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Influence of electromagnetic boundary conditions onto the onset of dynamo action
in laboratory experiments

Raul Avalos-Zuniga and Franck Plunfan
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Agris Gailitis
Institute of Physics, University of Latvia, LV-2169 Salaspils 1, Riga district, Latvia
(Received 5 February 2003; revised manuscript received 11 July 2003; published 24 December 2003

We study the onset of dynamo action of the Riga and Karlsruhe experiments with the addition of an external
wall, the electromagnetic properties of which are different from those of the fluid in motion. We consider a wall
of different thickness, conductivity, and permeability. We also consider the case of a ferrofluid in motion.

DOI: 10.1103/PhysReVvE.68.066307 PACS nuniderd7.65+a
I. INTRODUCTION B. Geometries of Riga and Karlsruhe experiments
A. Objectives For both experiments the appropriate coordinates are cy-

lindrical (r,6,z). The Riga dynamo experimeft] is com-

Two dynamo experiments have been successful so faf)osed of three coaxial cylinders of radij=0.125 m, R

one in Riga(Latvia) [1,2] and one in Karlsruh¢Germany =0.215 m, andR+e=0.4 m. The flow is helical in the in-

[3]. Both experimentg are complemen?ary to each other i'?1er cylinder, backward between the inner and the second
many respects. One is monocellular with a dynamo mecha; linder [Fig. 1(a)]. There is stagnant fluid in the outer cyl-

nism based on a laminar kinematic approach. The second IRder. The same fluidiquid sodium has been used in every
multicellular with scale separation between the flow and thepart of the experiment. The height of the device Hs

magnetic field leading to an effect as assumed in turbulent __
d The first d time-dependent fic 2oL m-
ynamos. 1ne first one produces a ime-dependent Magneuc 1o ¢t essential piece of the Karlsruhe dynamo experi-

field_ (Hopf bifurcat_ior)_ Where_as the s_econd_ one_produ_ces 4nent [3] is a cylindrical container with both radiu’ and
Stationary magnetic f|el(btat|on§ry_ bifurcatioh Finally In heightH somewhat less than 1 m, through which liquid so-

; ; 1N Ve¥ium is driven by external pumps. By means of a system of
good agreement with the experimental results. This g“’?%hannels, constituting 52 “spin generators,” a helical motion

good _cotr;:!dence for further theoretical investigations, as isg organized Fig. 1(b)]. The flow pattern is of Robert]
one n this paper. type and an estimate of the self-excitation condition for this

netic boundary conditions onto the onset of dynamo action%xperimental device has been derived from a mean-field so-
y y [ution with ana effect assumed to be constant in the cylinder
Suppose, for example, that an external layer of stagnant flui ]

is added around the main motion, as is done in Riga. Does
help for dynamo action? What happens if instead of a stag-
nant fluid the external layer is a highly conducting wall or a
ferromagnetic wallwith a magnetic permeability larger than
vacuum permeability? At last, what is the influence onto the
onset of dynamo action when a ferrofluid is ugadsuming

a homogeneous permeability throughout the fluad pro-
posed recently4]?

The answers to these questions are of high interest for the
next generation of dynamo experiments which are under way
[5,6]. Indeed, with concern for natural dynamos, these new
generation experiments do not have a flow geometry as wel
optimized as the two previous ones. Then the volume of
moving liquid metal necessary to get dynamo action is much
larger. In fact, this volume may even be underestimated by
the theoretical predictions usually based on crude approxi-
mations as laminarity of the flow. Then the possibility to add
external walls or stagnant fluid around the experiment as
well as the use of a ferrofluid could become essential.

(a) (b)

*Electronic address: Franck.Plunian@hmg.inpg.fr. URL: http:/  FIG. 1. The dynamo modules of tif@) Riga and(b) Karlsruhe
legi.hmg.inpg.fr~~plunian experiments.

