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We introduce the convex circuit-free coloration and convex circuit-free chromatic number -→ χ a ( -→ G ) of an oriented graph -→ G and establish various basic results. We show that the problem of deciding if an oriented graph verifies χ a ( -→ G ) ≤ k is NP-complete if k ≥ 3 and polynomial if k ≤ 2. We exhibit an algorithm which finds the optimal convex circuit-free coloration for tournaments, and characterize the tournaments that are vertex-critical for the convex circuit-free coloration.

Introduction

A convex subset is a vertex subset with the property that every 2-directed path beginning and ending inside the convex subset is completely contained within the subset. In this paper we investigate the coloration of an oriented graph -→ G into convex subsets without circuit, referenced in the following by CCF-coloration for 'Convex Circuit-Free coloration'. If we color each subset with a different color, such a coloration appears as an extension of the notion of oriented coloring introduced by Sopena [START_REF] Sopena | The chromatic number of oriented graphs[END_REF]. Indeed, within an oriented coloring, each monochromatic subgraph is more than without circuit but without arc (independent set). In the same way, as an oriented coloration may be defined by means of oriented homomorphism ( [START_REF] Hell | Graphs and Homomorphism[END_REF][START_REF] Sopena | The chromatic number of oriented graphs[END_REF]), the CCF-coloration may be equivalently defined by the notion of circuit-free homomorphism (called acyclic homomorphism in [START_REF] Feder | Acyclic homomorphisms and circular colorings of digraphs[END_REF]). A circuit-free homomorphism of a digraph

-→ G into a digraph -→ F is a mapping φ from V ( -→ G ) to V ( -→ F ) such that: (i) for every arc (u, v) ∈ A( -→ G ), either φ(u) = φ(v) or (φ(u), φ(v)
) is an arc of -→ F , (ii) for every vertex v ∈ V ( -→ F ), the induced oriented graph -→ G (φ -1 (v)) is circuit-free. An oriented graph -→ G admits a k-CCF coloration if and only if there exists an oriented graph -→ F of order k and a circuit-free homomorphism of -→ G into -→ F . Such a minimal k graphs. The CCF-indecomposable tournaments, also called primitive tournaments in [START_REF] Ehrenfeucht | Primitivity is hereditary for 2-structures[END_REF], are the tournaments without non trivial clan (the trivial clans are ∅ or {x} where x ∈ V (T )). Let us notice that if a tournament admits a non trivial clan then it admits a clan of size 2.

2 Complexity of the CCF-chromatic number problem

For the oriented chromatic number, the threshold between the "easy" and the "hard" computable oriented chromatic number is between 3 and 4. For the CCF-coloration, deciding whether the CCF-chromatic number is less or equal to 3 is already NP-complete.

Let k be a fixed positive integer. The k-CCF Col problem is the following decision problem: k-CCF Col (CCF-chromatic number ≤ k).

Instance:

An oriented graph -→ G . Question: Does -→ G admit a k-CCF coloration ?
We first note that an oriented graph -→ G admits a 1-CCF coloration if and only if

-→ G is circuit-free. Moreover, if -→ G admits a 2-CCF coloration then -→
G is circuit-free and admits a 1-CCF coloration. Hence 1-CCF Col and 2-CCF Col can be solved in polynomial time.

Theorem 1

The decision problem 3-CCF Col is NP-complete, even if the input is restricted to connected oriented graphs.

Proof: It is clear that the 3-CCF Col problem belongs to NP . To show its NPcompletness, we shall describe a polynomial-time reduction from 3-Sat to 3-CCF Col.

Let us consider an instance (X, C) of 3-Sat, where X = {x 1 , x 2 , ..., x n } is a set of boolean variables and C = {C 1 , C 2 , ..., C m } contains m clauses of 3 literals (the set of literals is denoted by L = 1≤i≤n {x i , x i }). The clause C j is denoted by z j 1 ∨ z j 2 ∨ z j 3 , where {z j 1 , z j 2 , z j 3 } ⊂ L. Since we may assume that no clause is a tautology (ie. contains x i and x i ), we will consider that the indexes of literals of any clause are strictly increasing.

