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Abstract

We provide a framework to bound the probability that acclated errors were never above a
given threshold on hybrid systems. Such systems are useddonple to model an aircraft or a nu-
clear power plant on one side and its software on the other 3idis report contains simple formulas
based on Lévy’s and Markov's inequalities and it presentsméal theory of random variables with
a special focus on producing concrete results. We seleoted/éry common applications that fit in
our framework and cover the common practices of hybrid systthat evolve for a long time. We
compute the number of bits that remain continuously sigaifién the first two applications with a
probability of failure around one against a billion, whererat case analysis considers that no signif-
icant bit remains. We are using PVS as such formal tools fexgdicit statement of all hypotheses
and prevent incorrect uses of theorems.

1 Introduction

Formal proof assistants are used in areas where errors cae tass of life or significant financial
damage as well as in areas where common misunderstandingalsidly key assumptions. For this
reason, formal proof assistants have been much used fanfigadint arithmetic([l, 2, 13,14,/%,/6] and
probabilistic or randomized algorithms| [7, 8]. Previougerences link to a few projects using proof
assistants such as ACL2 [9], HOL]10], Cog [11] and PVS [12].

All the above projects that deal with floating point arithinetim at containing worst case behavior.
Recent work has shown that worst case analysis may be mésssrfgr systems that evolve for a long
time as encountered in the industry. A good example is a peatat adds numbersd2 with a measure
error of £224, If this process adds?2items, then the accumulated errosi®, and note that 10 hours
of flight time at operating frequency of 1 kHz is approximgt@f® operations. Yet we easily agree
that provided the individual errors are not correlated abieial accumulated errors will continuously be
much smaller than-2.

We present in Sectidd 2 a few examples were this work can bigedpp/NVe focus on applications
for n counting in billions and a probability of failure aboutne against a billion Should one of
these constraints be removed or lessened, the problemmbeunach simpler. The main contribution of
this work is the selection of a few theorerasenable to formal methodsin a reasonable time, their
application tosoftware and systems reliability and our work with PVS. Sectidd 3 presents the formal
background on probability with Markov’s and Lévy’s inedtyaland how to use this theory to assert
software and system reliability.

Doob-Kolmogorov’s inequality was used in previous wark|[18 is an application of Doob’s in-
equality that can be proved with elementary manipulatiamrssécond order moment. It is better than
Lévy’s inequality in the sense that it can applied to any s@iinadependent and centered variables. Yet
it is limited by the fact that it bounds only second order matse

2 Applications

Lévy’s inequality works with independent symmetric randeaniables as we safely assumed in Sec-
tions[2.1 and Z]2. Doob’s inequality combined with Jensenis will overcome this restriction in future
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Listing 1: Accumulation or dot product

ao=0;
for (i=1; i<=n; i=i+1)
a=a_1+0d;

formal developments for the applications presented ini@e&3 that cannot be treated by Lévy’s in-
equality. Alas, we foresee that the effort to make Doob'gjiradity available in any of the formal tools
available today is at least a couple of years. Automatidrreat of all the following applications may
use interval arithmetic that has been presented in preygabscations and is now available in formal
tools [4,5/6].

2.1 Long accumulations and dot products

A floating point number represenis= m x 2° wheree is the exponent, an integer, ands the mantissa
[14]. IEEE 754 standard [15] on floating point arithmetic siIsgn-magnitude notation for the mantissa
and the first bitby of the mantissa is implicit in most casds & 1) leading to the first definition in
equation[(lL). Some circuits such as the TMS320 [16] use tamsplement notation fom leading to
the second definition in equatidd (1). The simnd all theb; are either 0 or 1 (bits).

V:(—l)sxbo.bl---bp,lxze or V:(bo.bl---bp,]_—ZXS) x 28 (l)

In fixed point notatioreis a constant provided by the data type &pdannot be forced to 1. We define for
any representable numberthe unit in the last place function below, with the notasiarf equation[{{1).

ulp(v) = 28~ P+l

The example given in Listingl 1 sunmsvalues. When the accumulation is performed with floating
point arithmetic each iteration introduces a new roundeofor X;. One might assume th follows a
continuous or discrete uniform distribution on the raggewith u = ulp(a)/2 as trailing digits of num-
bers randomly chosen from a logarithmic distribution| [1{8, 254—264] are approximately uniformly
distributed [18]. A significantly different distribution aiy mean that the round-off error contains more
than trailing digits.

