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Abstract. ω-powers of finitary languages are ω-languages in the form V ω , where V is a finitary

language over a finite alphabet Σ. Since the set Σω of infinite words over Σ can be equipped with

the usual Cantor topology, the question of the topological complexity of ω-powers naturally arises

and has been raised by Niwinski [13], by Simonnet [15], and by Staiger [18]. It has been proved in

[4] that for each integer n ≥ 1, there exist some ω-powers of context free languages which are Π
0

n
-

complete Borel sets, and in [5] that there exists a context free language L such that Lω is analytic

but not Borel. But the question was still open whether there exists a finitary language V such that

V ω is a Borel set of infinite rank.

We answer this question in this paper, giving an example of a finitary language whose ω-power is

Borel of infinite rank.

Keywords: Infinite words, ω-languages, ω-powers, Cantor topology, topological complexity, Borel

sets, infinite rank

1. Introduction

ω-powers are ω-languages in the form V ω, where V is a finitary language. The operation V → V ω is

a fundamental operation over finitary languages leading to ω-languages. This operation appears in the

characterization of the class REGω of ω-regular languages (respectively, of the class CFω of context

free ω-languages) as the ω-Kleene closure of the family REG of regular finitary languages (respectively,

of the family CF of context free finitary languages) [17].
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The set Σω of infinite words over a finite alphabet Σ is usually equipped with the Cantor topology

which may be defined by a distance, see [17, 14]. One can then study the complexity of ω-languages,

i.e. languages of infinite words, by considering their topological complexity, with regard to the Borel

hierarchy (and beyond to the projective hierarchy) [17, 14].

The question of the topological complexity of ω-powers of finitary languages naturally arises. It has

been posed by Niwinski [13], by Simonnet [15] and by Staiger [18]. The ω-power of a finitary language

is always an analytic set because it is the continuous image of a compact set {0, 1, . . . , n}ω for n ≥ 0
or of the Baire space ωω, [15, 4]. It has been proved in [4] that for each integer n ≥ 1, there exist

some ω-powers of context free languages which are Π
0
n-complete Borel sets, and in [5] that there exists

a context free language L such that Lω is analytic but not Borel.

But the question was still open whether there exists a finitary language V such that V ω is a Borel set of

infinite rank.

We answer this question in this paper, giving an example of a finitary language whose ω-power is Borel

of infinite rank.

The paper is organized as follows. In Section 2 we recall definitions of Borel sets and previous results

and we proved our main result in Section 3.

2. Recall on Borel sets and previous results

We assume the reader to be familiar with the theory of formal ω-languages [19, 17]. We shall use usual

notations of formal language theory.

When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence x = a1 . . . ak , where ai ∈ Σ
for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k, denoted by |x|. The empty word has no

letter and is denoted by λ; its length is 0. For x = a1 . . . ak, we write x(i) = ai and x[i] = x(1) . . . x(i)
for i ≤ k and x[0] = λ. Σ⋆ is the set of finite words (including the empty word) over Σ.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . ., where for all integers

i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write σ = σ(1)σ(2) . . . σ(n) . . ., where for all

i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.

The prefix relation is denoted ⊑: a finite word u is a prefix of a finite word v (respectively, an infinite

word v), denoted u ⊑ v, if and only if there exists a finite word w (respectively, an infinite word w),

such that v = u.w. The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language over an

alphabet Σ is a subset of Σω.

For V ⊆ Σ⋆, the ω-power of V is the ω-language:

V ω = {σ = u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V − {λ}}

We assume the reader to be familiar with basic notions of topology which may be found in [12, 11, 8,

17, 14]. For a finite alphabet X , we consider Xω as a topological space with the Cantor topology. The

open sets of Xω are the sets of the form W.Xω, where W ⊆ X⋆. A set L ⊆ Xω is a closed set iff its

complement Xω − L is an open set. Define now the Borel Hierarchy of subsets of Xω:
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Definition 2.1. For a non-null countable ordinal α, the classes Σ
0
α and Π

0
α of the Borel Hierarchy on

the topological space Xω are defined as follows:

Σ
0
1 is the class of open subsets of Xω.

