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CONFORMALLY EINSTEIN PRODUCTS AND NEARLY KÄHLER

MANIFOLDS

ANDREI MOROIANU AND LIVIU ORNEA

Abstract. In the first part of this note we study compact Riemannian manifolds
(M, g) whose Riemannian product with R is conformally Einstein. We then consider
6–dimensional almost Hermitian manifolds of type W1 + W4 in the Gray–Hervella
classification admitting a parallel vector field and show that (under some mild as-
sumption) they are obtained as Riemannian cylinders over compact Sasaki–Einstein
5–dimensional manifolds.
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1. Introduction

A. Gray was led to define nearly Kähler manifolds (also known as almost Tachibana
spaces) by his research on weak holonomy of Un–structures. If (N, h, J) denotes an
almost Hermitian manifold, with fundamental two–form Ω and Levi–Civita connection
∇, we have the following

Definition 1.1. [8] An almost Hermitian manifold (N, h, J) is nearly Kähler if ∇Ω is

totally skew–symmetric.

From the viewpoint of the representations of Un on the space of tensors with the same
symmetries as ∇Ω, nearly Kähler manifolds appear in the class W1 of the Gray–Hervella
classification (see [10] and §3 below). It is also known that nearly Kähler manifolds with
integrable almost complex structure are necessarily Kähler. The specific, non–trivial,
case is then the so–called strict nearly Kähler, when ∇J 6= 0 at every point of M .

The actual interest in (strict) nearly Kähler geometry is partially motivated by its
links with the theory of connections with (skew–symmetric) torsion and with the theory
of SU3–structures, subjects that appear to be very important in contemporary theoret-
ical physics (cf., for example, [7], [16]).
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The local structure of nearly Kähler manifolds was first discussed by Gray in [9] and
was recently completely understood by P.A. Nagy in [13]: any nearly Kähler manifold is
locally a product of 6–dimensional strict nearly Kähler manifolds, locally homogeneous
manifolds and twistor spaces of positive quaternionic Kähler manifolds. According to
this result, what remains to be studied are strict nearly Kähler structures in dimension
6. This is, in fact, the first interesting case, since 4–dimensional nearly Kähler manifolds
are automatically Kähler. On the other hand, this dimension is particularly important
also because of the following result:

Proposition 1.2. [12] A strict 6–dimensional nearly Kähler manifold is Einstein with

positive scalar curvature.

As such, one may look for (connected) strict nearly Kähler manifolds of dimension 6
among the manifolds admitting real Killing spinors. In fact, in this dimension, a strict
nearly Kähler structure on a simply connected manifold is equivalent with the existence
of a non–trivial real Killing spinor, cf. [11].

In dimension 6, nearly Kähler structures are closely related to G2 structures via the
cone construction (see [1] for example):

Proposition 1.3. A simply connected Riemannian manifold (N6, h) carries a nearly

Kähler structure if and only if its cone (N6 ×R+, t2h + dt2) has holonomy contained in

G2.

For later use, let us also recall the following related result:

Proposition 1.4. [1] A simply connected Riemannian manifold (M2m+1, g) carries a

Sasaki–Einstein structure if and only if its cone (M × R+, t2g + dt2) has holonomy

contained in SUm+1.

Returning to nearly Kähler geometry, the only known examples in dimension 6 are
homogeneous: the sphere S6, the 3–symmetric space S3 × S3 and the twistor spaces,
CP3 and F (1, 2), of the 4–dimensional self–dual Einstein manifolds S4 and CP2. On
the other hand, Butruille proved in [3] that every compact homogeneous strictly nearly
Kähler manifold must be one of these.

It was tempting to try to obtain examples of (non–complete) nearly Kähler manifolds
on cones over some almost contact metric manifolds. But an easy calculation shows
that conic nearly Kähler structures cannot exist. Instead, we here prove in Theorem 3.2
that nearly Kähler structures do exist on cylinders over 5–dimensional Sasaki–Einstein
manifolds. In fact the product structure of the cylinder is not itself nearly Kähler,
but it is globally conformal with a nearly Kähler one, the conformal factor depending
only on the coordinate of the generator. Conversely, we show that a cylindric globally
conformal strict nearly Kähler structure with simply connected base can only exist for
Sasaki–Einstein basis.
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The proof relies on a result which may be important in itself (we thus present it
separately). This result is the classification of compact Riemannian manifolds, the
cylinders over which are globally conformal Einstein with positive scalar curvature.
These manifolds are themselves Einstein with positive scalar curvature. Moreover, the
conformal factor can be explicitly determined and depends only on the coordinate of
the generator, cf. Theorem 2.1 below.