Errors created by operators are discrete and they are nesserily distributed uniformly [19]. The
distribution is very specific but as soon as we verify thasisymmetric we only have to bound the
moments involved in our main result as in equatidn (2).

[«2]

2 4 3
E(X)=0, E(X’) < %7 E (X*) < ug, E (X5) < u7, and E(X?) < % @)

If & uses a directed rounding mode, we introdX¢e= X; — E(X) and we use equatiofil(2) again. We
may also assume thét also carries a single errd®; or a linear combination aih— 1 round-off errors
X2j,...,Xmj such that all of them satisfy equatidd (2) for a given

If d; is a data obtained by an accurate sensor, we may assumedldiffénence betweed and the
actual valued; follows a normal distribution very close to a uniform dibtrtion on the range-u with
some new value afl. In this cases we model the ermdr— d; by a symmetric random variabk; and
we use equation (2).
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Table 1. Number of significant bits with a probability of faie P ({geixﬂs |) > s> bounded byP
<i<n

u n |m| P |2k| e~ oren~ log,€~ or log,& ~
27241 10° | 2| 10° | 2 68.825 +6.10
0.42832 122
6 0.085786 —3.54
8 0.040042 —4.64
44 0.010153 —6.62
2724 10° |10|107%0| 2 48666 +8.92
1.7031 +0.768
6 0.28156 -1.82
8 0.11939 —3.06
48| 0.023873 —5.38
u [u¥2l 1] w2 2] Y429 (—log,u+1—log,3)/2
4| ¥aij9 (—log,u+2—2log,3)/8
6 | /100/81 (log,10—2l0g,3)/6
8 | ¥/49004/729 | (log,u+2log, 70— 6log,3)/16
After n iterations and assuming that all the errors introduc&dXz;, ..., Xm; are symmetric and

independent, we want the probability that the accumulateatrs have exceeded some user specified
bounde:

n —E(X) if centering is needed
P <ln<1i§>r<1(13\) > s> <P with § = Zl (Xi + z’j“ZZX“ if more variables are neede} )
<i< &

Previous work used Doob-Kolmogorov’s inequality. We wilesin Section]3 that we can exhibit
tighter bounds using Lévy’s inequality followed by Markewne. Tablell present the number of signifi-
cant bits of the results lgg for some values afi, n, m, andP in equation[(B). These values are obtained
by using one single value af, as large as needed. Tighter results can be obtained by asipgcific
value ofu for each random variable and each iteration.

2.2 Recursive filters operating for a long time

Recursive filters are commonly used in digital signal preresand appear for example in the programs
executed by Flight Control Primary Computers (FCPC) ofraiitc Finite impulse response (FIR) filters
usually involve a few operations and can be treated by wasst error analysis. However infinite impulse
response (lIR) filters may slowly drift.

Theory of signal processing provides that it is sufficiergttaly second order IIR with coefficiebf
andb, such that polynomiaX? — by X — b, has no zero ifR. Listing[2 presents the pseudo-code of one
such filter. A real implementation would involve temporaggisters.

When implemented with fixed or floating point operations heigeration introduces a single errdy
or a compound on¥y + - -- + X in ;. As these filters are linear, we study the responsi te 1 and

3
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Listing 2: Infinite impulse response (lIR) filter

y-1=0; Yo=do;
for (i=1; i<=n; i=i+1)
Yi = di —byyi_1—bayi 2;

Listing 3: Sum of squares

ao=0;
for (i=1; i<=n; i=i+1)
a=aj-1+0dixd;

di = 0 otherwise, to deduce the accumulated effect of all the®omo the output of the filter. It is defined
as the sequence of real numbers such that

y-1=0,  Yo=1 and y,=-biyn1—-boyn o foral n>1

This sequence can also be defined by the expression

Vh = bg/ 2 \/bo+ 2b§ cos(wp+nw)  with constantsay and w.