Π
0
1 is the class of closed subsets of Xω.

and for any countable ordinal α ≥ 2:

Σ
0
α is the class of countable unions of subsets of Xω in ∪γ<αΠ

0
γ .

Π
0
α is the class of countable intersections of subsets of Xω in ∪γ<αΣ

0
γ .

For a countable ordinal α, a subset of Xω is a Borel set of rank α iff it is in Σ
0
α ∪ Π

0
α but not in⋃

γ<α(Σ0
γ ∪ Π

0
γ).

There are also some subsets of Xω which are not Borel. In particular the class of Borel subsets of Xω is

strictly included into the class Σ
1
1 of analytic sets which are obtained by projection of Borel sets, see for

example [17, 11, 14, 8] for more details.

We now define completeness with regard to reduction by continuous functions. For a countable ordinal

α ≥ 1, a set F ⊆ Xω is said to be a Σ
0
α (respectively, Π

0
α, Σ

1
1)-complete set iff for any set E ⊆ Y ω

(with Y a finite alphabet): E ∈ Σ
0
α (respectively, E ∈ Π

0
α, E ∈ Σ

1
1) iff there exists a continuous

function f : Y ω → Xω such that E = f−1(F ). Σ
0
n (respectively Π

0
n)-complete sets, with n an integer

≥ 1, are thoroughly characterized in [16].

In particular R = (0⋆.1)ω is a well known example of Π
0
2-complete subset of {0, 1}ω. It is the set of

ω-words over {0, 1} having infinitely many occurrences of the letter 1. Its complement {0, 1}ω−(0⋆.1)ω

is a Σ
0
2-complete subset of {0, 1}ω.

We shall recall the definition of the operation A → A≈ over sets of infinite words we introduced in [4]

and which is a simple variant of Duparc’s operation of exponentiation A → A∼ [3].

For a finite alphabet Σ we denote Σ≤ω = Σω ∪Σ⋆. Let now և a letter not in Σ and X = Σ∪ {և}. For

x ∈ X≤ω, xև denotes the string x, once every և occuring in x has been “evaluated” to the back space

operation ( the one familiar to your computer!), proceeding from left to right inside x. In other words

xև = x from which every interval of the form “a և ” (a ∈ Σ) is removed. We add the convention

that (u. և)և is undefined if |uև| = 0, i.e. when the last letter և can not be used as an eraser (because

every letter of Σ in u has already been erased by some erasers և placed in u). Remark that the resulting

word xև may be finite or infinite.

For example if u = (a և)n, for n ≥ 1, or u = (a և)ω then (u)և = λ,

if u = (ab և)ω then (u)և = aω, if u = bb(և a)ω then (u)և = b,

if u =և (a և)ω or u = a ևև aω or u = (a ևև)ω then (u)և is undefined.

Definition 2.2. For A ⊆ Σω, A≈ = {x ∈ (Σ ∪ {և})ω | xև ∈ A}.

The following result follows easily from [3] and was applied in [4] to study the ω-powers of finitary

context free languages.
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Theorem 2.3. Let n be an integer ≥ 2 and A ⊆ Σω be a Π
0
n-complete set. Then A≈ is a Π

0
n+1-complete

subset of (Σ ∪ {և})ω.

For each ω-language A ⊆ Σω, the ω-language A≈ can be easily described from A by the use of the

notion of substitution which we recall now.

A substitution is defined by a mapping f : Σ → P (Γ⋆), where Σ = {a1, . . . , an} and Γ are two finite

alphabets, f : ai → Li where for all integers i ∈ [1;n], f(ai) = Li is a finitary language over the

alphabet Γ.