2. Conformally Einstein Products

Theorem 2.1. Let (Mn, g) be a compact Riemannian manifold not isometric to a round

sphere. Suppose that the Riemannian cylinder over M is conformally Einstein with

positive scalar curvature, that is, there exists a smooth function f on M ×R, such that

the Ricci tensor of the Riemannian manifold (M ×R, e2f (g +dt2)) is a positive multiple

of the metric. Then (M, g) is an Einstein manifold with positive scalar curvature and

the conformal factor satisfies e2f(x,t) = α2 cosh−2(βt+γ) for some real constants α, β, γ.

Proof. Let us denote by N and Ñ the Riemannian manifolds (M × R, (g + dt2)) and
(M×R, e2f (g+dt2)) respectively. We view the function f on N as a smooth 1–parameter
family of functions on M by ft(x) := f(x, t). In this way, the exterior derivative df

satisfies df = dft + f ′

tdt, where dft denotes the derivative of ft on M and f ′

t = ∂f

∂t
.

Similarly the Laplace operators of M and N are related by ∆Nf = −f ′′

t +∆Mft. In the
sequel we will denote by ∂t := ∂

∂t
the ”vertical” vector field on N and by X, Y, vector

fields on M , identified with their canonical extension to N commuting with ∂t. The
formula for the conformal change of the Ricci tensor (see e.g. [2], 1.159),

RicÑ = RicN − (n − 1)(∇Ndf − df ⊗ df) + (∆Nf − (n − 1)|df |2)(g + dt2), (1)

yields in particular

RicÑ(X, ∂t) = −(n − 1)(X(f ′

t) − X(ft)f
′

t), ∀ X ∈ TM. (2)

Since Ñ is Einstein, (2) shows that X(f ′

t) = X(ft)f
′

t , which can be rewritten as
X(∂t(e

−f )) = 0 for every X ∈ TM . Consequently, there exist smooth functions
a ∈ C∞(R) and b ∈ C∞(M) such that e−f(x,t) = a(t) + b(x), in other words

f(x, t) = − ln(a(t) + b(x)), ∀ x ∈ M, ∀ t ∈ R.

We now readily compute

df = dft + f ′

tdt = −
db + a′dt

a + b
, f ′′

t = −
a′′(a + b) − (a′)2

(a + b)2
, (3)

∆Nf = −f ′′

t + ∆Mft =
a′′(a + b) − (a′)2

(a + b)2
−

∆Mb

a + b
−

|db|2

(a + b)2
, (4)
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and

∇Ndf = = −
∇N(db + a′dt)

a + b
+

1

(a + b)2
d(a + b) ⊗ (db + a′dt)

= −
∇M (db) + a′′dt2

a + b
+

1

(a + b)2
(db + a′dt) ⊗ (db + a′dt)

(3)
= −

H(b) + a′′dt2

a + b
+ df ⊗ df,

where H(b) denotes the Hessian of b on M . Let r denote the Einstein constant of Ñ .
Plugging the relations above back into (1) yields

r(g + dt2)

(a + b)2
= RicÑ = RicM +

n − 1

a + b
(H(b) + a′′dt2)

+
(a′′ − ∆Mb)(a + b) − n(a′)2 − n|db|2

(a + b)2
(g + dt2),

which is equivalent to the system
{

r = (na′′ − ∆Mb)(a + b) − n(a′)2 − n|db|2

rg = ((a′′ − ∆Mb)(a + b) − n(a′)2 − n|db|2)g + (a + b)2RicM + (n − 1)(a + b)H(b).

Subtracting the first equation from the second one, the system becomes
{

r = (na′′ − ∆Mb)(a + b) − n(a′)2 − n|db|2

(n − 1)a′′g = (a + b)RicM + (n − 1)H(b).
(5)

We distinguish three cases:

Case 1: b is constant on M . Replacing a by a− b, we may assume that b = 0, so by
the first equation in (5), a satisfies the ODE

a′′a − (a′)2 =
r

n
.

The general solution of this equation is

a(t) =

√

r

nβ2
cosh(βt + γ).

Thus e2f(t) = 1
a2 = α2 cosh−2(βt + γ), with α := nβ2

r
. The second relation in (5) shows

that M is Einstein, with positive Einstein constant β2.