1063-651X/2003/68)/0663078)/$20.00 68 066307-1 ©2003 The American Physical Society



AVALOS-ZUNIGA, PLUNIAN, AND GAILITIS PHYSICAL REVIEW E 68, 066307 (2003

Il. FORMULATION OF THE PROBLEM B(r,a,z,t)=b(r) gPt+imo+ikz (3)

A. Parameters . .
p being the complex growth ratey andk the azimuthal and

regions defined by their radiir(=R, r,=R+e, r3==), 1,408 |eads to the general solutid of Eq. (1) to which
their conductivities §1,05,03), and permeabilities the boundary conditions apply
(#1,2,113). Region 1 contains the moving fluid, region 2is = e 4| boundary conditions write ljm..b;=0 plus

the conducting wallor stagnant surrounding flyidand re- the appropriate relations between each regitsee below.

gion 3 is the insulator around the experimeat£0). How- h lati isfied b h icul i
ever, for the sake of generality, we will replacg by zero As these relations are satisfied by each particular sol@jon
they are also satisfied 1.

only in the numerical applications. . . .
y PP The axial boundary conditions write

B. Kinematic dynamo problem lim B=0, (4)

Z—*+x»

As we are interested in the onset of the dynamo instabil-
ity, it is sufficient to solve the kinematic dynamo problem in B B
which the flow is considered as given. The magnetic figld (VxB);=0 at z==H/2. ®)

must satisfy the induction equation and the divergence-fregqyation(5) means that there is no axial current crossing the
condition insulating borders at both ends. In order to simplify the cal-

JB culations, we shall consider only twan(k) modesB, the

E:VX(UX B)—VX([a]B)+(uo) V?B, (1) superposition of which satisfies E(b) only, as explained

later in the paper.
V-B=0, (2
IIl. METHOD OF SOLUTION

with appropriate boundary conditioias we shall see later
and where the velocity field) and the[ «] tensor may be
nonzero only in region 1. Thea] tensor corresponds to a By replacing Eq(3) in Eq. (1) we find that in each region
mean electromotive force which is linear and homogeneoukthe radial and azimuthal componentstofmust satisfy
in B. In that case the quantitig&andU must be understood

as mean quantiti®]. by + Eb{ +[Alb,=0 (6)
r

A. Solutions of the dynamo problem

C. Velocity and [ «] tensor ) ) ) o
with the prime denoting the derivative and where the ma-

trix A simply relates the different components lgfin the
induction equation. Thé coefficients write

In the Riga experiment the velocity is defined byU,
=(0,wr,ywrg) for r<ry and U;=(0,0,— ywro/(R/ro)?
—1) for ro<r=<r4. Therefore it is convenient to introduce

an additional cylindrical region O defined by its radius ,. P m2+1  me+kV,
=r, distinct from region 1 {,<r<r,) by its velocity but Aj=Ay=—| ko+ —+ o T
common by its conductivityso= 0, and permeabilitys, meoor d

=uq (as it is the same fluld The[ ] tensor is identically and Apy= — Ag= — i (2m/r2-+kay/7), With 7= (o)~

zero at first order for the Riga experiment. Indeed, the cur- d wh qv th tic diffusivity. th
rents induced by the small scale of the turbulence are negl"¢ Wheréx, @, andv,, are the magnetic difiusivity, the

gible compared to the currents induced by the mean flow. & effect, the fo“?‘“on rate, and tlge:omponent of the V(.EIOC'
For the Karlsruhe experiment, it is the mean flowvhich ity field appropriate to each regidrand to each casiRiga

is zero. In that case, thpa] tensor writesa; = e, (5 or Karlsruhg as defined above. Finally, the componét

—e;€)). This corresponds to an anisotropiceffect deduced can be determined subsequently by
from the symmetry properties of the flow. In addition, in the i
calculation of the mean electromotive force we neglected the b'Z:E
contribution which contains the derivatives Bf This ap-

proximation leads to an error of about 10% on the instabilityT

- . o o find the solutions in the regidn instead of b, ,b,,) we
threshold predictiori8,10]. However, this approximation is look for (by, +iby,by, —iby ). '?’hese solutionsbganlf))e Writ-
accurate enough for our present purpose. ' ool 0

; ) ten as a linear combination of modified Bessel's functions
For convenience we denote each region i1, 2, or 3

- i : ) Imi1(@; 1) and Koy q(w; 1) for by, +ib;, andly,_q(w; 1)
plus the additional regioh=0 for the Riga experimept andK,, (o 1) for by, —ib,y, where

)

Ir |-

b|r+imb|0+b, )

