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Abstract— We provide a framework to bound the prob- frequency of 1 kHz is approximateB?> operations. Yet
ability that accumulated errors were never above a given we easily agree that provided the individual errors are

threshold on hybrid systems. Such systems are used fornot correlated, the actual accumulated error will be much
example to model an aircraft or a nuclear power plant gmajier.

on one side and its software on the other side. This

report contains a simple formula based on lévy's and s . et : .
Markov’s inequalities and it continues a formal theory probability with Markov's inequality after a quick sur-

of random variables with a special focus on producing V&Y and analysis of previously published resulfts] [12].
concrete results. About a fourth of the bits of all the Section[Tl] presents Lévy's inequality and how to use
results of our archetype application remain continuously it to assert software reliability. Sectiop ]IV presents
significant with a probability of failure of one against Hoeffding’s inequality and Kolmogorov-Smirnov’s test
almost a billion, where worst case analysis considers that and how to use it to assert the quality of the hypotheses
no significant bit remains. We are using PVS as such gf the result of the preceding section.

formal tools .force explicit statement of all hypotheses Léevy’s inequality assumes that the random variables
and prevent incorrect uses of theorems. As our theorem are symmetric though Doob’s inequality combined with

contains hypotheses on the individual errors, we introduce 3 , th tricti in fut
Hoeffding’s inequality and Kolmogorov-Smirnov’s test to ensens one may overcome this restriction in future

check that the hypotheses are almost certainly satisfied, formal developments. Future developments will also
The test can also be used to outline sources of errors that Provide statistical analyzes based on failure models{tran

need to be analyzed in more details. sient, temporary, time correlation. . .).

We present in Sectiop]ll the formal background on

|. INTRODUCTION Il. FORMAL BACKGROUND ON PROBABILITY

Formal proof assistants are used in areas where errfrsL0ONg accumulation of individual errors
can cause loss of life or significant financial damage We use only one example of a very long accumulation
as well as in areas where common misunderstandirags it singles out the main contributions of this work.
can falsify key assumptions. For this reason, form8ore complex applications require techniques that have
proof assistants have been much used for floating pobden presented in previous publications. Interval arith-
arithmetic [1], 21, [3], [, [B] and probabilistic or metic [4], [B] would help providing possibly overesti-
randomized algorithmg][6][][7]. Previous references linkated bounds to some of the theorems presented in this
to a few projects using proof assistants such as AClk@port. A semantic-sound definition of first vs. higher
[8], HOL [B], Coq [1Q] and PVS[[11]. order errors[[13] is necessary before one may focus only
All the above projects that deal with floating poinbn first order errors. Yet these techniques can be used
arithmetic aim at containing worst case behavior. Rdirectly as implemented for worst case analysis.
cent work has shown that worst case analysis may beThe example given in Listinf] 1 sumsdata produced
meaningless for systems that evolve for a long time by a fixed point sensot; with a measure errotX;.
encountered in the industry. A good example is a proceBsis report presents techniquesnenable to formal
that adds numbers i1 with a measure error a£272°.  methods for n counting in billions and a probability
If this process add®?® items, then the accumulated erroof failure aboutone against a billion Should one of
is +1, and note that 10 hours of flight time at operatinthese constraints be removed or lessened, the problems



w NP

becomes much simpler and so we focus on this archetygmon as we verify that the error is symmetric we only

accumulation. have to bound the moments involved in our main result.
After n iterations and assuming thaf; are indepen-
Listing 1. Simple discrete integration dent, we want the probability that the accumulated errors,
— S; = Z§:1 X;, have always been constrained into
for (i=1; i<=mn; i=i+1) user specified bounds Using the Doob-Kolmogorov's

Qis1 = a; + d;; inequality [12] we have that

n ulp?
| U P (x5 <) 2 1- 208

The accumulation deals with fixed point numbers but 1<i<n 12€?
this work can also be applied to floating point arithmetic. we will see in Sectioff JI that we can exhibit tighter
A floating point number represents= m x 2° wheree hounds using Lévy’s inequality followed by Markov’s
is an integer andn is a fixed point number{[34]. IEEE one. We will see in Sectiof ]V that we may check the