Now this mapping is extended in the usual manner to finite words: f(ai1 . . . ain) = Li1 . . . Lin , and to

finitary languages L ⊆ Σ⋆: f(L) = ∪x∈Lf(x). If for each integer i ∈ [1;n] the language Li does not

contain the empty word, then the mapping f may be extended to ω-words:

f(x(1) . . . x(n) . . .) = {u1 . . . un . . . | ∀i ≥ 1 ui ∈ f(x(i))}

and to ω-languages L ⊆ Σω by setting f(L) = ∪x∈Lf(x).

Let L1 = {w ∈ (Σ ∪ {և})⋆ | wև = λ}. L1 is a context free (finitary) language generated by the

context free grammar with the following production rules:

S → aS և S with a ∈ Σ; and S → λ (where λ is the empty word).

Then, for each ω-language A ⊆ Σω, the ω-language A≈ ⊆ (Σ∪ {և})ω is obtained by substituting in A

the language L1.a for each letter a ∈ Σ.

By definition the operation A → A≈ conserves the ω-powers of finitary languages. Indeed if A = V ω

for some language V ⊆ Σ⋆ then A≈ = g(V ω) = (g(V ))ω where g : Σ → P ((Σ ∪ {և})⋆) is the

substitution defined by g(a) = L1.a for every letter a ∈ Σ.

3. An ω-power which is Borel of infinite rank

We can now iterate k times this operation A → A≈. More precisely, we define, for a set A ⊆ Σω:

A≈.0
k = A,

A≈.1
k = A≈,

A≈.2
k = (A≈.1

k )≈, and

A≈.k
k = (A

≈.(k−1)
k )≈,

where we apply k times the operation A → A≈ with different new letters ևk, ևk−1, . . . ,և3, և2, և1,

in such a way that we have successively:

A≈.0
k = A ⊆ Σω,

A≈.1
k ⊆ (Σ ∪ {ևk})

ω,

A≈.2
k ⊆ (Σ ∪ {ևk, ևk−1})

ω,

. . . . . . . . . . . .

A≈.k
k ⊆ (Σ ∪ {ևk, ևk−1, . . . ,և1})

ω.

For a reason which will be clear later we have chosen to successively call the erasers ևk, ևk−1, . . . ,

և2, և1, in this precise order. We set now A≈.k = A≈.k
k so it holds that

A≈.k ⊆ (Σ ∪ {ևk, ևk−1, . . . ,և1})
ω
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Notice that definitions of A≈.1
k , A≈.2

k , . . . , A
≈.(k−1)
k were just some intermediate steps for the definition

of A≈.k and will not be used later.

We can also describe the operation A → A≈.k in a similar manner as in the case of the operation

A → A≈, by the use of the notion of substitution.

Let Lk ⊆ (Σ ∪ {ևk,ևk−1, . . . ,և1})
⋆ be the language containing (finite) words u, such that all letters

of u have been erased when the operations of erasing using the erasers և1, և2, . . . , ևk−1, ևk, are

successively applied to u.

Notice that the operations of erasing have to be done in a good order: the first operation of erasing uses

the eraser և1, then the second one uses the eraser և2, and so on . . .

So an eraser ևj may only erase a letter of Σ or an other “eraser” ևi for some integer i > j.

It is easy to see that Lk is a context free language. In fact Lk belongs to the subclass of iterated counter

languages which is the closure under substitution of the class of one counter languages, see [1, 4] for

more details.

Let now hk be the substitution: Σ → P ((Σ ∪ {ևk,ևk−1, . . . ,և1})
⋆) defined by hk(a) = Lk.a for

every letter a ∈ Σ.

Then it holds that, for A ⊆ Σω, A≈.k = hk(A), i.e. A≈.k is obtained by substituting in A the language

Lk.a for each letter a ∈ Σ.

The ω-language R = (0⋆.1)ω = Vω, where V = (0⋆.1), is Π
0
2-complete. Then, by Theorem 2.3, for

each integer p ≥ 1, hp(V
ω) = (hp(V))ω is a Π

0
p+2-complete set.