If the filter is bounded-input bounded-output (BIBO) stalfle: b2 < 1 and the accumulated effect of the

round-off errors is easily bounded Q%bz—i— 2b§ / (1—+/bp). Worst case error analysis is not possible
on BIBO unstable systems. Our work and the example of Tdbnle applied to such systems.

2.3 Long sums of squares and Taylor series expansion of progms

The previous programs introduce only first order effect efrtbund-off errors. We present here systems
that involve higher order errors such as sum of square inng& and power series of all the random
variables as in equatidn 4.

Assuming thatd; carries an errok; in Listing [3, its contribution to the sum of square cannot be
assumed to be symmetric. Lévy’s inequality cannot be agpliet Doob’s inequality provides a similar
result though it is out of reach with current formal tools dibdaries.

The output of a system can always be seen as a fun€tiof its input and its statéd,...,dn).
This point of view can be extended by considering that theutudf the system is also a function of the
various round-off errorgXo, ..., Xq) introduced at run-time. Provided this function can be déffgiated
sufficiently, Taylor series expansion provides that

F(do,...,0nXo,...,Xg) = F(do,...,dn,0,...,0)

(m]
r 1 q oF
1 Al do,...,dn,0,...,0
n;m! (i;X'mQ) @ | “

q = [m+1]
+ (,;X'ﬁ> (do,...,0h, B0,...,6y),

4
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where§ is between 0 an®;, and(-)!™ is the symbolic power defined as

mi
doF 0™F
(i;X"9—X‘> _ozil,Z.,imgqx'l"%maxil”'axirn'

When the Taylor series is stopped aftes 2, we can use Doob’s inequality to provide results similar
to the ones presented in Table 1 providéare symmetric and independent. Higher order Taylor series
don't necessarily create sub-martingales but weakertseesah be obtained by combining inequalities
on sub-martingales.

3 Formal background on probability

3.1 A generic and formal theory of probability

We rebuilt the previously published theory of probabilipases([13] as a theory of Lebesgue’s integra-
tion recently became fully available. The new PVS develapnmeFigurdl, still takes three parameters:
T, the sample space?, ag-algebra of permitted events, aftda probability measure, which assigns to
each permitted event ie¥’, a probability between 0 and 1. Properties of probabiligt ire independent
of the particular details of, ., andP are then provided in this file.

Arandom variableX is a measurable application fraf,.~’) to any other measurable spa@é .”).

In most theoretical developments of probability.”, andP remain generic as computations are carried
onT’. Results on real random variables T$e= R whereas results on random vectors Use: R". Yet
both theories refer explicitly to the Borel setswf

As the Borel sets oR" are difficult to grasp, most authors consider firliteand . = Z2(T) for
discrete random variables in introductory classes. Thgpkr analysis is meant only for educational
purposes and most results of probability considered fan&methods can be implemented with generic
T, .7, andP parameters.

Handling discrete and continuous random variables thralifferent T and . parameters is not
necessary and it is contrary to most uses of probability eppéit mathematics. Such variables can be
described on the same geneTicY”, andP parameters in spite of their differences. In practice, we us
T =R orT' =R", and for discrete variables we can choose countable cotismai

Similarly, many authors work on sectiofX < x} rather than usinghe inverse images of Borel
setsof T because the latter are difficult to visualize. Such a singglifon is valid thanks to Dynkin’s
systems. But using abstract Borel sets rather than sedtidosnal methods often leads to easier proofs.

3.2 A concrete theory of expectation

The previous theory of random variablés |[13] made it possibldefine them and to use and derive
their properties. Very few results were enabling users toadly compute concrete results on random
variables. Most of such results lie on a solid theory of theeexed value. As most theorems in the later
theory are corollaries of a good theory of Lebesgue’s irtgn, we have developed a formal measure
theory based on Lebesgue’s integration and we develop fahmarems on expected values as needed
in our applications.

The expected value is the (unique) linear and monotonousatipeE on the set ofP-integrable
random variables that satisfies Beppo-Lévy’s property aimth shatle(xa) = P(A) for all A€ .. We
can also use the following definition when Lebesgue’s irgkgxists:

E(X) = /T X dP.