754 standard[[15] uses sign-magnitude notation for thgpotheses of Lévy’s inequality with an extremely low
mantissa and the first bit of the mantissa is implicit in probability of failure.

most casesb = 1) leading to the following definition
wheres and all theb; are either 0 or 1 (bits). B. A generic and formal theory of probability

Daumas and Lester| [IL2] presented an account of
probability with an informal approach while taking foun-
Some circuits such as the TMS320 use two’s compldational matters seriously. The PVS system underlying
ment notation form leading to the following definition these results was built on firm foundations for probability
[Lq]. theory (using measure theory) [18], J19]. A middle way

v="(bp.by---bp_1 —2 X 5) x 2° between extreme formality and an accessible level of
, , _ _ _ informality is to be found in[[20].
In fixed point nqtanone is a constant provided by the We rebuilt the theory of probability spaces as a theory
data type_ and biby cannot be forced to 1. .. of Lebesgue integration became fully available. The new

We define for any represent'able numbethe unit in PVS development in Figurg 1, still takes three parame-
the last place function whereis the exponent ot as ters: T, the sample space, a o-algebra of permitted
above. e—ptl events, andP, a probability measure, which assigns to

ulp(v) = 2°7F each permitted event i§, a probability betweei® and
In fixed point notation, one unit in the last place doek Properties of probability that are independent of the
not depend on the value ofso we write ulp instead of particular details off, S andP are then provided in this
ulp(v). file.

We can assume that ak is a data obtained by an A random variableX is a measurable application
accurate sensor, the difference betwdeand the actual from (T, S) to any other measurable spatg,S’). In
value d; is uniformly distributed in the rangerulp/2 Most theoretical developments of probabilityS andP
or follow a normal distribution very close to a uniformf€main generic as computations are carried’ofiResults
distribution on this range. In both cases, we model tif@ real random variables ugeé= R whereas results on
error d; — d; by a symmetric random variabl&, with random vectors us& = R". Yet both theories refer

v = (—1)8 X bo.b1 o -bp_l x 2¢

moments explicitly to the Borel sets of .
E(X) = 0, As the Borel sets oR™ are difficult to grasp, most
E (XZ) < ulp?/12, authors consider countabfeandS = P(T) for discrete

4 4 random variables in introductory classes. This simpler
B (X ) < ulp’/80. analysis is meant only for educational purposes and most

The sensor may be less accurate leading to larger mesults of probability considered for formal methods can

ments. be implemented with generit, S andP parameters.

Data are fixed point meaning that the supa-d; does  Handling discrete and continuous random variables
not introduce any rounding error. Errors created by opéhrough differentT and S parameters is not necessary
ators are discrete and they are not necessarily distributed! it is contrary to most uses of probability spaces
uniformly [L7]. The distribution is very specific but asn mathematics. Such variables can be described on the



probability_space[ T: TYPE+, (1 MPORTI NG t opol ogy@ubset _al gebra_def[T])
S: si gna_al gebra, (1 MPORTI NG probability_measure[T, §])
P: probabi lity_neasure]: THEORY
BEG N
| MPORTI NG t opol ogy@i gma_al gebra[ T, ],
probability_neasure[T,S],
continuous_functions_aux[real],
nmeasur e_t heor y@reasur e_space[ T, §],
nmeasur e_t heory@reasure_props[ T, S,to_neasure(P)]

limt: MACRO [ (convergence_sequences. convergent)->real]
= conver gence_sequences.limt
phi: VAR borel _function
A B: VAR (9)
X,y: VAR real
n0z: VAR nzreal
t: VAR T
n: VAR nat
X, Y: VAR random vari abl e
XS: VAR [ nat->random vari abl e]

nul | ?(A) - bool
non_nul | ?2(A) : bool
i ndependent ?( A, B) : bool

P(A) =0
NOT nul | ?(A)
P(intersection(A B)) = P(A) * P(B)

zero: randomvariable = (LAMBDA t: 0)
one: randomvariable = (LAMBDA t: 1)