To such an instance of 3-Sat, we associate the following oriented graph

-→ G : V ( -→ G ) = 1≤i≤n {x i , e i , e i , x i } ∪ 1≤j≤m {c j 1 , c j 2 , c j 3 , c j 4 , c j 5 , c j 6 , F j 1 , F j 2 , F j 3 } ∪ {T, F, I}. The arc set of -→
G is the union of four types of arcs: First type: For all integer i ∈ {1, 2, ..., n}, we have the set of arcs {(e i , e i ), (e i , x i ), (x i , e i ), (x i , e i ), (F, x i ), (F, x i )}.
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Second type: For all j ∈ {1, 2, ..., m}, for C j = z j 1 ∨ z j 2 ∨ z j 3 , we get a copy of the oriented graph -→ K j , identifying the vertices z j 1 , z j 2 , z j 3 to vertices in 1≤i≤n {x i , x i } :

z j 1 c j 1 F j 1 c j 2 z j 2 c j 3 F j 2 c j 4 z j 3 c j 5 F j 3 c j 6
Third type: For all j ∈ {1, 2, ..., m}, we have: {I, F } → {F j 1 , F j 2 , F j 3 }. Then, we obtain a copy of the following oriented graph:

F j 1 F j 2 F j 3 I F Fourth type: The induced oriented graph -→ G ({V, F, I}) is isomorphic to: T I F
The construction of -→ G may be carried out in polynomial time. We claim that -→ G is 3 CCF-decomposable if and only if the clauses C 1 , C 2 , ..., C m are simultaneously satisfiable.

Let us suppose that the oriented graph -→ G admits a 3-CCF-coloration. The arcs of the fourth type imply that there exists a circuit-free homomorphism φ from -→ G to the 3-circuit [START_REF] Ehrenfeucht | Primitivity is hereditary for 2-structures[END_REF][START_REF] Erdös | Problems and results in number theory[END_REF][START_REF] Preissmann | Perfect Graphs, chapter A translation of Tibor Gallais paper: transitiv orientierbare Graphen, page 2566[END_REF]. Without loss of generality, we may assume that φ(T ) = 1, φ(I) = 2 and φ(F ) = 3. The arcs of the first type imply that, for each i in {1, 2, ..., n} , {φ(x i ), φ(x i )} = {1, 3}. Since the vertices {F j l } 1≤j≤m 1≤l≤3 are successors of I and F , then ∀j ∈ {1, ..., m}, ∀l ∈ {1, 2, 3}, φ(F j l ) = 3. Given an integer j in {1, 2, ..., m}, let us suppose that φ(z j 1 ) = φ(z j 2 ) = φ(z j 3 ) = 3, then, for all l ∈ {1, 2, ..., 6}, φ(c j l ) = 3. Then, K j ⊂ φ -1 (3), which contradicts the fact that φ is a circuit-free homomorphism.

Then, at least one of the vertices {z j 1 , z j 2 , z j 3 } is in the monochromatic class φ -1 (1). The truth distribution T : X → {True, False} defined by

T (x i ) = True if φ(x i ) = 1, T (x i ) = False if φ(x i ) = 3
satisfies all the clauses {C j } 1≤j≤m of the 3-Sat instance. Conversely, suppose that T : X → {True, False} is a satisfying truth assignment for the clauses C 1 , C 2 , ..., C m . Then, we define the circuit-free homomorphism φ from V ( -→ G ) into the set of vertices of the 3-circuit (1, 2, 3) by φ(T ) = 1, φ(I) = 2 and φ(F

) = 3. if φ(x i ) = True then φ(x i ) = 1 and φ(x i ) = 3; else φ(x i ) = 3 and φ(x i ) = 1
For every integer j ∈ {1, 2, ..., m}, φ(

F j 1 ) = φ(F j 2 ) = φ(F j 3 ) = 3, and, for k ∈ {1, 2, 3}, if φ(z j k ) = 3 then φ(c j k ) = 3 else φ(c j k ) = 1. Such a mapping is a 3 circuit-free homomorphism from -→ G to the 3-circuit (1, 2 , 3), and then 
-→ G admits a 3-CCF coloration.