D. Magnetic field o2 y2 p= ak+i(me+kV))
As the flow in both problems ig independent, axisym- (o )"=k"+ 7 : 8)
metric, and time independent, a particular solution of @.
takes the form In each region the solutions write in the form

066307-2
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(byy i) =[F| I 1(@] 1)+ G, Ky 1 (@ 1)1(1,2) D. Treatment of the axial boundary condition

+[F 1@ 1)+ G Kyog(e) 1)](1,-1), 1. Method

9) Any (m,k) modeB satisfying Eq.(12) automatically sat-
isfies the radial boundary conditions but not the axial bound-
whereF;", F, G, andG, are constants. The regularity ary condition. For that, again, one should wrieas trle
conditions forr =0 lead toG; =G, =0 for the Riga experi- superposition of an infinite number of particular solutidhs
ment andG; =G =0 for the Karlsruhe experiment. The satisfying Eq(12) and then apply Eqg¢4) and(5) to B. This
conditionb;—0 whenr — leads toF; =F; =0 for both is quite tedious and numerically demanding. Instead we look
experiments. for an approximate solutioB written as the superposition of

only two particular solution8; andB, which have the same
B. Radial boundary conditions growth ratep and with wave numberk, andk,, the differ-

) ence of which writes
The normal component @&, the tangential component of

B/u, and thez component of the electric fiel&E,= n(V ky—k,=27/H. (13
X B), are continuous across each interfacer, (only for
Riga), r=rq, andr=r,. We can show that this set of rela- If, in addition, both solutions have the same radial profile
tions is sufficient to describe all the radial boundary condi-then Eq.(5) is satisfied, which is a good enough approxima-
tions of the problem. They write at=r,: tion of the actual experiments. Such an approximation is
quite well justified for the Riga experiment because of its
brr=brigy, extended shapd/R~ 15. Indeed, as the radial profile differ-
ence between both solutions a& £H/2 is of the order
M: LREY, O(R/H), the boundary condition€0) and(11) are satisfied
M M1 with an error also o©O(R/H) and the parameters in E(L2)
are obtained with an error of the ordé&(R?/H?). In the
i(ﬁﬂ), )_ 1 (le,r b ) case of Karlsruhe H/R~1), the only justification is the
wil e\ I+1r ) common experience that in many similar cases replacing
zero boundary conditions at infinity by periodic boundary
bii1e—imby,q, conditions at both enddeading to Eq.(12)] makes no cru-
+ b|"9) = ﬁ|+1(f +by 1 cial difference.

(10

b|’0_imb|'r
Y —r|

2. Karlsruhe

but for the Riga experiment at=r, the last equation in Eq.  wjth such an approximation the problem is straightfor-
(10) is replaced by ward to solve for the Karlsruhe experiment. Indeed, as the
flow pattern is symmetric to the plare=0, after Eq.(12)
by,+ iwrobm) _ (11) the two solutions wittk= * 77/H have the samp and satisfy
Eq. (13). The clockwise and anticlockwise rotations are com-
pensated, implying that the generated field pattern does not
C. Dispersion relation and dimensionless parameters rotate around the symmetry axis. Hence E@) can be writ-
) ) ) ten in real variables, the growth rgtes real, and the field is
Replacing Eq(9) into Egs.(10) and(11), we find & Sys-  gationary. Another way to understand it is that theffect
tem of eight equations for the Karlsruhe dynamo and twelvgyyes not depend om and therefore there is no preferred
for the Riga dynamo. We have a nontrivial solution only if gense in the direction for a magnetic wave to travel as it
the determinant of the system is equal to zero. This writes iy,q,,1d pe if the field is not stationary. Then the only thing
the form which remains to do is solving Eq12) in order to find the
critical R, for which p=0. For the calculation we took
H/R=1.

