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Convex circuit free coloration of an oriented graph

Jean-Francois Culus and Bertrand Jouve !

Research Group in Informatic and Mathematics (GRIMM, EA3656) Maison de la Recherche -
Université Toulouse 2 - 5 allées Antonio Machado - 31058 Toulouse Cedex I - France

Abstract

We introduce the convex circuit-free coloration and convex circuit-free chromatic number
%(8) of an oriented graph and establish various basic results. We show that the
problem of deciding if an oriented graph verifies Xa(ﬁ) < k is NP-complete if £ > 3 and
polynomial if £ < 2. We exhibit an algorithm which find the optimal convex circuit-free
coloration for tournaments, and characterize the tournaments that are vertex-critical for
the convex circuit-free coloration.

Keywords:  Oriented Chromatic Number, acyclic homomorphism, Vertez-Critical, tourna-
ment

1 Introduction

A convex subset is a vertex subset with the property that every 2 directed path beginning
and ending inside the convex subset is contained completely within the subset. In this
paper we investigate the coloration of an oriented graph G into convex subsets without
circuit, referenced in the following by CCF-coloration for ’'Convex Circuit-Free coloration’.
If we color each subset with a different color, such a coloration appears as an extension
of the notion of oriented coloring introduced by Sopena [8]. Indeed, within an oriented
coloring, each monochromatic subgraph is more than without circuit but without arc
(independent set). In the same way, as an oriented coloration may be defined by means of
oriented homomorphism ([3, 8]), the CCF-coloration may be equivalently defined by the
notion of circuit-free homomorphism (called acyclic homomorphism in [2]). A circuit-free
homomorphism of a digraph ZJ) into a digraph ? is a mapping ¢ from V(a) to V(F)
such that:
(i) for every arc (u,v) € A(B), either ¢(u) = é(v) or (p(u), d(v)) is an arc of ?,
(ii) for every vertex v € V(F'), the induced oriented graph G (¢ *(v)) is circuit-free.

An oriented graph 8 admits a k-CCF coloration if and only if there exists an oriented
graph F' of order k£ and a circuit-free homomorphism of G' into F'. Such a minimal &
is called CCF-chromatic number of 8 and denoted by %(8) That type of coloration
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was originally motivated by the search of structures in large majority voting tournaments
([3])-

Let us give some notations and definitions. All digraphs considered here are finite and
have no loop or multiple edge. A circuit is a directed cycle. An oriented graph is a digraph
without circuit of length two. In other words, it is an orientation of a simple graph. An
oriented graph 7 is a tournament if and only if it is complete, ie. for every pair {7, j} of
vertices, (7,7) or (j,7) is an arc of 7. Finally, for a graph having property P we say that
G is vertex-critical for P if it loses the property P whenever any vertex is removed. The
set of vertices and the set of arcs of a digraph G are respectively denoted by V(ﬁ) and

A(g) If (z,y) is an arc of 6, then we say that  dominates y or y is a successor of z
and that z is a predecessor of . We shall use the notation x — y to denote this. We
respectively denote by I'*(z) and I'"(x) the set of successors and the set of predecessors
of . The in-degree of a vertex z is the cardinal of I'"(z), and the out-degree of z is the

)
cardinal of I't (z). If A and B are disjoint subsets of V(é) such that all arcs between A
and B are directed toward B, then we use the notation A — B and said that the sets A

and B verify the unidirection property or are in unidirection. For a subset B of V(B),

\ B denotes the subdigraph of G' obtained after removing the vertices of B and all the
arcs with at least one extremity in B. The subdigraph induced by a vertex subset B of

@ is define as 6)\ (V(a) \ B) and is denoted by € (B).