We can see that the languages Lk, for k ≥ 1, form a sequence which is strictly increasing for the inclusion

relation:

L1 ⊂ L2 ⊂ L3 ⊂ . . . ⊂ Li ⊂ Li+1 . . .

In order to construct some ω-power which is Borel of infinite rank, we could try to substitute the language

∪k≥1Lk.a to each letter a ∈ Σ. But the language ∪k≥1Lk.a is defined over the infinite alphabet Σ∪{և1

, և2, և3, . . .}, so we shall first code every eraser ևj by a finite word over a fixed finite alphabet. The

eraser ևj will be coded by the finite word α.βj .α over the alphabet {α, β}, where α and β are two new

letters.

The morphism ϕp : (Σ ∪ {և1, . . . ,ևp})
⋆ → (Σ ∪ {α, β})⋆ defined by ϕp(c) = c for each c ∈ Σ

and ϕp(ևj) = α.βj .α for each integer j ∈ [1, p], can be naturally extended to a continuous function

ψp : (Σ ∪ {և1, . . . ,ևp})
ω → (Σ ∪ {α, β})ω.

Let now

L =
⋃

n≥1

ϕn(Ln)

and h : Σ → P ((Σ ∪ {α, β})⋆) be the substitution defined by

h(a) = L.a
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for each a ∈ Σ.

We can now state our main result:

Theorem 3.1. Let V = (0⋆.1). Then the ω-power (h(V))ω ⊆ {0, 1, α, β}ω is a Borel set of infinite

rank.

To prove this theorem, we shall proceed by successive lemmas.

Lemma 3.2. For all integers p ≥ 1, the ω-language ψp(R
≈.p) is a Π

0
p+2-complete subset of (Σ ∪

{α, β})ω.

Proof. First we prove that ψp(R
≈.p) is in the class Π

0
p+2.

For Σ = {0, 1}, ψp((Σ∪{և1, . . . ,ևp})
ω) is the continuous image by ψp of the compact set (Σ∪{և1

, . . . ,ևp})
ω, hence it is also a compact set.

The function ψp is injective and continuous thus it induces an homeomorphism ψ′
p between the two

compact sets (Σ ∪ {և1, . . . ,ևp})
ω and ψp((Σ ∪ {և1, . . . ,ևp})

ω).
We have already seen that, for each integer p ≥ 1, the ω-language R≈.p is a Π

0
p+2-complete subset of

(Σ ∪ {և1, . . . ,ևp})
ω. Then ψ′

p(R
≈.p) is a Π

0
p+2-subset of ψp((Σ ∪ {և1, . . . ,ևp})

ω), because the

function ψ′
p is an homeomorphism.

But one can prove, by induction over the integer j≥ 1, that each Π
0
j subset K of ψp((Σ ∪ {և1, . . . ,ևp

})ω) is also a Π
0
j subset of (Σ ∪ {α, β})ω. Thus ψ′

p(R
≈.p) = ψp(R

≈.p) is a Π
0
p+2-subset of (Σ ∪

{α, β})ω.

Remark now that the set R≈.p being Π
0
p+2-complete, every Π

0
p+2-subset of Xω, for X a finite alphabet,

is the inverse image of R≈.p by a continuous function. But it holds that R≈.p = ψ−1
p (ψp(R

≈.p)), where

ψp is a continuous function. Thus every Π
0
p+2-subset of Xω, for X a finite alphabet, is the inverse

image of ψp(R
≈.p) by a continuous function. Therefore ψp(R

≈.p) is also a Π
0
p+2-complete subset of

(Σ ∪ {α, β})ω. ¤

Lemma 3.3. The set (h(V))ω is not a Borel set of finite rank.

