and we 
propose  a  model  to  quantify  the  effect  of  permeability  on  streaming  potential  with  various  fluid 
conductivities.

Electrokinetic phenomena

 When a  fluid is  made to flow through a  porous medium there is  an occurence of a  potential called 
streaming potential across  the sample caused by the relative motion between the solid and the liquid. 
Electrokinetic phenomena are due to the existence of an electric double layer formed at  the solid-liquid 
interface [Stern, 1924]. The double layer is made up of a layer of ions adsorbed on the surface of the matrix 
and of a diffuse mobile layer extending into the liquid phase. The zeta potential is the electric potential on 
the plane closest to the surface of the matrix on which fluid is in motion. Phenomenologically the general 
relation between the electric current density i and the thermodynamical forces grad V and grad P [Overbeek, 
1952; Nourbehecht, 1963] is from irreversible thermodynamics

i = - L11

 
grad V - L12 grad P (A/m

2
)                                           (1)

where P  is the pore pressure,  V the electric potential,  L11 the conductivity and L12 the cross-coupling 

coefficient. The first term is the conduction current (Ohm's law) and the second term is called convection 
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current. Ishido and Mizutani [1981] used a capillary model to formulate the electrokinetic phenomena in 
porous media. The specific conductivity of the sample σr has been expressed in terms of tortuosity t (actual 

flow  path/bulk  length  measure),  porosity  Φ,  specific  internal  area  As (total  internal  pore  surface 

area/volume of the sample), and specific surface conductance ks (assumed to be due to the excess ions in the 

electrical double layer) assuming identical tortuosity for bulk and surface conduction and for fluid flow :

L11 = σr = Φ t
-2

 σf + t
-2

 ks As                 [Pfannkuch, 1972]          (2)

L12 =  - Φ t
-2

    ε ζ/η                      [de Groot and Mazur, 1962]     (3)

where σf, ε and η are the electric conductivity, the electric permittivity and the shear viscosity of fluid, and 

ζ the zeta potential. In a steady state equilibrium the convection current is balanced by the conduction 
current and the generated potential DV is related to the applied pore pressure difference DP by 

DV/DP = εζ / [η (σf+ksAs/Φ) ]                                     (4)

 The ratio DV/DP is the electrokinetic coupling coefficient which is independant on the size of the specimen 
under consideration. When surface conductivity is absent ksAs/Φ is negligible compared to σf, then DV/DP 

=    ε  ζ/η  σf   which is the Helmholtz-Smoluchowski equation [Dukhin and Derjaguin, 1974]. Note that 

DV/DP can be positive or negative depending on the sign of ζ potential.

Experimental procedure

 The relation between permeability k and streaming potential was investigated on saturated limestone and 
Fontainebleau sandstone samples. Fontainebleau sandstones do not contain clay and show uniform sized 
quartz grains ranging from 100 to 300 mm. Measurements on sandstones have been made on intact samples 

covering a large range of permeabilities from 1.5x10
-16

 m
2
 to 1.2x10

-12
 m

2
. One sample of limestone has 

been studied during permeability changes under deformation. An increasing deviatoric stress was applied to 
this sample and C12, C11, C10 refer to three states of deformation of the limestone sample. This sample 
was collected in an underground quarry where SP measurements have been clearly correlated with changes 
of the atmospheric pressure [Morat and Le Mouël, 1992]. The streaming potential was measured during 

fluid flow by a voltmeter with an input resistance above 10
10

 Ω.m. Permeability was measured either by the 
steady state flow method or the transient flow method. The resistance of the sample was measured by an  
impedancemeter at  4 kHz frequency. The high pressure cell and the experimental procedure have been 
detailed in [Jouniaux and Pozzi,  in press].  The streaming potential  was  measured on sandstones with 
distilled water of pH=5 and resistivity rf =1000 Ω.m, and on limestone with water resistivity of 200 Ω.m. 