Case 2: a is constant on R. Again, replacing b by b− a, we may assume that a = 0,
so the first equation of (5) becomes

n|db|2 + b∆Mb + r = 0.

Integrating over M yields

0 =

∫

M

(n|db|2 + b∆Mb + r)dv =

∫

M

((n + 1)|db|2 + r)dv > 0,
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showing that this case is impossible.

Case 3: Neither a nor b are constant functions. We differentiate the second relation
of (5) twice, first with respect to t, then with respect to some arbitrary vector X ∈ TM

and obtain

a′′′X(b) =
1

n
a′X(∆Mb). (6)

Taking some x ∈ M and X ∈ TxM such that Xx(b) 6= 0, this relation shows that
a′′′ = δa′ for some δ ∈ R. Similarly, taking some t ∈ R such that a′(t) 6= 0 gives some
δ′ ∈ R such that X(∆Mb) = δ′X(b) for all X ∈ TM . Plugging these two relations back
into (6) yields δ′ = nδ. Summarizing, we have

{

a′′ = δa + ε

∆Mb = nδb + ε′
(7)

for some real constants ε, ε′. If δ = 0, the second relation yields (by integration over
M) ε′ = 0, so b is constant, a contradiction. Thus δ 6= 0. Replacing a by a + ε

δ
(and

correspondingly replacing b by b − ε
δ
), we may assume ε = 0. The second relation in

(7) also shows that nδ is an eigenvalue of the Laplace operator (corresponding to the
eigenfunction b+ ε′

nδ
), whence δ > 0. The second equation of the system (5) now becomes

{

RicM = (n − 1)δg

H(b) = −bδg
(8)

Since b is non–zero, the Obata theorem (see [14, Theorem 3]) implies that M is isometric
to a round sphere, a contradiction, which shows that this case is impossible as well. �

3. Manifolds of type W1 + W4

The aim of this section is to classify all compact 5–dimensional Riemannian mani-
folds (M, g) with the property that the Riemannian cylinder M × R carries an almost
Hermitian structure of type W1 + W4. We start with some necessary explanations.

For each almost Hermitian manifold (N2m, h, J), with fundamental form Ω := h(J., .),
the Nijenhuis tensor, viewed as a tensor of type (3, 0) via the metric, splits in two
components N = N1 + N2, where N1 is totally skew–symmetric and N2 satisfies the
Bianchi identity. Similarly, the covariant derivative of J with respect to the Levi–Civita
connection of h splits in four components under the action of the structure group Um

(see [10]):

∇J = (∇J)1 + (∇J)2 + (∇J)3 + (∇J)4.

The first component corresponds to N1, or to the (3, 0) + (0, 3)–part of dΩ. The sec-
ond component can be identified with N2, while the two other components correspond
respectively to the primitive part of dΩ(2,1)+(1,2) and to the contraction Ω y dΩ which
is a 1–form called the Lee form. The manifold N is called of type W1 + W4 if (∇J)2

and (∇J)3 vanish identically. Similar definitions apply for every subset of subscripts in
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{1, 2, 3, 4}. For example a manifold of type W3 + W4 is Hermitian, a manifold of type
W2 is symplectic, and a manifold of type W1 is nearly Kähler.

From the definition it is more or less obvious that if the metric h is replaced by a
conformally equivalent metric h̃ := e2fh, the first three components of ∇J are invariant
and the fourth component satisfies (∇̃J)4 = (∇J)4 + df . Therefore, the Lee form of a
manifold of type W1 + W4 is closed (resp. exact), if and only if the manifold is locally
(resp. globally) conformal nearly Kähler. In dimension 6 we have the following result
due to Butruille:

Theorem 3.1. [4] Let M be a 6–dimensional almost Hermitian manifold of type W1 +
W4. Then its Lee form is closed, so M is locally conformal nearly Kähler.

This result generalizes the well–known fact that for m ≥ 3, every almost Hermitian
manifold of type W4 is locally conformal Kähler (lck).

Using Theorem 3.1, we obtain the following classification of ”cylindrical” structures
of type W1 + W4 in dimension 6:

Theorem 3.2. If the Riemannian cylinder N := (M × R, g + dt2) over a compact 5–
dimensional simply connected Riemannian manifold (M, g) carries an almost Hermitian

structure of type W1 + W4 which is not of type W4, then (M, g) is Sasaki–Einstein.