The case of tournaments

In this section, we investigate the complexity of the k-CCF Col problem over the family of tournaments. Let T = (V, A) be a tournament and x a vertex of T . If it exists, we define and denote by x + the highest successor of x as the vertex of Γ + (x) which verifies the equality Γ + (x + ) = Γ + (x) \ {x + }. Given a tournament T and a vertex x, we can compute x + in polynomial time by the following greedy algorithm:

Down(x) Input: A tournament T and a vertex x of T . Output: A vertex y such that y = x + if it exists, ∅ if not.
We denote by {y 1 , y 2 , ..., y k } the set Γ + (x), i = 1 and x + = ∅. While i ≤ k Do:

If

y i verifies Γ + (y i ) = Γ + (x) \ {y i }, then x + = y i and i = k + 1; Else i = i + 1. Return(x + ).
Proposition 1 Let T be a tournament of order n with -→ χ a (T ) = k and x a vertex of T . (i) If there is a k-CCF coloration c of T such that x is not the smallest vertex in its monochromatic class then x + exists. (ii) Conversely, if x + exists then for all convex circuit-free k-coloration c of T , c(x) = c(x + ).

Proof: (i) Let C x = c -1 (c(x)) be the CCF-monochromatic class of x, and let us suppose that x is not the smallest vertex of C x . The intersection of the induced subdigraphs

-→ G (C x ) and -→ G (Γ + (x)
) is a non-empty order. Let y be the highest vertex of this order, since any other CCF-monochromatic class is in unidirection with C x , we have Γ + (y) = Γ + (x) \ {y}. Then y is the highest successor of x and y = x + . (ii) Let c be a k-CCF coloration of T and let us suppose, for contradiction, that y = x + and c(x) = c(y). We denote by C 1 and C 2 the color classes of x and y respectively, and by {C j } 3≤j≤k the other CCF-monochromatic classes of T . We have x → y and by convexity

C 1 → C 2 . Moreover, since y = x + , we have: ∀j ∈ {3, 4, ..., k}, [C 1 → C j ] ⇔ [C 2 → C j ]. Consequently, the (k -1)-partition {C 1 ∪ C 2 , C 3 , ..., C k } is a (k -1)-CCF-coloration of T , which contradicts the equality -→ χ a (T ) = k.
Previous results are also true if we consider predecessors instead of successors. If it exists, we define the smallest predecessor of x as, the vertex of Γ

-(x) such that Γ -(x -) = Γ -(x) \ {x -}.
It could be computed in polynomial time by the following greedy algorithm:

Up(x)

Input: A tournament T and a vertex x of T . Output: A vertex y such that y = x -if it exists, ∅ if not.

We denote by {y 1 , y 2 , ..., y k } the set Γ -(x), i = 1 and x -= ∅. While i ≤ k Do:

If

y i verifies Γ -(y i ) = Γ -(x) \ {y i }, then x -= y i and i = k + 1; Else i = i + 1. Return(x -).
Proposition 2 Let T be a tournament with -→ χ a (T ) = k and let x be a vertex of T . (i) If it exists a k-CCF coloration such that x does not dominate all vertices of its CCFmonochromatic class then x -exists. (ii) Conversely, if x -exists then for every k-CCF coloration c of T , c(x) = c(x -).

Corollary 1 Let T be a tournament such that -→ χ a (T ) = k. The k-CCF coloration of T is unique.

Proof: Let c be a k-CCF-coloration of T . We then have the following equivalence: c(x) = c(y) and y is the direct successor of x whithin the order c -1 (c(x)) ⇔ y = x + Then, as the highest successor and the smallest predecessor are unique (if there exist), we deduce the unicity of the optimal convex circuit-free coloration.

The following algorithm OptDec computes in polynomial time the optimal CCFcoloration of a tournament T .

Algorithm OptDec

Input: A tournament T Output: The optimal CCF-coloration of T For every vertex x ∈ V (T ), let M(x) denote a mark. Initialization: ∀x ∈ V (T ), M(x) = 0 and k = 0. While a vertex x such that M(x) = 0 exists, DO:

k ← k + 1 v ← x M(x) ← k While Up(v) = ∅, DO: v ← Up(v) M(v) = k end. v ← x While Down(v) = ∅, DO: v ← Down(v), M(v) = k end. End.
Proposition 3 Given a tournament T with -→ χ a (T ) = k, the optimal CCFk coloration is computed in polynomial time by the algorithm OptDec. The optimal CCF-coloration c of T is given by ∀x ∈ V (T ), c(x) = M(x).