(bia):

F[Rn(or R,),k,p,m, geometric parameters 0, (12)

whereR,, and R, are magnetic Reynolds numbers defined )
by Rn=01u1|Uolmato for the Riga dynamo andR, 3. Riga
=ou1a, R for the Karlsruhe dynamo. For the Riga experiment the calculation is more compli-
For the calculations we set;=0 and definer,/o;=Ss, cated than for Karlsruhe for at least two reasons. First, the
m1lusz=q, andu,/u3=n. The dynamo onset corresponds inner flow (r<rg) is helical and has then a preferred direc-
to Re(p)=0 for which a criticalR,, or R, is calculated for tion given by the rotation axis. Then any generated field
different values of the parameteg&R, s, g, n, and for values pattern rotates round the vertical axis of symmetry. Hence
of k chosen to satisfy the axial boundary conditi) as the field is not stationary and the growth raids always
explained below. Like any transcendental equatiBessel complex. Second, one does not obtain the same result when
functions with complex argumentsEq. (12) has an infinite  V, is replaced by-V, in both regions 0 and 1. This implies
number of complex roots. It has to be solved numerically. that p(—k) is always different fromp(k) contrary to the
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Karlsruhe case. As a result, for a givRp, one must look for
two complex values ok which only differ from their real
parts while their imaginary parts are equs¢ée Ref[11] for

more details and which must satisfy Eqg12), (13), and

p(ki,Rm) =p(ks,Ry). The generated instability is usually
known as absolute or global instability. The generated mag-

netic field B=B,+ B, is a deformedas J(k;)=J(k,) # 0]

standing wave damped at both ends of the device and rotafsstead of looking for an absolute instability:

ing around the symmetry axis. We call absolute critieg|

the value ofR,,, such that these conditions plus the additional

relation Rep)(k;,R,) =Re(P)(k,,R,) =0 are satisfied. At

the time when the Riga experiment was designed, thig,
method had already been used. In particular, the size

PHYSICAL REVIEW E 68, 066307 (2003

B. Rigid body helical flow

Before dealing with the Riga and Karlsruhe experiments
we first want to mention results for the academic case of a
rigid body helical flow surrounded by a conducting wall,
both having infinite height. This case corresponds to have
ro=Rin our calculations for the Riga geometiip that case
region 1 of the backward flow does not exisHowever,
as for Riga, we
simply look for the onset of the dynamo instability corre-
sponding to the minimum value d®,, for a givenk. This
instability is found to be of convective type, any primordial
agnetic perturbation when growing being also traveling
along the axis of symmetry of the flow.

—rg of the .Riga e_xperiment was determingd to lower the  \\e repeated the results of REE2] on the dependence on
group velocityvg=idp/dk of the above mentioned absolute ¢onqyctivity and thickness. A decrease of the dynamo thresh-

instability. For our calculations we used the valuesr gf
r.(=R) andH as given above ang=1 which is represen-
tative of the actual flow of the Riga experimdi.

IV. RESULTS

A. Integral quantities

In all our calculations for both Riga and Karlsruhe the

old has been found as the dimensionless wall thickeéBs
or wall conductivitys was increased. The usual picture to
explain this result is that increasing the wall thickness or
wall conductivity leads in both cases to a reduction of the
ohmic dissipation. From Eq18) the reduction of the total
dissipation [7; + 7, is equivalent to the reduction af,
which is directly related to the threshold.

In the case of uniform conductivitg=1, it has been

azimuthal moden=1 has always been found to be domi- shown[13] that this picture is incomplete when the magnetic

nant. Therefore in the rest of the paper only the results fofield is time dependent. In that case some additional eddy
this mode are presented. From nd®y, (R,) denotes the currents may be induced in the wall, increasing the ohmic
absolute criticalR, (critical R,). In order to give some dissipation. As a result, the dynamo threshold versus the wall
physical justification of our results we need to define thethickness has a minimum.

following additional quantities/h,, P, J;, and S, which In our calculations we checked out the existence of this
are, respectively, the magnetic energy, the Poynting flux, theninimum. We found that this effect is even more important

Joule dissipation, and the work of the Lorenz forces in thefor s> 1. We found a similar effect for Riga as explained in

regionQ); (I=1 for the fluid,| =2 for the wall, and =3 for
the vacuum They are defined by

B2 B
W|:f —dQ,RzJ —XE|-ndS, (14
)2 (s)\
j2
J= —dQ,S|=f j-&dQ, (15
o)o ()

where£=UXB for Riga andé= —[ «]B for Karlsruhe. The
region () is delimited by the boundafigs) (S;) of normal
n andj=V XB/u is the current density. Multiplying Eq1)

by B/u and integrating in each regidrwe find

(?Wl &WZ
7:7)14'51_«71, 7:772_«72, (16)
W3
7:7)3, 731+7)2+P3:0. (17)
Dynamo action corresponds to
S$i=T+ T (18

the following section.