Experimental results

 The formation factor  was  computed from the measurements  of  the  rock  resistivity and of  the fluid 
resistivity (FF=rrock/rfluid). The c factor is a numerical constant determined by the actual pore shape [Wyllie 

and Spangler, 1952] (0.5 for circular pores, 0.6 for equilateral triangular cross-section, 0.33 for a slot) was 
deduced from the observed thin sections (Table 1).We observed negative electrokinetic coupling coefficients 
in  all  these  experiments;  the  reported  values  are  the  absolute  values  of  the  electrokinetic  coupling 
coefficient. The electrokinetic coupling coefficients measured on Fontainebleau sandstones are shown in 
figure 1 (empty squares). 
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S Φ k FF c DV/DP DV/DP

meas. comp.
F82 4.3% 0.15 16.7 0.33 11 65
C10 1.1 1.8 0.5 17.1 18.9
C11 2.6 2.6 0.5 23.4 26.3
F17 5 65
F01 86 310
C12 37% 156 3.3 0.5 55.6 44.6
F9IY 9.9% 180 36 0.5 1166 1199
FK5 10% 250 158 0.5 4002 2337
F34 11.9% 250 30.6 0.5 1287 1221
F44 13% 287 45 0.5 661 1642
F2 20% 1220 77 0.5 6642 3011

Table 1. Characterisation of the samples. F are 
sandstones and C are limestone. Permeability k is in 

10
-15

 m
2
 and DV/DP measured and computed are in 

mV/0.1MPa.

Figure 1. Electrokinetic coupling coefficient as a function of permeability when fluid resistivity is 1000 Ω.m. 
Empty squares are measured values and stars are computed values from eq.(5). 

 The electrokinetic coupling coefficients measured on a limestone sample are shown in figure 2 (empty 

squares). These measurements show an electrokinetic coupling coefficient proportional to k
0.23

.
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Figure 2. Electrokinetic coupling coefficient as a function of permeability when fluid resistivity is 200 W.m. Empty 
squares are measured values for the limestone, stars are computed values from eq.(5) and slopes of straightlines are 

proportional to k
0.33

 and to k
0.23

.

Model

 We explain this behavior by the effect of surface conductivity. Surface conductivity can be important when 

fluid resistivity is high or when pore size r is not large compared to the Debye length κ
-1

 (double layer 
length)

     

where zi is the valence of the ionic species with concentration Ci,  k is the Boltzman’s constant,  T  the 

temperature and e the electronic charge. Note that the Debye length is proportional to the square root of the 
fluid resistivity.

 Bröz and Epstein [1976] have measured that surface conductivity in borosilicate glass capillaries with ζ 
potential of about 55 mV is not negligible for κr up to 40. The authors compared their measurements to the 
model from Rice and Whitehead [1965] and Levine et al. [1975] who computed that surface conductivity 
was  not  negligible for  kr  up  to  100  in  some cases  :  the  z potential  deduced from the  Helmholtz-
Smoluchowski equation can be underestimated of a few % when κr=100, of 20% when kr is about 15-25 
and of 40% when κr is about 5-10.
 In our case the distilled water with pH=5 induces a Debye length of 0.13 mm. The sample F2 which is the 
most permeable one has an average pore size of 50 µm. Therefore κr = 385 and we assumed that surface 
conductivity was  not  important  for  this  sample.  ζ potential  was  then computed from the Helmholtz-
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Smoluchowski equation for the sample F2 and was found to be -97 mV. This value is consistent with  other 
values of ζ potential on quartz deduced from measurements or from theory [Li and De Bruyn, 1966; Pride 
and Morgan, 1991]. Furthermore ζ potential is expected to be of the same order of magnitude for all these 
Fontainebleau sandstones because the mineralogy is nearly identical. As the other samples have smaller 
pore size we assumed that surface conductivity was present. The smaller the permeability is, the smaller the 
pore sizes in sandstones are expected to be, and the apparent dependence of the electrokinetic coupling 
coefficient on permeability can be mainly due to the surface conduction effect.
 We propose to  interpret  the permeability dependence of  electrokinetic coupling coefficient  using the 
capillary model and the Carman-Kozeny law. Indeed  

k = c Φ m
2
/t

2
 where m = Φ/As is the hydraulic radius. Tortuosity can be taken into account through the 

formation factor F using t
2
= Φ F which implies k = c m

2 F
-1

 [Wyllie and Spangler, 1952; Paterson, 1983]. 
The electrokinetic coupling coefficient can be thus expressed as a function of permeability 

                    (5)

As the conduction current equilibrates the convection current which is constant, when sample conductivity 
is enhanced by surface conductivity the electrokinetic gradient is decreased. The dielectric constant of water 

is ε/ε0 = 80 at 25°C, the shear viscosity is 10
-3

 Pa.s at 20°C and the effect of temperature on h was taken 

into account. 