The previous algorithm provides a partition of V (T ) into maximal clans under inclusion that are the CCF-monochromatic classes. Let us recall the definition of the quotient of a tournament by a convex partition. A partition P of V (T ) is a convex partition (or interval partition) of T when each element of P is a convex subset of T . For such a partition P , the quotient T /P of T by P is the tournament defined on V (T /P ) = P as follows: given X = Y ∈ P , (X, Y ) is an arc of T /P if X → Y in T . We now associate with T the family Π(T ) of the maximal clans of T which is an interval partition of T . We 

CCF-Indecomposable tournament

The aims of this part is to introduce the notion of CCF-indecomposable oriented graph and to characterize the vertex-critical CCF-indecomposable tournaments. An oriented graph

-→ G with n vertices is CCF-indecomposable if -→ χ a ( -→ G ) = n.
In other words, any convex subset of T with at least 2 vertices contains a circuit. Remark that such an indecomposable tournament does not contain convex subset of size two. If -→ G is not CCFindecomposable then -→ G is called CCF-decomposable. For the following probabilistic proof, we need the notion of random tournament, constructed by picking uniformly at random and independently the orientation of every edge of the complete graph K n (i.e. if {x, y} is an edge of K n , P ((x, y) ∈ A(T )) = P ((y, x) ∈ A(T )) = 1 2 ). We denote by T n the set of such random tournaments with n vertices.

Proposition 5

The probability for a tournament T ∈ T n to be CCF-indecomposable tends to 1 when n → ∞.

Proof: Let A the event "T is CCF -indecomposable". The event A c is realized when there exist two vertices x and y such that ∀z ∈ V (T ) \ {x, y}, (x, z) ∈ A(T ) ⇔ (y, z) ∈ A(T ). We then obtain:

P (A) = 1 -P (A c ) ≤ 1 -n 2 ( 1 2 ) n-2
, and so lim n→∞ P (A) = 1.

We could easily exhibit a family of CCF-indecomposable tournaments. Let us recall that a tournament is regular if the in and out-degrees of its vertices are equals. Regular tournaments are CCF-indecomposable, otherwise the existence of both vertices x and x + implies d + (x + ) = d + (x) -1 (where d + (x) denotes the outdegree of x). Given a CCFindecomposable tournament, the following proposition shows that we can add a vertex in order to obtain another CCF -indecomposable tournament. Let us remind that a vertex is a source if it has no predecessor and a sink if it has no successor.

Proposition 6 Let T be a CCF-indecomposable tournament without source and sink.

• Tournament T obtained by adding a source s to T is CCF-indecomposable.

• Tournament T obtained by adding a sink p to T is CCF-indecomposable.

• Tournament T obtained by reversing the arc (s, p) in T is CCF-indecomposable. Indeed, we also obtain a CCF-indecomposable tournament by the converse operations (deleting a source or a sink from a CCF-indecomposable tournament).

We now characterize the tournaments that are vertex-critical for the CCF -indecomposable property. Tournament T is vertex-critical CCF-indecomposable if T is CCF-indecomposable and, for every vertex u of T , T \ {u} is CCF -decomposable. Given such a tournament, for every vertex u, there exists a pair of vertices {i u , j u } which verifies the unidirection property with every set {x} for x in V (T ) \ {u, i u , j u }. Such a pair is said to be associated with vertex u, which is denoted by u ∼ {i u , j u }.

Remark 1 For every vertex u of a vertex-critical CCF-indecomposable tournament, there exists at least one pair {i u , j u } of vertices such that (i u , u, j u ) is the only 2-directed path between the vertices i u and j u .