Proof. Consider, for each integer p ≥ 1, the regular ω-language

Rp = ψp({0, 1, և1, և2, . . . ,ևp}
ω) = {0, 1, α.β.α, α.β2.α, . . . , α.βp.α}ω

We have seen that Rp is compact hence it is a closed set. And by construction it holds that (h(V))ω∩Rp =
ψp(hp(V

ω)) = ψp(R
≈.p) where R = Vω, so by Lemma 3.2 this set is a Π

0
p+2-complete subset of

{0, 1, α, β}ω.

If (h(V))ω was a Borel set of finite rank it would be in the class Π
0
J for some integer J ≥ 1. But then

(h(V))ω ∩ Rp would be the intersection of a Π
0
J-set and of a closed, i.e. Π

0
1-set. Thus, for each integer

p ≥ 1, the set (h(V))ω ∩ Rp would be a Π
0
J-set. This would lead to a contradiction because, for J = p,

a Π
0
J-set cannot be a Π

0
p+2-complete set. ¤

Lemma 3.4. Every ω-word x ∈ (h(V))ω has a unique decomposition of the form x = u1.u2 . . . un . . .

where for all i ≥ 1 ui ∈ h(V).
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Proof. Towards a contradiction assume on the contrary that some ω-word x ∈ (h(V))ω = (h(0⋆.1))ω

has (at least) two distinct decompositions in words of h(V). So there are some words uj , u
′
j ∈ h(V), for

j ≥ 1, such that

x = u1.u2 . . . un . . . = u′
1.u

′
2 . . . u′

n . . .

and an integer J ≥ 1 such that uj = u′
j for j < J and uJ ⊏ u′

J , i.e. uJ is a strict prefix of u′
J . Then for

each integer j ≥ 1, there are integers nj , n
′
j ≥ 0 such that uj ∈ h(0nj .1) and u′

j ∈ h(0n′

j .1). Thus there

are some finite words v
j
i ∈ L, where i is an integer in [1, nj + 1], and w

j
i ∈ L, where i is an integer in

[1, n′
j + 1], such that

uj = v
j
1.0.v

j
2.0 . . . vj

nj
.0.v

j
nj+1.1 and u′

j = w
j
1.0.w

j
2.0 . . . w

j

n′

j

.0.w
j

n′

j+1
.1

We consider now x given by its first decomposition x = u1.u2 . . . un . . .

Let now x(1) be the ω-word obtained from x by using the (code of the) eraser և1 as an eraser which may

erase letters 0, 1, and (codes of the) erasers ևp for p > 1. Remark that by construction these operations

of erasing occur inside the words v
j
i for j ≥ 1 and i ∈ [1, nj + 1].

Next let x(2) be the ω-word obtained from x(1) by using the (code of the) eraser և2 as an eraser which

may erase letters 0, 1, and (codes of the) erasers ևp for p > 2. Again these erasing operations occur

inside the words v
j
i .

We can now iterate this process. Assume that, after having successively used the erasers և1, և2, . . . ,

ևn, for some integer n ≥ 1, we have got the ω-word x(n) from the ω-word x. We can now define x(n+1)

as the ω-word obtained from x(n) by using the (code of the) eraser ևn+1 as an eraser which may erase

letters 0, 1, and (codes of the) erasers ևp for p > n + 1.

We shall denote K(i,j) = min{k ≥ 1 | v
j
i ∈ ϕk(Lk)}. Then v

j
i ∈ ϕK(i,j)

(LK(i,j)
) for all integers j ≥ 1

and i ∈ [1, nj +1]. Thus after Kj = max{K(i,j) | i ∈ [1, nj +1]} steps all words v
j
i , for i ∈ [1, nj +1],

have been completely erased and, from the finite word uj , it remains only the finite word 0nj .1.

After KJ = max{Kj | j ∈ [1, J ]} steps, from the word u1.u2 . . . uJ , it remains the word

0n1 .1.0n2 .1.0n3 .1 . . . 0nJ .1

which is a strict prefix of x(KJ ). In particular the J-th letter 1 of x(KJ ) is the last letter of uJ , which has

not been erased, and it will not be erased by next erasing operations.