C. Influence of the wall conductivity
1. Threshold reduction rate

To present our results we adopt the point of view of any
experimenter who wants to know how much reduction of the
dynamo threshold he can obtain varying the wall thickness
and conductivity, relatively to the case with no wall at all
(e=0). For that we define a threshold reduction rate by

Rn(s,e/R)

I RGem0)

(19

for Riga which also applies to Karlsruhe replaciRg, by
R,. We found R,,(e=0)=41.16 for Riga andr,(e=0)
=4.8 for Karlsruhe. The reduction rates for Riga and
Karlsruhe are plotted, respectively, in Fig. 2 and Fig. 3 ver-
suss for n=qg=1 and for different wall dimensionless thick-
nesse®/R.

In both cased’ is always positive, which stresses the
interest of having a conducting wall. Of course Jipl’

with the equal sign for the instability threshold. It means that=0. Indeed, as the wall is surrounded by the vacuum, having

at the threshold the work of the Lorenz forc&smust com-
pensate the total ohmic dissipation.

a nonconducting wall is equivalent to having no wall at all.
In both cases lim,..I'~20%.
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60%

probably because of additional eddy currents as found in
Ref.[13] for the rigid body helical flow. We recall here that
this effect is related to the time dependency of the solution.
This would explain why such a curves crossing is observed
for Riga (time-dependent solutignand not for Karlsruhe
(stationary solution

T a0 t

3. Physical interpretation

In this section we give some physical interpretation on the
behavior ofl" versuss. In a first step let us consider the case
of Karlsruhe for whichI' increases monotonically witk.
From Eq.(18) the threshold is directly related t@, and 7,
the dissipation in the fluid and the wall. We first show that in
both cases<1 ors>1 we have/,<J;.

Fors<1 the electric currents circulate mainly in the fluid.
logio(s) At the fluid-wall boundary we have,;~j;; and j,~j
where the subscrifitdenotes the tangential component. Writ-
ing the continuity of the tangential component of the electric
field across the fluid-wall boundary we find that~j,/s.
Then integrating on both regioi@@uid and wal) we find that
J1~R%34lo, and that J,~R€j%/o, with e =eR/(R
+e). Indeed where>R it is reasonable to assume that the
currents in the wall close within a distanBe(instead ofe)

For logy«(s) =0, the maximum reduction rate obtained for from the fluid-wall boundary. As a result we find that
Riga is 55.9%. This is surprisingly close to the value ob-7,/7;=0(s€/R).
tained for a spherical dynamo model surrounded by a quies- For s>1 the current lines in the fluid at the fluid-wall
cent conducting external shell considered in Hé#]. In boundary are mainly perpendicular to the boundary. There-
Table 8 of Ref.[14], they foundR,(e=0)=3901.11 and fore we havej;~j,; where the subscript denotes the nor-

R (e=2)=1659.05 leading td'=57.5%. mal component, and agaipp~j, as the currents have to

A remarkable point for Riga is that the choice adopted forclose up in the wall. So we find that;~R?j2,/0; and that
the experimente/R=286% (curve B ands=1, leads to the  7,~Re'jZ/o,. Now from the definition of the current den-
maximum threshold reduction rate. This shows that there igjty j = V x B/ u we can approximatg,~B, /e’ u,. Writing
no benefit of adding a high electroconducting wall instead ohe continuity ofB,/x across the fluid-wall boundary we
an outer stagnant layer of fluid. find that 7,/ J,=O(R/s¢€’).

In Fig. 2 the dashed curvé) goes abo_ve the solid_ curve 5o we can conclude that fee'/R<1 or se//R>1, the
(@) for s=0O(1). This shows that there is a wall thickness ohmic dissipation is mainly concentrated in the fluid. There-
(~86% for Riga for which the dissipation is minimum. For fore from Eq.(18) the threshold is directly related to the
a larger thicknesgcurve g additional dissipation occurs, ohmic dissipation in the fluid. The main difference between
both limitsse'/R<1 andse'/R>1 is the change of geom-
etry of the current lines in the fluid.