Lemma 1 Let u be a vertex of a vertex-critical CCF-indecomposable tournament T , and let {i u , j u } be a pair associated with u. a. i u ∼ {u, v} with v ∈ V (T ) \ {u, i u }. b. Let u and v be two vertices of a vertex-critical CCF-indecomposable tournament, we have:

u = v ⇔ {i u , j u } = {i v , j v }. c. ∀v, z ∈ V (T ) \ {u}, if z ∼ {u, v} then z ∈ {i u , j u }.
Proof: a. We have u ∼ {i u , j u }. There exist

z = z ∈ V (T ) \ {i u } such that i u ∼ {z, z }.
Of course, if {z, z } ∩ {u, j u } = ∅ then (z, i u , z ) and (z, j u , z ) are two distinct 2-directed paths between z and z , which contradicts the fact that {z, z } is a convex subset of T \ {i u }. Then {z, z } ∩ {u, j u } = ∅. Let us suppose that u / ∈ {z, z } then {i u , j u , z} or {i u , j u , z } is a clan of T \ {u}. We are going to prove that T \ {u} cannot contain a clan • If u → x n then T \ {x n } is CCF-indecomposable by applying the previous assertion to the dual of T .

C with |C| ≥ 3. Let C = {x 1 , x 2 , • • • , x n } with n ≥ 3 and x i → x j for all i < j. Furthermore, suppose that C is a maximal clan under inclusion of T \ {u}. Let us remark that since T is CCF-indecomposable then x i → u if and only if u → x i+1 for all i ∈ {1, • • • , n -1}. • If x 1 → u then T \ {x 1 } is CCF-indecomposable.
• If x n → u → x 1 then x 2k → u → x 2k+1 implies that n is even and |C| ≥ 4. In that case, T \ {x 1 , x 2 } is similar to T \ {x 1 } of the first assertion and consequently is CCF-indecomposable. Then the only non trivial clan of T \ {x 1 } contains x 2 which is impossible.

In conclusion, T has no clan of order 3 and then u ∈ {z, z }.

b. We may easily verify that such a proposition is true for tournaments with less than four vertices. Let us now consider that |V (T )| ≥ 5. Let us suppose that u = v and i u = i v , j u = j v . Then, there exist two different paths between i u and j u , which contradicts the remark. Let us suppose now that the pairs {i u , j u } = {i v , j v } and u = v. Assume for instance that j u = j v and j v → j u . Since {i u , j u } is a convex subset of T \ {u}, we obtain that j v → i u . By lemma 1.a, there exists α ∈ V (T ) \ {u, j u } such that j u ∼ {u, α}. Now, if α = i v then (j v , j u , i v ) is a 2-directed path which contradicts u ∼ {i v , j v }. Therefore i v / ∈ {u, j u , α}. Since j u ∼ {u, α} and i v → u, we have i v → α. Furthermore j v = α because j v → j u → α and then j v / ∈ {u, j u , α}. Since j u ∼ {u, α} and u → j v we have α → j v . Consequently (i v , α, j v ) is a 2-directed path which contradicts u ∼ {i v , j v }. c. If not we have two distinct 2-directed paths (i u , u, j u ) and (i u , z, j u ) between i u and j u which contradicts the remark 1.

Let T be a vertex-critical CCF-indecomposable tournament of order n. We may insist on the fact that the pair {i u , j u } associated with u ∈ V (T ) is unique. We define the graph G T associated with T by:

V (G T ) = V (T ) and {i, j} ∈ E(G T ) if it exists u ∈ V (T ) such that u ∼ {i, j}.
Lemma 2 Let T be a vertex-critical CCF-indecomposable tournament of order n and G T its associated graph. Then, we have the following properties:

• a. The degree of any vertex of G T is less or equal to 2.

• b. Connected components of G T are cycles (without chord).

• c. Let u be a vertex of T and {i u , j u } be the edge of G T associated with u. We denote by C the cycle of G T which contains {i u , j u }. Then, u ∈ C.

• d. The cardinal of any cycle of G T is odd.