Fontainebleau sandstones

 Measurements  of  rock conductivity with different  fluid conductivities allowed us  to  overestimate the 
surface  conductance [Jouniaux  and  Pozzi,  in  press].  Ruffet  [1993]  measured surface  conductance on 

Fontainebleau sandstones of 2x10
-10

 to 8x10
-10

 Ω
-1

. Here ks was estimated to 5x10
-9

 Ω
-1

. The z potential 

was deduced as explained above and is ζ = -97 mV. Values of electrokinetic coupling coefficient computed 
from eq.(5) are shown in figure 1 (stars). This computation shows roughly the behavior of the electrokinetic 
coupling coefficient with permeability.
 This model was used to predict the effect of permeability on electrokinetic coupling coefficient of the used 
samples when fluid conductivity is higher. These predictions are shown in figures 2 and 3. The ζ potential 
was considered to be the same as before, that is an approximation. Indeed for pure quartz  ζ potential can 

change from -100 mV for a fluid resistivity of 10
3
 Ω.m to -50 mV for a fluid resistivity of 10 Ω.m [Pride 

and Morgan, 1991]. A different value for  ζ potential would not change the amplitude of variation of the 
electrokinetic coupling coefficient with permeability, but only its intrinsic value as shown by eq. (5). Note 
that for a given fluid conductivity the  ζ potential is constant.

 The electrokinetic coupling coefficient is proportional to k
0.33

 when fluid resistivity is 200 Ω .m (Fig. 2), is 

proportional to k
0.27

 when fluid resistivity is 100  Ω  .m (Fig. 3) and is proportional to k
0.09

 when fluid 
resistivity is 10 Ω .m. The electrokinetic coupling coefficient is constant when fluid conductivity is 1 Ω .m 
(Fig. 3).
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Figure 3. Predicted values of electrokinetic coupling coefficient versus permeability computed using eq.(5) for 
sandstones(filled square) and limestone(plus) with various fluid resistivities(r f). Straightlines are deduced from the 

model and slopes are proportional to k
0.27

, to k
0.09

, to k
0.10 and to k

0.01
.

Limestone sample

 Permeability of the limestone sample was decreased by deformation. The electrokinetic coupling coefficient 
was computed using eq.(5) in three states of deformation (C12,  C11 and C10).  The  ζ potential was 
deduced from measurements  on the non-deformed state  (C12)  when permeability was  high using the 
Helmholtz-Smoluchowski equation and assuming that surface conductivity was not important.  ζ potential 

was found to be - 4 mV. Surface conductance ks was estimated to 5x10
-10

 Ω 
-1

. Values of electrokinetic 

coupling coefficient computed from eq.(5) are shown in figure 2 (stars). This computation shows that the 

electrokinetic coupling coefficient is proportional to k
0.23

 when fluid resistivity is 200 Ω .m. The predicted 
effect of fluid conductivity is shown in figure 3. The electrokinetic coupling coefficient is proportional to 

k
0.10

 when fluid resistivity is 100 Ω.m and is proportional to k
0.01

 when fluid resistivity is 10 Ω .m. The 
electrokinetic coupling coefficient is constant when fluid resistivity is 1 Ω .m.

Discussion and Conclusion

 Measurements of electrokinetic coupling coefficient on sandstones and limestone of various permeabilities 
show that the electrokinetic coupling coefficient is related to permeability. This correlation is strong when 
fluid resistivity is high. This behavior is explained by the contribution of surface conductivity. A capillary 
model allowed us to quantify this effect. This model can roughly account for the permeability dependence of 
electrokinetic coupling coefficient  considering the surface  conductivity effect.  We used  this  model  to 
compute the effect of permeability on electrokinetic coupling coefficient with various fluid conductivities. 
When fluid resistivity is high the electrokinetic coupling coefficient strongly depends on permeability and 
this dependence is more important for sandstones than for limestone. By chemical analysis calcium was 
found in fluid after flowing through the sandstone samples. This calcium is supposed to be responsible of a 
large part of surface conductivity in Fontainebleau sandstones. When fluid is more conductive the effect of 
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permeability is less important and for a fluid conductivity of 1 Ω .m this model shows that the electrokinetic 
coupling coefficient is no longer dependent on permeability. Models usually use an average water resistivity 

of 10
2
 Ω .m in the Earth’s crust, that means that the electrokinetic coupling coefficient will be affected by 

changes of permeability. In some area where sea water is predominant, with a resistivity less than 1 Ω.m, it 
is likely that the electrokinetic coupling coefficient will not be affected by changes of permeability.
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