5
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probability_space[T:TYPE+, (IMPORTING topology@subset_algebra_def[T])
S:sigma_algebra, (IMPORTING probability_measure[T,S])
P:probability_measure]: THEORY
BEGIN
IMPORTING topology@sigma_algebralT,S],
probability_measure[T,S],
continuous_functions_aux[real],
measure_theory@measure_space[T,S],
measure_theory@measure_props[T,S,to_measure(P)]

limit: MACRD [(convergence_sequences.convergent)->real]
= convergence_sequences.limit
h : VAR borel_function
A,B: VAR (8)
x,y: VAR real
n0z: VAR nzreal
t: VAR T
n: VAR nat
X,Y: VAR random_variable
XS: VAR [nat->random_variable]

null?(A) :bool = P(A) =0
non_null?(A) :bool = NOT null?(A)
independent?(A,B) :bool = P(intersection(A,B)) = P(A) * P(B)

zero: random_variable (LAMBDA t: 0)
one: random_variable = (LAMBDA t: 1)

<=(X,x):(8) = {t | X(t) <= x}; % Needed for syntax purposes! < > = /= >= omitted
complement_lel: LEMMA complement(X <= x) = (x < X) 7 More omitted

+(X,x) :random_variable = (LAMBDA t: X(t) + x); % Needed for syntax purposes! More omitted
borel_comp_rv_is_rv: JUDGEMENT o(h,X) HAS_TYPE random_variable

partial_sum_is_random_variable:
LEMMA random_variable?(LAMBDA t: sigma(O,n,LAMBDA n: XS(n)(t)))

distribution_function?(F: [real->probability]) :bool

= EXISTS X: FORALL x: F(x) = P(X <= x)
distribution_function: TYPE+ = (distribution_function?) CONTAINING

(LAMBDA x: IF x < O THEN O ELSE 1 ENDIF)
distribution_function(X)(x):probability = P(X <= x)

convergence_in_distribution?(XS,X) :bool
= FORALL x: continuous(distribution_function(X),x) IMPLIES
convergence ((LAMBDA n: distribution_function(XS(n))(x)),
distribution_function(X) (x))

invert_distribution: LEMMA LET F = distribution_function(X) IN

P(x < X) =1 - F(x)
interval_distribution: LEMMA LET F = distribution_function(X) IN

x <= y IMPLIES

P(intersection(x < X, X <= y)) = F(y) - F(x)
limit_distribution: LEMMA LET F = distribution_function(X) IN

P(X = x) = F(x) - 1limit(LAMBDA n: F(x-1/(n+1)))

F: VAR distribution_function

distribution_0: LEMMA convergence(F o (lambda (n:nat): -n),0)
distribution_1: LEMMA convergence(F,1)
distribution_increasing: LEMMA increasing?[reall] (F)

distribution_right_continuous: LEMMA right_continuous(F)
END probability_space

Figure 1: Abbreviated probability space file in PVS

6
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Markov’s inequality below is heavily used to obtain conerptoperties on random variables.

Theorem 1(Markov's inequality) For any random variable X and any constamt

E (X))

P(X|> )< —

Many theorems relate to independent random variables aidpioof are much easier once inde-
pendence is well defined. The famil¥y,...,X,) is independent if and only if, for any family of Borel

sets(By,...,Bn),
X € B P(X € B).
#(Qocem) -

The following characteristic property is used a lot on fé@silof independent variables:
For any family of Borelean functiond, ..., h,) such that théy (X;) areP-integrable,

E (ﬂhioq)) _ JjE(h X))

It is worth noting that the fact that random variables are independent is not equivalent to ttte fa
that any pair of variables is independent and cannot be faailtrsively fromn — 1 independent random
variables.

Future work may lead us to implement a theory of the RByassociated to each random vector
X :T— R", with a “transfer” theorem for any Borelean functibnR" — R below and most properties
of Lebesgue’s integral including Fubini’'s theorem.

E(h(X)) = /Th(X) dp= | hdPy

3.3 Almost certain a priori error bound

What we are actually interested in is whether a series ofiatlons might accumulate a sufficiently large
error to become meaningless. In the language we have dextlog are computing the probability that
a sequence af calculations has failed because it has exceeded #reor-bound somewhere.