The paper is organized in two parts. In the first one, we prove that the minimization

problem of finding the smallest integer k£ such that G has a CCF-coloration in £ classes is
of polynomial complexity if G is a tournament and NP-complet in the general case. In a
second part we focus on the CCF-indecomposable tournaments, that is tournaments for
which the previous £ is equal to the number of vertices. That class is large since the prob-
ability that a tournament belongs to it tends toward one when the number of its vertices
goes to the infinity. Here, we caraterize tournaments that are CCF-indecomposable and
critical for that property.
Questions related to the minimum subsets of a CCF-coloration are also closed in their
formulation to those of the dichromatic number [1]. The dichromatic number is calculated
to avoid monochromatic circuits since a CCF-coloration is caraterized by the absence of
dichromatic circuits. In fact the CCF-coloration may be seen as the satisfaction of two
properties on the subsets : circuit-free and convexity. In the particular case of tourna-
ments both of these properties have been studied separately by several authors. In the
case of tournaments circuit-free subsets are the transitive ones and [6] characterizes some
critically r-dichromatic tournaments. Such tournaments have a partition of its vertex set
in at least r transitive subsets and are critical for that property. Concerning the convex-
ity, in the case of tournaments, convex subsets are also called intervals or modules. In [7]
are studied indecomposable tournaments that is tournaments which convex subsets are
the singletons, the empty set and the whole vertex set. Indecomposable tournaments are
CCF-indecomposable. In [4], the author characterizes indecomposable tournaments that
are critical.



2 Complexity of the CCF-chromatic number prob-
lem

For the oriented chromatic number, the threshold between the ”easy” and the ”hard”
computable oriented chromatic number is between 3 and 4. For the CCF-coloration,
deciding whether the CCF-chromatic number is less or equal to 3 is already NP-complete.

Let k£ be a fixed positive integer. The k-CCF Col problem is the following decision
problem:

k-CCF Col (CCF-chromatic number < k).
Instance: ~ An oriented graph ﬁ
Question: Does 8 admit a k-CCF coloration ?

We first note that an oriented graph 3 admits a 1-CCF coloration if and only if 3 is

circuit-free. Moreover, if G' admits a 2-CCF coloration then @) is circuit-free and admits
a 1-CCF coloration. Hence 1-CCF Col and 2-CCF Col can be solved in polynomial
time.

Theorem 1 The decision problem 3-CCF Col is NP-complete, even if the input is re-
stricted to connected oriented graphs.

Proof: It is clear that the 3-CCF Col problem belongs to NP. To show its NP-
completness, we shall describe a polynomial-time reduction from 3-Sat to 3-CCF Col.
Let us consider an instance (X,C) of 3-Sat, where X = {z1,2,,...,2,} is a set of
boolean variables and C = {C1,Cy,...,Cp} contains m clauses of 3 literals (the set of
literals is denoted by £ = |, ;< {2, Ti}). The clause C; is denote by z{ V 23 V 23, where
{z{ , zg, z?,,} C L. Since we may assume that no clause is a tautology (ie. contains x; and
Z;), we will consider that the indexes of literals of any clause are strictly increasing.
To such an instance of 3-Sat, we associate the following oriented graph G':
V(@) = Uscign{iseis ¢ 75} UUsjcnlels b ol b P F Y U{T B 1),
The arc set of G is the union of four types of arcs:
First type: For all integer i € {1,2,...,n}, we have the set of arcs

{(62, ei)’ (eiax—i)’ (.I_Z, 6;), (xi’ ei)ﬂ (Fa xi)’ (F7 m_Z)}

!
€;
z; xﬁ'
O
F
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Second type: For all j € {1,2,..., m}, fpr Cj =2Zvav zé, we get a copy of the oriented
graph K, identifying the vertices 27, 23, 23 to vertices in |J, ;< {=i, Zi} :

cl F A 2 c Fj c

O O e, O O e,

T A v

Third type: Forall j € {1,2,...,m}, we have: {I, F} — {F/ FJ  FJ}. Then, we obtain
a copy of the following oriented graph:

1 F
Fourth type: The induced oriented graph 8({1/, F,I}) is isomorphic to:

AF

The construction of 6 may be carried out in polynomial time. We claim that ﬁ is 3
CCF-decomposable if and only if the clauses C1, Cs, ..., C,, are simultaneously satisfiable.