Forse'/R<1 the current lines are constrained to close up
mainly in the fluid whereas fose’'/R>1 the current lines in
the fluid are perpendicular to the wall. Therefore the current
lines are tighter forse'/R<1 than forse’//R>1. Conse-
quently we understand why the dissipation is the largest
when s€'/R<1 and thatl’ increases withs. Now if our
argument is correct this change of geometry of the current
lines should occur at the transition between the two previous
limits, namely, forse’/R=0(1). In order to check this out
we plotI” versuss€' /R in Fig. 4. We find that all the curves
for Karlsruhe merge pretty we{tlotted curves at the bottom
' and that their change of curvature occurs indeeds@rR
4 +6 :O(]_)_

As a second step we consider the case of Riga for which
some additional eddy currents must be considered leading to
an enhanced dissipatiaff, concentrated in the wall. Now

FIG. 3. Karlsruhe: The threshold reduction rétes logy(s) for ~ following the same arguments as for the stationary case,
n=qg=1. The labels indicate Iqg(e/R). namely, that as7,/J; is maximum forse'/R=0(1), we

20% r

FIG. 2. Riga: The threshold reduction rdtevs log,y(s) for n
=q=1 and different values oé/R. For curve(a) the ratioe/R is
infinite, for (b) 86% (dashed ling for (c) 20%, for(d) 10%, for(e)
5%, for (f) 2%, for (g) 1%, and for(h) 0.5%.

2. The particular case s1 for Riga

20%

15%

5% -

0%

logio(s)
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60% T T 60% T
40%

I s0%

20% r
20%

% 4 2 0 2 , ,
%%, 2 4
logio(se/R)
logio(n)
FIG. 4. Threshold reduction rate vs log,(s€'/R) for n=q

=1 and different values of/R. The solid(dotted curves in the FIG. 5. Riga: The threshold reduction rdfevs logo(n) for s
upper (lower part correspond to RigéKarlsruhe. The dashed =qf1 and different values a#/R. The labels correspond to those
curve corresponds again to curve b of Fig. 2. of Fig. 2.

L dissipation. In that case, increasing the wall permeability still
expect the dissipation due to these eddy currents to be alsQ,hg the magnetic field but prevents the electric currents

maximum forse’/R=0(1). However, in the case where the o ¢losing outside the fluid. This can explain the differ-
skin dep_thﬁ is smaller thape, we must replace by § |n.the.z ence of slope between the curvegregative slopeand h
expression of’. Indeed, in the case whe#<e, the dissi-  (yositive slopg of Fig. 5. Indeed, in the case a the wall is
patlonlls mglnly concentrated in the skm'layer. The Sk'”probably larger than the skin depth and the eddy currents
depth is defined by//R=y2/(nsw) wherew is the dimen-  gissipate more than the reduction of dissipation due to the
sionless pulsation of the magnetic field that we also calcughange of geometry of the field lines. In case h the wall is so
lated solving Eq(12). The curves for Riga are plotted in Fig. small (smaller than the skin deptithat the additional dissi-

4 (solid curves above the dotted curves and dashed curve Bhtion due to the eddy currents is negligible.

the top. For each thickness the maximum bBfis indeed A common feature of Riga and Karlsruhe is tHats,n
obtained at about the same valuesef/R=0(1), followed =q=1)=I(n,s=q=1) for e/R—. Such a relation has
by a sudden fall due to the additional eddy current dissipag|ready been found for the rigid body helical flow sur-
tion. Increasing the wall conductivity helps the electric cur-rounded by a conducting layer of infinite extdas).

rents to close outside the fluid like in the stationary case. EFor completeness we also calculaiegvhen boths andn
However, because of the skin effeatonstationary solu- are changedbut still g=1). The corresponding curves are

tions), increasing the wall conductivity prevents the mag-piotted in Fig. 7 for Riga ¢/R=86%) and in Fig. 8 for
netic field to close outside the fluid. It is the competition i aisruhe €/R=0.1).

between these two effects which leads to the maximum of
the threshold reduction raié. 20%