Proof: a. Suppose, for a contradiction, that a vertex u has three distinct neighbourgs (x, y and z) in G T . By lemma 1.c, we have x, y, z ∈ {i u , j u } which contradicts the unicity of the associated vertex in a vertex critical CCF-indecomposable tournament. b. The equivalence of lemma 1b. implies that |V (G T )| = |E(G T )|. Such equality implies that G T contains at least one cycle. As the degree of every vertex of G T is bounded by 2, it follows that the connected components of G T are cycles, and that every vertex of G T belongs to exactly one cycle. c. We denote by (a 0 = i u , a 1 = j u , a 2 , a 3 , ..., a k ) the cycle C and suppose that u / ∈ C. Then (i u , u, j u ) is a 2-directed path in T . We have u → {a i , a i+1 }, for i ∈ {1, 2, ..., k -1}. This implies that (i u , u, a k ) is a 2-directed path of T which contradicts the unicity of the paire associated with u. Hence u ∈ C. d. Let C = (x 0 , ..., x k ) be a cycle in G T . We suppose that x 0 ∼ {x l , x l+1 }. By lemma 1a, {x 0 , x 1 } is associated with x l or x l+1 . First case: Suppose that x l+1 ∼ {x 0 , x 1 }. Using lemma 1a., we iterate the process: from [x 0 ∼ {x l , x l+1 } and x l+1 ∼ {x 0 , x 1 }], we obtain [x 1 ∼ {x l+1 , x l+2 } and x l+2 ∼ {x 1 , x 2 }] and [x 2 ∼ {x l+2 , x l+3 } and x l+3 ∼ {x 2 , x 3 }] ... . As every vertex of C must be associated with a unique edge of C, the iterated process ends with [x l ∼ {x k , x 0 } and x k ∼ {x l-1 , x l }]. Then, k = 2l is even, and so the cycle is odd.

Second case: Suppose that x l ∼ {x 0 , x 1 }. Previous iterated process leads to a contradiction, because a vertex must be associated with an edge incident to it, which is impossible.

For any integer k, the circular tournament -→ C k is the tournament of order 2k +1 defined by: V ( -→ C k ) = {0, 1, 2, ..., 2k} and (i,

j) ∈ A( -→ C k ) if 1 ≤ j -i ≤ k, where j -i is considered modulo 2k + 1. Proposition 7 Let C be a cycle of G T of length 2k + 1. The induced oriented graph T (V (C)) is isomorphic to -→ C k .
Proof: Lemma 2 shows that if C = (x 0 , x 1 , ..., x 2k ) then for all i in {0, ..., 2k} the iterated process detailed in the proof of lemma 2 implies that x i ∼ {x k+i , x k+i+1 }, where the indexes are considered modulo 2k + 1. Following that process, T (V (C)) is recognized as a circular tournament.

Let T be a tournament which vertex set is V (T ) = {1, 2, ..., n} and let T 1 , ..., T n be tournaments. The composition T [T 1 , ..., T n ] (or lexicographic sum) is the tournament obtained from T by substituting each vertex i of T by the tournament

T i : if (i, j) ∈ A(T ), then T i → T j . Let us remark that {T 1 , • • • , T n } is an interval partition of T [T 1 , ..., T n ] and then the quotient T [T 1 , ..., T n ]/{T 1 , • • • , T n } is equal to T . Such a definition allows us to characterize the vertex-critical CCF -tournament. Theorem 2 Every vertex-critical CCF-indecomposable tournament is isomorphic to T [ -→ C k 1 , -→ C k 2 , ..., -→ C kp ]
where T is a tournament of order p and where (k 1 , k 2 , ..., k p ) ∈ (N * ) p .

Proof: Let T be a vertex-critical CCF -tournament and G T the graph associated with T . We denote by p the number of cycles in G T . For 1 ≤ i < j ≤ p, if C i and C j are two disjoint cycles of G T then the subtournaments of T induced by the vertices of C i and C j verify the unidirection property in T . We define the tournament T by V (T ) = {1, 2, ..., p} and (i, j) ∈ A(T ) if and only if the subtournament induced by V (C i ) dominates the subtournament induced by V (C j ).

For every i in {1, 2, ..., p}, k i is the integer such that the number of vertices of cycle C i is 2k i + 1, and by proposition 7, we deduce that T is isomorphic to T

[ -→ C k 1 , -→ C k 2 , ..., - → C kp ]. Conversely, let X be a convex subset of T [ -→ C k 1 , -→ C k 2 , ..., -→ C kp ] with at least two vertices. If every vertex of X belongs to the same -→ C i , then -→ C i ⊂ X because circulant tournaments are CCF -indecomposable. If {x, y} ⊂ X such that x belongs to -→ C i and y belongs to -→ C j (with i = j), then -→ C i ∪ -→ C j ⊂ X.
We conclude that X contains at least a circulant tournament and then a circuit, and so such tournament are CCF -indecomposable. It is easy to see that T

[ -→ C k 1 , -→ C k 2 , ..., -→ C kp ] \ {x} is CCF -decomposable.