Let us suppose that the oriented graph G admits a 3-CCF-coloration. The arcs of the
fourth type imply that there exists a circuit-free homomorphism ¢ from 8 to the 3-circuit
(1,2, 3). Without loss of generality, we may assume that ¢(7T) = 1, ¢(I) = 2 and ¢(F) = 3.
The arcs of the first type imply that, for each ¢ in {1,2,...,n} , {é(z;), #(75)} = {1, 3}.
Since the vertices {F} } 1<j<m Are SUCCESSOTS of I and F, then Vj € {1,...,m}, Vil € {1,2,3},
¢(F/) = 3. Given an integer j in {1,2,...,m}, let us suppose that () =) = o(2)) =
3, then, for all I € {1,2,...,6}, #(c/) = 3. Then, K; C ¢~*(3), which contradicts the fact

that ¢ is a circuit-free homomorphism.
Then, at least one of the vertices {z{, 23,23} is in the monochromatic class ¢~1(1).



The truth distribution 7 : X — {True, False} define by

{ T(z:;) = True  if &(zi)
T(z;) =False if ¢(z)

L,
3

satisfies all the clauses {C;}1<j<m of the 3-Sat instance.
Conversely, suppose that 7 : X — {True,False} is a satisfying truth assignment for the

clauses C1, Cy, ..., C,,. Then, we define the circuit-free homomorphism ¢ from V(B) into
the set of vertices of the 3-circuit (1,2,3) by ¢(T) =1, ¢(I) = 2 and ¢(F) = 3.

if ¢(x;) = True then ¢(x;) =1 and ¢(7;) = 3;
else ¢(x;) = 3 and ¢(7;) =1

For every integer j € {1,2,..,m}, ¢(F{) = ¢(FJ) = ¢(F}) = 3, and, for k € {1,2,3}, if
#(z]) = 3 then ¢(c},) = 3 else ¢(c},) = 1.

Such a mapping is a 3 circuit-free homomorphism from 8 to the 3-circuit (1,2,3),
and then 8 admits a 3-CCF coloration. []

3 The case of tournaments

In this section, we investigate the complexity of the k.-CCF Col problem over the fam-
ily of tournaments. Let 7' = (V, A) be a tournament and x a vertex of 7. We de-
fine, if it exists, the highest successor of x as the vertex of I'*(z) which dominates all
other vertices of I'"(x). Such a vertex, denoted by z* is characterized by the equality
[*(zt) =T (z)\ {z*}. Given a tournament 7" and a vertex x, we can compute z* in
polynomial time by the following greedy algorithm:

Down(x)
Input: A tournament T and a vertex z of 7.
Output: A vertex y such that y = x if it exists, @) if not.

We denote by {y1,ya, .-, Y } the set Tt(z), i =1 and z* = 0.

While ¢ < k£ Do:
If y; verifies I (y;) = I'"(x) \ {v;}, then 27 =y, and i = k + 1;
Else 1 = ¢ + 1.

Return(z™).

Proposition 1 Let T be a tournament of order n with )ZL)(T) =k and x a vertex of T.
(1) If there is a k-CCF coloration ¢ of T such that x is not the smallest vertex in its
monochromatic class then x™ exists.

(11) Conversely, if xt exists then for all convexe circuit-free k-coloration ¢ of T, c¢(x) =

c(xt).



Proof: (i) Let C, = ¢ *(c(z)) be the CCF-monochromatic class of z, and let us suppose
that x is not the smallest vertex of C,. The intersection of the induced subdigraphs G' (C;)

and G (" (x)) is a non-empty order. Let y be the highest vertex of this order, since any
other CCF-monochromatic class is in unidirection with C,, we have I'* (y) = I'*(z) \ {y}.
Then y is the highest successor of z and y = z™.

(i7) Let ¢ be a k-CCF coloration of T and let us suppose, for contradiction, that y =
and c(z) # c(y). We denote by C; and C, the color classes of x and y respectively, and by
{C;}s<j<k the other CCF-monochromatic classes of T. We have x — y and by convexity
Ci — C,. Moreover, since y =z, we have: Vj € {3,4,...,k}, [C; — C)] & [Cy — C}].
Consequently, the (k — 1)-partition {C; UCs, Cs, ..., Cy} is a (k — 1)-CCF-coloration of T,
which contradicts the equality x;(T) = k. O

Previous results are also true if we consider predecessors instead of successors. We
then define the smallest predecessor of x as, if it exists, the vertex of I'"(z) which is dom-
inated by all other vertices of I' (). Such a vertex, denoted by z~, verifies the condition:
I (z7) =T (z)\{z"}. It could be computed in polynomial time by the following greedy
algorithm:

Up(x)
Input: A tournament T and a vertex x of 7.
Output: A vertex y such that y = z~ if it exists, @) if not.