Conversely, if (M, g) is Sasaki–Einstein, then its cylinder N carries a structure of type

W1 + W4, besides its canonical Vaisman structure (locally conformal Kähler, i.e. W4,

with parallel Lee form, cf. [15]).

Proof. Assume first that N carries a structure of type W1 + W4. By Theorem 3.1, N

(which is simply connected) is globally conformal nearly Kähler. Since we assumed
that N is not lck, there exists a function f on N such that (N, e2f (g + dt2)) is a
strict nearly Kähler manifold. By Proposition 1.2, every such manifold in dimension
6 is Einstein with positive scalar curvature. We apply Theorem 2.1 and obtain that
e2f = α2 cosh−2(βt + γ) for some real constants α, β, γ.

Let us now consider the diffeomorphism

ϕ : M × R → M × (0, π), (x, t) 7→ (x, 2 tan−1(eβt+γ)).

A straightforward computation shows that

e2f (g + dt2) =
α2

β2
ϕ∗(β2 sin2 s g + ds2). (9)

We have obtained that the so–called sine–cone (see [6]) of (M, β2g) has a nearly Kähler
structure. The first part of the theorem then follows from the next lemma, which can
be found (in a slightly different version) in [6].

Lemma 3.3. Up to constant rescalings, the sine–cone (M × (0, π), sin2 s g + ds2) of

a simply connected 5–dimensional Riemannian manifold (M, g) has a nearly Kähler

structure if and only if M is Sasaki–Einstein.
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Proof of the lemma. In [6] the authors prove the result by an explicit calculation, using
so–called hypo structures on Sasaki–Einstein manifolds. We provide here a different
argument. The key idea is the fact that the Riemannian product of two cone metrics is
again a cone metric, as shown by the formula

(t2g +dt2)+(s2h+ds2) = r2(sin2 θ g +cos2 θ h+dθ2)+dr2, (s, t) = (r cos θ, r sin θ).

In particular, taking h = 0 (the metric of a point), shows that the cylinder over the
Riemannian cone of a metric g is isometric to the Riemannian cone over the sine–cone of
g. By Lemma 1.4, if M is Sasaki–Einstein, its Riemannian cone M̄ has holonomy in SU3,
so the cylinder M̄ ×R has holonomy in SU3×{1} ⊂ G2. The previous remark, together
with Proposition 1.3, shows that the sine–cone of M is nearly Kähler. Conversely, if
this holds, then the Riemannian cone of the sine–cone has holonomy in G2. Thus the
holonomy of the cylinder M̄ × R is a subgroup of G2. But since G2 ∩ (O6 × {1}) =
SU3 × {1} ⊂ O7, this means that M̄ has holonomy in SU3, so M is Sasaki–Einstein.
The lemma, and the first part of the theorem are thus proved.

Conversely, let (M5, g) be a simply connected Sasaki–Einstein manifold. We first
notice that by Lemma 1.4, the Riemannian cone M̄ is Kähler, so the cylinder M × R,
which is conformal to M̄ , is lck (and even Vaisman, see [15]).

On the other hand, Lemma 3.3 shows that the sine–cone of M is nearly Kähler,
and therefore the cylinder over M , which by (9) is conformal to the sine–cone, has a
structure of type W1 + W4. �

Remark. The almost Hermitian structure on the cylinder can be easily made explicit,
cf. [6, Theorem 3.6]. As it was pointed out by S. Ivanov, the almost complex structure is
not invariant by any translation, so one can not obtain compact examples of structures
of type W1 + W4 in this way. In fact, Theorem 3.1 and Lemma 8 in [5], show that
every structure of (strict) type W1 +W4 in dimension 6 is globally conformal to a nearly
Kähler structure.
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math.DG/0503150 (2005).
[5] R. Cleyton, S. Ivanov, Conformal equivalence between certain geometries in dimension 6 and 7,

math.DG/0607487 (2006).
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[11] R. Grünewald, Six–dimensional Riemannian manifolds with real Killing spinors, Ann. Global Anal.

Geom. 8 (1990), 48–59.
[12] M. Matsumoto, On 6–dimensional almost Tachibana spaces, Tensor (N.S.) 23 (1972), 250–252.
[13] P.A. Nagy, Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002), 481–504.
[14] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math.

Soc. Japan, 14 (1962), 333–339.
[15] L. Ornea, M. Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res. Lett., 10

(2003), 799–805.
[16] M. Verbitsky, An intrinsic volume functional on almost complex 6–manifolds and nearly Kähler

geometry, math.DG/0507179 (2005).
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