Notice that the successive erasing operations are in fact applied to x independently of the decomposition

of x in words of h(V). So consider now the above erasing operations applied to x given by its second

decomposition.

Let K ′
(i,j) = min{k ≥ 1 | w

j
i ∈ ϕk(Lk)}, and K

′J = max{K ′
(i,j) | j ∈ [1, J ] and i ∈ [1, n′

j + 1]}.

Kj = K
′j holds for 1 ≤ j < J and KJ ≤ K

′J .

We see that, after K
′J steps, the word 0n1 .1.0n2 .1.0n3 .1 . . . 0nJ−1 .1.0n′

J .1 is a strict prefix of x(K
′J ).

The J-th letter 1 of x(K
′J ) is the last letter of u′

J (which has not been erased). But we have seen above

that it is also the last letter of uJ (which has not been erased).

Thus we would have uJ = u′
J and this leads to a contradiction. ¤

Remark that in terms of code theory Lemma 3.4 states that the language h(V) is an ω-code.
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Lemma 3.5. The set (h(V))ω is a Borel set.

Proof. Assume on the contrary that (h(V))ω is an analytic but non Borel set. Recall that lemma 4.1 of [6]

states that if X and Y are finite alphabets having at least two letters and B is a Borel subset of Xω × Y ω

such that PROJXω(B) = {σ ∈ Xω | ∃ν (σ, ν) ∈ B} is not Borel, then there are 2ℵ0 ω-words σ ∈ Xω

such that Bσ = {ν ∈ Y ω | (σ, ν) ∈ B} has cardinality 2ℵ0 (where 2ℵ0 is the cardinal of the continuum).

We can now reason as in the proof of Fact 4.5 in [6].

Let θ be a recursive enumeration of the set h(V). The function θ : N → h(V) is a bijection and we

denote ui = θ(i).
Let now D be the set of pairs (σ, ν) ∈ {0, 1}ω × {0, 1, α, β}ω such that:

1. σ ∈ (0⋆.1)ω, so σ may be written in the form

σ = 0n1 .1.0n2 .1.0n3 .1 . . . 0np .1.0np+1 .1 . . .

where ∀i ≥ 1 ni ≥ 0, and

2.

ν = un1 .un2 .un3 . . . unp .unp+1 . . .

D is a Borel subset of {0, 1}ω × {0, 1, α, β}ω because it is accepted by a deterministic Turing machine

with a Büchi acceptance condition [17].

But PROJ{0,1,α,β}ω(D) = (h(V))ω would be a non Borel set thus there would be 2ℵ0 ω-words ν in

(h(V))ω such that Dν has cardinality 2ℵ0 . This means that there would exist 2ℵ0 ω-words ν ∈ (h(V))ω

having 2ℵ0 decompositions in words in h(V).
This would lead to a (strong) contradiction with Lemma 3.4. ¤

Theorem 3.1 follows now directly from Lemmas 3.3 and 3.5.

4. Concluding Remarks

We already knew that there are ω-powers of every finite Borel rank [4]. We have proved that there exists

some ω-powers of infinite Borel rank. The language h(V) is very simple to describe. It is obtained

by substituting in the regular language V = (0⋆.1) the language L.a to each letter a ∈ {0, 1}, where

L =
⋃

n≥1 ϕn(Ln). Notice that the language L is not context free but it is the union of the increasing

sequence of context free languages ϕn(Ln). Then L is a very simple recursive language and so is h(V).
The question is left open whether there is a context free language W such that Wω is Borel of infinite

rank.

The question also naturally arises to know what are all the possible infinite Borel ranks of ω-powers

of finitary languages or of finitary languages belonging to some natural class like the class of context

free languages (respectively, languages accepted by stack automata, recursive languages, recursively

enumerable languages, . . . ).
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