We denote by {y1,vo, ..., yx} the set I (z),i=1and 2~ = 0.

While 2 < £ Do:
If y; verifies '~ (y;) = I~ (x) \ {v:}, then 2= = y; and i = k + 1;
Else i =7+ 1.

Return(z ).

Proposition 2 Let T be a tournament with )Z;(T) =k and let x be a verter of T.

(1) If it exists a k-CCF coloration such that x does not dominate all vertices of its CCF-
monochromatic class then x~ exists.

(11) Conversely, if x~ exists then for every k-CCF coloration ¢ of T, c¢(x) = c(x™).

Corollary 1 Let T be a tournament such that x(T) = k. The k-CCF coloration of T is
UnIque.

Proof: Let ¢ be a k-CCF-coloration of 7. We then have the following equivalence:

[c(z) = c(y) and y is the direct successor of x whithin the order ¢ (c(z))] &y =27

Then, as the highest successor and the smallest predecessor are unique (if there exist), we
deduce the unicity of the optimal convex circuit-free coloration. [



The following algorithm OptDec computes in polynomial time the optimal CCF-
coloration of a tournament 7.

Algorithm OUptDec
Input: A tournament 7
OQutput: The optimal CCF-coloration of T

For every vertex z € V(T), let M(z) denote a mark.
Initialization: Vz € V(T), M(z)=0 and k£ =0.
While a vertex z such that M(z) =0 exists, DO:

k< k+1
R
M(x) + k
While Up(v) # (0, DO:
v« Up(v)
M(v) =k end.
R

While Down(v) # (), DO:
v < Down(v),
M(v) =k end.
End

Proposition 3 Given a tournament T with )ZZ(T) =k, the optimal CCF — k coloration
1s computed in polynomaial time by the algorithm OptDec. The optimal CCF-coloration c
of T is given by Vx € V(T), c(xz) = M(z).

4 CCF-Indecomposable oriented graph

The aim of this part is to introduce the notion of CCF-indecomposable oriented graph
and to characterize vertex-critical CCF-indecomposable tournament. An oriented graph

with n vertices is CCF-indecomposable if %(8) = n. In other words, any convex sub-
set of T" with at least 2 vertices contains a circuit. Remark that such an indecomposable
tournament does not contain convex subset of size two. If 5) is not CCF-indecomposable
then 8 is called CCF-decomposable. For the following probabilistic proof, we need the
notion of random tournament, constructed by picking uniformly at random and indepen-
dently the orientation of every edge of the complete graph K, (i.e. if {z,y} is an edge of
K,, P((z,y) € A(T)) = P((y,z) € A(T)) = ). We denote by 7, the set of such random

tournaments with n vertices.

Proposition 4 The probability for a tournament T € T, to be CCF-indecomposable tends
to 1 when n — oo.

Proof: Let A the event ”7T" is CC F-indecomposable”. The event A€ is realized when
there exist two vertices z and y such that Vz € V(T) \ {z,y}, (z,2) € A(T) & (y,2) €
A(T). We then obtain: P(4) =1— P(A°) <1—(3)(3)"2, and so lim,, o P(4) = 1. O

2

7



We could easily exhibit a family of CCF-indecomposable tournaments. Let us recall
that a tournament is regular if the in and out-degrees of its vertices are equals. Regulars
tournaments are CCF-indecomposable, otherwise the existence of both vertices x and x*
implies d*(z%) = d¥(z) — 1 (where d*(z) denotes the outdegree of z). Given a CCF-
indecomposable tournament, the following proposition shows that we can add a vertex in
order to obtain another C'C F-indecomposable tournament. Let us remind that a vertex
is a source if it has no predecessor and a sink if it has no successor.

Proposition 5 Let T be a CCF-indecomposable tournament without source and sink.
e Tournament T' obtained by adding a source s to T is CCF-indecomposable.
o Tournament T" obtained by adding a sink p to T is CCF-indecomposable.

e Tournament T" obtained by reversing the arc (s,p) in T" is CCF-indecomposable.

