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An optimal scale separation for a dynamo experiment

Franck Plunian∗

Laboratoires des Ecoulements Géophysiques et Industriels,

B.P. 53, 38041 Grenoble Cedex 9, France

(Dated: January 6, 2005)

Scale separation between the flow and the magnetic field is a common feature

of natural dynamos. It has also been used in the Karlsruhe sodium experiment in

which the scale of the magnetic field is roughly 7 times larger than the scale of the

flow [1]. Recently, Fauve & Pétrélis [2] have shown that the power needed to reach

the dynamo threshold in a dynamo experiment increases with the scale separation

in the limit of large scale separation. With a more elaborate method based on

subharmonic solutions [3], we show, for the Roberts flow [4], the existence of an

optimal scale separation for which this power is minimum. Previous results obtained

by Tilgner [5] with a completely different numerical method are also reconsidered

here. Again, we find an optimal scale separation in terms of minimum power for

dynamo action. In addition we find that this scale separation compares very well

with the one derived from the subharmonic solutions method [3].

PACS numbers: 47.65.+a

We consider a dynamo experiment with a horizontal scale separation between the char-
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acteristic scale l of the flow and the size L of the container. In addition, the flow is assumed

to have a geometry which can lead to the self-excitation of a magnetic field at the size of

the container. For that we consider a Roberts [4] flow within a cubic box as in [3]. In the x

and y directions (where x, y and z are the cartesian coordinates), the size of a flow cell is

l× l and the size of the box is L×L. In the perpendicular direction z the flow cells and the

box have the common size H. Then the number of cells is Nc = L2/l2.

Following [2], we assume that the power P is dissipated by turbulence, leading to P =

ρL2HU3/l where ρ is the density and U the characteristic speed of the fluid. Defining the

magnetic Reynolds number by Rm = Ul/η, where η is the magnetic diffusivity of the fluid,

we find after some simple algebra that

P = ρη3 H

L2
N2

c R3
m. (1)

As a preliminary step, we assume that the first order smoothing approximation is valid

(a sufficient condition being Rm ≤ 1). Then we have the relation ηb/l2 ≈ UB/l between the

small scale b and the large scale B magnetic field intensities. Furthermore at the onset we

have the following relation αK = ηK2 derived from the mean part of the induction equation

and where α corresponds to the anisotropic α-effect produced by the Roberts flow, K being

the vertical wave number of the magnetic field. Here we take K = 1/H, leading to α = η/H.

Writing that the mean electromotive force Ub is equal to αB leads to the following relation

U
√

Hl/η ≈ 1. (2)

Then we can show that
√

H
L
Rm ≈ N

−1/4
c , leading to

P ≈ ρη3

√
LH

N5/4
c . (3)

From this simple estimate we conclude that the power consumption increases with the

number of cells which is not in favor of scale separation. This was found previously by
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Fauve & Pétrélis [2] for a scale separation in the 3 cartesian directions (instead of only 2 in

our case), leading to a different scaling N
5/6
c . Both estimates are based on the first order

smoothing approximation which has been proved to be too simplistic in the theoretical

predictions of the Karlsruhe experiment. Therefore we reconsider this problem below in the

light of the subharmonic solutions as studied in [3].

The original Roberts [4] flow is defined by

U = U(sin
y

LU

, sin
x

LU

, cos
x

LU

− cos
y

LU

) (4)

and the relations between the dimensions defined above and those defined in [3] are l =

π
√

2LU , L = πLB, N = LB/LU , Nc = N2/2 and R∗
m = Rm/(π

√
2) where R∗

m = ULU/η

is the magnetic Reynolds number defined in [3]. For a given value of N , we look for the

subharmonic solution embedded in the box of size L × L × H and corresponding to the

dimensionless wave numbers f = 1/N in the horizontal directions and k = 1
N

L
H

in the

vertical direction. Then (1) writes in the form

P ·H = ρη3 π3

√
2

(
N

k

)2

(R∗
m)3. (5)

For a given value of N the critical R∗
m versus k has been plotted in Figure 4 of [3]. Then

replacing N , k and R∗
m in (5) we can calculate the corresponding power P times H. For

ρ = 103 and η = 0.1 we plot, in Figure, 1 P.H (in kW.m) versus kN = L/H, for different

values of Nc. We find that the minimum value of P · H is obtained for L/H = 2.16

and Nc = 18 cells. The case of the Karlsruhe experiment corresponds approximatively to

L/H = 2 and Nc = 50 for which we find P · H = 19 kW.m. For the same value of L/H

but for Nc = 18 cells, the power consumption is reduced roughly by a factor 2. In Figure

2, P · H is plotted versus Nc for L/H = 2 (full curve). We see that there is indeed a
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FIG. 1: The consumption power P · H (in kW.m) versus L/H for different numbers of cells (a)

Nc = 8, (b) Nc = 18, (c) Nc = 32, (d) Nc = 50.

minimum around Nc = 20 and that at large Nc, P ·H increases with Nc as predicted by (3).

In a previous study [5], Tilgner calculated the critical magnetic Reynolds number for the

Karlsruhe experiment geometry, varying the number of cells inside the device (Figure 4 of

[5]). The resolution was made with a completely different method than the one used in [3]

and it is then of interest to reconsider the results of [5] in terms of power consumption and

see how they compare to our results. For that we need to make preliminary correspondance

between our present notations and those used in [5]. In [5] the flow container is a cylinder.

then the consumption power, instead of (1), writes in the form P ·H = ρη3

π

(
H
R

)2
N2

c R3
m where

R is the cylinder radius. In [5] we have l = 8
4.1

R
NT97

where we call here NT97 the parameter

N of [5]. This leads to a number of cells Nc = πR2

l2
= 0.825N2

T97. Furthermore the magnetic
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Reynolds number in [5] is defined by RmT97 = Ur0/η where r0 =
√

1.25R is the radius of

the conducting sphere in which the cylinder is embedded. This leads to Rm = 1.745
NT97

RmT97.

Finally using the results from the Figure 4 of [5], the consumption power is plotted versus

the cells number on Figure 2 (dashed curve). We find that there is again an optimal scale

separation for which the dissipated power is minimum and again it corresponds to Nc close

to 20. Furthermore the levels of power are of the same order of magnitude. We could not

expect better agreement as the geometries and boundary conditions of [3] and [5] are really

different. Now considering the Karlsruhe experiment, the scale separation has been chosen

not to minimize the dissipated power but instead to minimize the critical Rm [1], leading to

Nc = 52 (or alternatively to NT97 = 8 corresponding to the minimum critical Rm in [5]).
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FIG. 2: The consumption power P ·H (in kW.m) versus the cells number Nc. The full (dotted)

curve is derived from [3] (from [5]) for L/H = 2 (R/H = 1).
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