D. Influence of the wall permeability
15% -

1. Threshold reduction rate T

In this section we vary the wall permeabilityfor s=q
=1. We define again a threshold reduction rate by #&f)
in which s is replaced byn. The resulting reduction ratd$
for Riga and Karlsruhe are plotted, respectively, in Fig. 5 and
Fig. 6 versus logy(n) for different values o&/R. In the case
of stationary solutions like for Karlsruhe, we find tHatis
monotonically increasing versus We explain this increase
by a change of the geometry of the magnetic field lines in the
fluid. When increasing the field lines in the fluid become
perpendicular to the wall. As a result they can close outside
the fluid, decreasing the ohmic dissipation in the fluid. As a logio(n)
result the total dissipation decreases with

In the case of time-dependent solutions the dissipation FIG. 6. Karlsruhe: The threshold reduction rdtevs log(n)
due to the eddy currents must be added to the previous totédr s=q=1 and different values of lgg(e/R) given by the labels.

)
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FIG. 7. Riga: The threshold reduction rafevs logq(n) for FIG. 9. The parametek vs g for n=s=1 and different values

e/R=86% =1, and different values of. The labels correspond Of €/R. The solid(dotted curves correspond to Rig&arlsruhe.
to log;(s). The dotted(dashedl lines refer to positivenegative ~ The labels correspond to those of Fig. 2.
values of logy(s).

As a result, using a ferrofluid is less interesting than sug-
gested by the previous simple estimate. In order to quantify
Here we look for the dynamo instability threshold assum-how much less interesting it is, we calculate=qR(q
ing the use of a ferrofluid. The permeability of the wall is =1)/R,(q) for Riga and A=9R,(q=1)/R,(q) for
equal to the vacuum permeability. Therefmen=1 and Karlsruhe versusy. Then at the threshold)(q) [«,(q)]
g= 1/, is varied. A simple way to estimate the benefit of behaves likdJ (q=1)/A [a, (q=1)/A]. The corresponding
using a ferrofluid ¢>1) is to assume that the dynamo in- curves are plotted in Fig. 9 with solittotted curves for
stability threshold does not vary significantly from the caseRiga (Karlsruhg. We find thatA is linear with q and that
gq=1. Then at the thresholtd(q) [«,(q)] would behave 1.8<q/A<2.4 for Riga and 1.068 g/ A <1.13 for Karlsruhe.
like U(g=1)/q[a,(q=1)/q]. Therefore the largeyis, the  Finally, we conclude that using a ferrofluid is still interesting
smallerU (or ;) would need to be, showing the possible but again not as much as the simple previous estimate. In-
benefit of using a ferrofluid. However, in this simple estimatestead of being equal tq the gain on the flow intensity is

the boundary condition&l0) in which the permeability jump  aboutq/2 for Riga andg/1.1 for Karlsruhe.
between the fluid and the surrounding wall is considered, is

E. Influence of the fluid permeability

not satisfied. V. CONCLUSION
When solving the problem with the full boundary condi-

tions (10) we find that, in fact, the threshold increases wijth For a dynamo laboratory experiment with stationary solu-
tions, such as the Karlsruhe experiment, the addition of an

30% , : external wall with a conductivitg larger than the fluid con-

ductivity or with a permeabilityn larger than vacuum, leads
+3 to a reduction of the dynamo instability threshold. This re-

w2 duction is monotonous witk andn. Typically the reduction

T o0 L ” can be as high as 20% when owpr n is increased and up

to 28% when both are increased. This reduction is due to a
change of geometry of the current lines or the magnetic field
lines leading to a reduction of the total ohmic dissipation.
For a dynamo laboratory experiment with nonstationary
solutions, such as the Riga experiment, the presence of some
additional eddy currents in the external wall reminiscent to a
skin effect changes the previous results. In particular, the
reduction is not monotonous withnor n. Indeed, the eddy
0% . s currents produce an additional dissipation which can reduce
the threshold drastically. As a result, there is an optimum
logio(n) cor_lductivity s, permeabilityn, _and_vyall thickne§$/R_for _
which the dynamo threshold is minimum. In Riga this opti-
FIG. 8. Karlsruhe: The threshold reduction rdtevs log(n) mum corresponds to a stagnant layer of liquid sodiwsn (
for e/R=0.19=1, and different values of The labels correspond =n=1) of thicknesse/R=86%. Besides, it is the value
to log;«(s). actually used for the Riga experiment.
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