Indeed, we also obtain a CCF-indecomposable tournament by the converse operations
(deleting a source or a sink from a CCF-indecomposable tournament).

We now characterize tournament that are vertex-critical for the CC' F—indecomposable
property. Tournament 7 is vertez-critical CCF-indecomposable if T' is CCF-indecomposable
and, for every vertex u of T, T'\ {u} is CCF-decomposable. Given such a tournament,
for every vertex u, there exists a pair of vertices {i,, j,} which verifies the unidirection
property with every set {x} for z in V(T') \ {u, iy, j. }- Such a pair is said to be associated
to vertex u, which is denoted by u ~ {iy, j, }-

Remark 1 For every vertex u of a vertex-critical CCF-indecomposable tournament, there
exists at least one pair {iy, j,} of vertices such that (iy,u, j,) is the only 2-directed path
between the vertices i, and j,.

Lemma 1 Let u be a vertex of a vertez-critical CCF-indecomposable tournament T, and
let {iy, ju} be a pair associated to u.

. iy ~ {u,v} withv € V(T)\ {u, iy}

b. Let u and v be two vertices of a vertex-critical CCF-indecomposable tournament, we
have:

U=v < {lu,]u} = {iv;jv}-

Proof: a. Since u ~ {iy,j,} then (iy,u,j,) is the only 2-directed path between vertices
iy and j,. Hence, for every vertex z € V(T) \ {iy,u, ju}, the subsets {iy,j.} and {z}
verify the unidirection property in 7. Let 2’ be a vertex of T such that 4, ~ {z, z'}. Then
(2,iy,2') and (z,jy, 2") are two different 2-directed path in 7" between z and 2’ which
contradicts the previous remark unless 2z’ = u.

b. We may easily verify that such a proposition is true for tournaments with less than
four vertices. Let us now consider that |V (7)| > 5. Let us suppose that u # v and i, = i,
Ju = Ju- Then, there exist two different path between %, and j,, which contradicts the
remark.



Let us suppose now that the pairs {i,, j,} and {i,,j,} are different but u = v. We may
then suppose that j, # j,. Without loss of generality, we could suppose that (i, u,jy)
and (4,,u, j,) are 2-directed paths of 7. There exists a vertex z in V(T') \ {j,, u} such
that j, ~ {u, z}.

First case: j, = z. In that case, there exists a fifth vertex ¢ such that z ~ {u,t}.
Because of the unidirections due to the critical property of 7', we obtain: {i,} — {u,t},
{jv} = {u,t}, and {u, z} — t.

The subcase i, = 4, is impossible because of the existence of two 2-directed paths
(iy, t, Ju) and (iy, u, Jy)-

We then have i, # 7,. We are in the following configuration:

ju:Z

Y AN Jo

Ty t

by

There exist two 2-directed paths (t,4,,u) and (u, 2z,t) between u and ¢, which contra-
dicts z ~ {u, t}.

Second Case: j, # 2.

As {iy, ju} and {j,} verify the unidirection property, we deduce that z ¢ {i,, j, }

By the unidirection property, {u,z} — {j,} and {i,} — {u,z}. That configuration
leads to a contradiction because there are two 2-directed path between 7, and j,. (J

Let T be a vertex-critical CCF-indecomposable tournament of order n. We define the
graph G associate to T by: V(Gr) = V(T) and {i,j} € E(Gr) if it exists u € V(T)
such that u ~ {i,5}.

Lemma 2 Let T be a vertex-critical CCF-indecomposable tournament of order n and Gr
its associated graph. Then, we have the following properties:

e a. The degree of any vertex of G is less or equal to 2.
e b. Connected components of Gr are cycles (without chord).

e c. Let u be a verter of T and {iy, ju} be the edge of G associate to u. We denote
by C the cycle of G which contains {iy, ju}. Then, u € C.



e d. The cardinal of any circuit of G is odd.