Theorem 2 (Corollary of Lévy’s inequality) Provided the(X,) are independent and symmetric the
following property holds for any constaat

P(max(s) > ¢) <2p(siz o

Proof. We use a proof path similar to the one published_in [20]. Wemé@',.j) below with Dirichlet’s
operatordp that is equal to 1 if the predicate holds and 0 otherwise. AXthare symmetric, the random
variables$, andéﬂ) share the same probability density function.

§]J) _ ._i(_l)d>jxi

7
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We now defineN = inf{k such tha{S| > ¢} with the addition that infy = +-co and similarlyN}) =
inf{k such thaqs(k”] > g}. Events maxi<n(|S|) > € andN < n are identical. Furthermore

n n .
P(S|z €)= 3 P(SIzen N=)=3P(1sIzenN=]).
: J:]_
Assoonag <n, 25; = S+ and S| =S|+ ]§1j)\. Therefore, the evertSj| > €} is included
in {|S| > e}u{|sY| > €} and

n n

=S P(§lzenN=) < YP(sIzenN=))+ 3 P(15)|>enN=]).

]

This ends the proof of Lévy’s inequality. O

Should we need to provide some formula beyond the hypottdasvy’s inequality, we may have
to prove Doob’s original inequality for martingales and suhbrtingales([21] in PVS. It follows a proof
path very different from Doob-Kolmogorov's inequality bitits not limited to second order moment and
it can be applied to any sub-marting&# with k > 1 to lead to

S
P(max(|5|)>s> £2k)‘

1<i<n

Shall we need to create a sub-martingale different f&y we may have to prove Jensen’s con-
ditional inequality that let us introduce(|S|) whereh: R, — R, is convex. The bound becomes

h(|Sl)) /h(e).
We use Markov’s inequality applied & in order to obtain the results of Tafile 1:

P(S| = &) =P (|5t =€) <E (| ) /¢~

Formulas
B - @(in)
E(§) = u*(in+3in(n—1))
E() = w(3n+nn—1)+3nn-1)(n-2)
E(S) = ud(n+in(n—1)+En(n—1)(n—2)+En(n—1)(n—2)(n—13))
are based on the binomial formula for independent symmetridom variables
E (x2) E (x2e 2,
2(F) = 2 P <(2ki>!> <(2kz>!) T

Proof. We first prove the formula below by induction arfor any exponenin.

Bep- 3 mECTIECE  ECG

My-+mp-£=+mp=m my! my! my!

It holds forn= 1. We now write the following identity based on the facts tHatare independent
and symmetricE (S, ;) =E ((Si+Xn+2)™) is also equal to

2 3 ) = 3 e OB ™

My1=0 (M—mp )My ! ™ Myi1=0 (M—Mny1)!Mn !

8
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We expand the terms of the sum fog;1 =0,...,pandy ;m =m—my1

m! (m—myq)! T
(M= )!Mea! [, m! il:lE(Xim)

We end the proof for the even valuesroffter noticing thai® (Xiz”l) = 0 for anyi and anyk since
Xn are symmetric. O

4 Perspectives and concluding remarks

To the best of our knowledge this paper presents the firsicgioin of Lévy’s inequality to software
and system reliability of very long processes with an exalgriow rate of failure. Our results allow any
one to develop safe upper limits on the number of operatibasa piece of numeric software should
be permitted to undertake. In addition, we are finishingifieamtion of our results with PVS. The major
restriction lies in the fact that the slow process of proaaiting has forced us to insist that individual
errors are symmetric.

At the time we are submitting this work, the bottleneck isfiliecertification of more results using
PVS proof assistant. Yet this step is compulsory to providleckrtification to future industrial uses. We
anticipate no problem as these results are gathered inotghin computer science and mathematics.
This library and future work will be included into NASA Laray PVS Iibrar@ as soon as it becomes
stable.

The main contribution of this work is that we selected thewehat produce significant results
for extremely low probabilities of failure of systems thanrfor a long time and that are amenable to
formal methods. During our work, we discarded many mathealanhethods that would need too many
operations or that would be too technical to be implementitil existing formal tools.

Notice that this work can be applied to any sequence of intligr® and symmetric random variables
that satisfy equatiori{2). It is worth pointing out one monegt that violating our assumption (indepen-
dence of errors) would lead to worse results, so one shoedd tine limit we have deduced with caution,
should this assumption not be met.
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