Discussion

We have introduced a new decomposition, called CCF-decomposition, of an oriented graph into convex subgraphs without circuit. CCF-decomposition may be translated in terms of coloration or homomorphism, as it is made in a classical way with other decompositions. We defined a CCF-chromatic number associated with that decomposition and proved that its calculus is generally NP-complete. For tournaments however, we construct a polynomial algorithm that finds an optimal CCF-coloration (ie. with a minimum of colors) and we characterize the vertex-critical tournaments for the CCF-decomposition. As we have noticed in the introduction, indecomposable tournaments (with the definition of Schmerl and Trotter [START_REF] Schmerl | Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures[END_REF]) are CCF-indecomposable and it is easy to prove that the trace of the vertex-critically CCF-indecomposable tournaments into the indecomposable tournaments are the circular tournaments. In our paper we prove in more that the trace of the vertexcritically CCF-indecomposable tournaments into the decomposable tournaments are the compositions of circular tournaments. Formulating the question as a decomposition problem, we have to indicate another possible demonstration of our theorem 2 from the Gallai decomposition theorem of tournaments [START_REF] Gallai | Transitiv orientierbare graphen[END_REF][START_REF] Preissmann | Perfect Graphs, chapter A translation of Tibor Gallais paper: transitiv orientierbare Graphen, page 2566[END_REF]. Let us indicate in the following the main points of that proof which is at least as long as that presented previously in this paper. Given a tournament T , a subset X of V (T ) is a strong interval of T provided that X is an interval of T such that for every interval Y of T , we have: if X ∩ Y = ∅ then X ⊆ Y or Y ⊆ X. The family of the strong intervals of T realizes a partition P (T ) of T . In the case of a non strongly connected tournament T , it is easy to establish the following proposition :

Proposition 8 Let T be a non strongly connected tournament with |V (T )| ≥ 3, T is critically CCF-indecomposable if and only if for every X ≥ P (T ), |X| ≥ 3 and the induced tournament T (X) is critically CCF-indecomposable.

The strongly connected case is more difficult to obtain. We have :

Proposition 9 Given a strongly connected tournament T , with |V (T )| ≥ 3, T is critically CCF-indecomposable if and only if either T is isomorphic to -→ C k , where |V (T )| = 2k + 1, or for each X ∈ P (T ), we have |X| ≥ 3 and T (X) is critically CCF-indecomposable.

We now denote by P 1 (T ) = {X ∈ P (T ), |X| = 1}. Propositions 8 and 9 lead us to associate with each critically CCF-indecomposable tournament T , such that |V (T )| ≥ 3, the family p(T ) of the strong intervals X of T satisfying: |X| ≥ 2 and P 1 (T (X)) = ∅. It follows from Proposition 8 that for every X ∈ p(T ), T (X) is strongly connected because P 1 (T (X)) = ∅. Now, by Proposition 9, we obtain that T (X) is isomorphic to -→ C k , where |X| = 2k + 1. Consequently, p(T ) constitutes an interval partition of T and theorem 2 follows.
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Proposition 4 1 .

 41 have -→ χ a (T ) = |Π(T )| and we can formulate the results by : For every tournament T with |V (T )| ≥ 2, one of the following is satisfied : |Π(T )| = 1 and T is a total order 2. |Π(T )| ≥ 3 and T /Π(T ) is CCF-indecomposable (or primitive)

  By the previous remark, {x i , x j } and {x i , u} are not clans of T \ {x 1 }. Now, let {α, β} be two distinct vertices of T \ (C ∪ {u}). Set {α, x i } is not a clan of T \ {x 1 } otherwise C ∪ {α} is a clan of T \ {u} which contradicts the maximality argument. Finally, neither {α, u} nor {α, β} are clans of T \ {x 1 } otherwise they are clans of T .