Proof: a. Suppose, for a contradiction, that a vertex u has three distinct neighbourgs
(z,y and z) in Gr. We denote by {i,, j,} the edges associate to u. By lemma 1 a., edges
{u,z}, {u,y} and {u, z} are associate to one of the vertices i, or j,, which contradicts
the proposition b. of lemma 1.

b. The equivalence of lemma 1b. implies that |V (Gr)| = |E(Gr)|. Such equality implies
that Gr contains at least one cycle. As the degree of every vertex of G is bounded by 2,
it follows that the connected components of G are cycles, and that every vertex of G
belongs to exactly one cycle.

c. We denote by (iy, ju, @1, a2, ..., ax) the cycle C and suppose that u ¢ C. Then (iy,u, j,)
is a 2-directed path in 7. As {j,, a1} is not associated to u, u — {j,,a1}. For the same
reason, u — {a;,a;41}, for i € {1,2,...,k}. This implies that (i,,u,ax) is a 2-directed
path of T" which contradicts u ~ {iy, j,} (by lemma 1b.). Then, there exists at least two
different 2-directed path in T between vertices i, and ax, which contradicts {i,, ax} € Gr.
d. Let C = (zo, ..., xx) be a cycle in Gy. We suppose that zo ~ {x;,2;.1}. By lemma la,
{xo,x1} is associated to x; or x;y1.

First case: Suppose that x;,1 ~ {x¢,21}. Using lemma la., we iterate the process: from
[0 ~ {z, x4} and x4 ~ {xo,21}], we obtain [z ~ {x111, 2112} and x40 ~ {21, 22}]
and [z ~ {z42, T3} and 3 ~ {x9,23}] ... . As every vertex of C must be associated
to a unique edge of C, the iterated process ends with [z; ~ {zg, 20} and xp ~ {z; 1, 2:}].
Then, k£ = 2l is even, and so the cycle is odd.

Second case: Suppose that z; ~ {x¢, z1}. Previous iterated process lead to a contradiction,
because a vertex must be associate to an edge incident to it, which is impossible. [J

_)
For gly integer k, the circular tournamen_t) C}, is the tournament of order 2k +1 defined
by: V(Cx) ={0,1,2,...,2k} and (i,j) € A(Cy) if 1 < j —i <k, where j — 7 is considered
modulo 2k + 1.

Proposition 6 Let C be a cycle of Gp of length 2k + 1. The induced oriented graph
T(V(C)) is isomorphic to C.

Proof: Lemma 2 shows that if C = (xg,z1, ..., 29) then for all 7 in {0,...,2k}, z; ~
{Zk1i, Thyir1}, where the indexes are considered modulo 2k + 1. [

Let T be a tournament which vertex set is V(T') = {1,2,...,n} and let T},...,T,, be
tournaments. We denote by T[Ty, ..., T},] the tournament obtained from 7" by substituting
each vertex ¢ of T' by the tournament T;. If (4, j) € A(T), then T; — T;. Such a definition
allows us to characterize the vertex-critical C'C'F-tournament.

ThE)reE> 2 Eﬂy vertez-critical CCF-indecomposable tournament is isomorphic to
T'[Chy, Chy), --., Ci,] where T" is a tournament of order p and where (ky, k, ..., kp) € (N*)?.

Proof: Let T be a vertex-critical CC F-tournament and G the graph associated to 7.
We denote by p the number of cycles in G. For1 <1 < j < p, if C; and C; are two disjoint

10



cycles of G then the subtournaments of 7" induced by the vertices of C; and C; verify
the unidirection property in 7. We define the tournament 7" by V(T") = {1,2,...,p}
and (i,7) € A(T') if and only if the subtournament induced by V(C;) dominates the
subtournament induced by V(C;).

For every i in {1, 2, ..., p}, k; is the integer such that the number of vertices of cycle C;

is 2k; + 1, and by proposition 6, we deduce that T is isomorphic to T’[ﬁkl, ﬁkw ey ﬁkp].

Conversely, let X be a convex subset of T’ [CTCI) , CTCZ R CTk: | with at least two vertices.
If every vertex of X belongs to the same a, then C; C X because circulant tournaments
are CCF-indecomposable. If {z,y} C X such that z belong to a and y belong to 5)']

_>
(with 7 # j), then a UC; € X. We conclude that X contains at least a circulant
tournament and thel> a c_ir)cuit, ﬂl}d so such tournament are C'C F-indecomposable. It is
easy to see that T'[Cy,, Cy,, ..., Ck,] \ {z} is CCF-decomposable. [
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