<=(X,x):(S) = {t | X(t) <= x}; %Needed for syntax purposes! < > = /= >= omtted

conpl enent _| el: LEMVA conplenent (X <= x) = (x < X) % Mre omtted

+(X,x) :randomvariable = (LAMBDA t: X(t) + Xx); % Needed for syntax purposes! Mre ontted
borel conp_rv_is_rv: JUDGEMENT o(phi, X) HAS TYPE random vari abl e

partial _sum.is_randomvari abl e:
LEMVA random vari abl e?( LAMBDA t: signe(0, n, LAMBDA n: XS(n)(t)))

distribution_function?(F:[real->probability]): bool
= EXISTS X1 FORALL x: F(Xx) = P(X <= x)

distribution_function: TYPE+ = (distribution_function?) CONTAI NI NG
(LAMBDA x: IF x < 0 THEN O ELSE 1 ENDI F)

distribution_function(X)(x):probability = P(X <= x)

convergence_i n_di stri buti on?(XS, X): bool
= FORALL x: continuous(distribution_function(X),x) |MLIES
convergence( (LAMBDA n: distribution_function(XS(n))(x)),
di stribution_function(X)(x))

invert_distribution: LEMVA LET F = distribution_function(X) IN
P(x < X) =1 - F(x)

interval _distribution: LEMVA LET F = distribution_function(X) IN
X <=y | MPLIES

P(intersection(x < X, X <=vy)) = Fy) - F(x)
limt_distribution: LEMVA LET F = distribution_function(X) IN

P(X =x) = F(x) - limt(LAMBDA n: F(x-1/(n+l)))
F: VAR distribution_function
distribution_0: LEMVA convergence(F o (lanbda (n:nat): -n),0)
distribution_1: LEMVA conver gence(F, 1)
di stribution_increasing: LEMMVA i ncreasing?[real](F)

distribution_right_continuous: LEMVA right_continuous(F)

END probability_space

Fig. 1. Abbreviated probability space file in PVS




same generi@, S and P parameters in spite of theirThe following characteristic property is used a lot on
differences. In practice, we us¢ = R or T' = R" and families of independent variables for any family of

the ranges of discrete variables are countable. Borel-measurable functiond, ..., f»),
Similarly, many authors work on sectioAs{ < x} n n

rather than usinghe inverse images of Borel setd E (H fi(Xi)> — HE(fi(Xi))-

T’ because the latter are difficult to visualize. Such a 1 1

simplification is valid thanks to Dynkin's systems. But

: : . It is worth noting that the fact that random variables
using abstract Borel sets rather than sections in formal . , .
. are independent is not equivalent to the fact that any
methods often leads to easier proofs.

) . . air of variables is independent and cannot be built
Of particular interest later is the fact that the sum cﬁ . naep .
: I . recursively fromn — 1 independent random variables.
two random variables is itself a random variable, an O . . )
o ) —_ Hoeffding’s inequality (see Sectidn]IV) relies on the
consequently any finite sum of random variables is a . . : .
. generating function associated to a random variable
random variable.

when it is defined,
C. A concrete theory of expectation Mx(t) =E (etX) ‘

The previous theory of random variablgs][12] made it _ . _ o
erties. Very few results were enabling users to actuallpked with the moments o,
compute concrete results on random variables. Most of (k) oy K
: ) My’ (0) =E (Xx*).
such results lie on a solid theory of the expected value.
As most theorems in the later theory are corollaries Theorem 2:For a bounded random variable such that
of a good theory of Lebesgue’s integration, we ha\ﬂe(a <X <b) =1andE(X) =0,
developed a full fledged formal measure theory based on ) )
Lebesgue integration and we develop formal theorems on Mx (t) < exp ((t (b—a) /8)

expected values as needed in our applications. Proof: We represenX = (1 — U)a + Ub with U

The expected value is the (unique) linear angktweeno and1i. It follows thatl/ — (X —a)/(b—a)
monotonous operatdE on the set ofP-integrable ran- gnd as the exponential function is convex

dom variables that satisfies Beppo-Lévy’s property and
such thaffi(y4) = P(A) for all A € S. We can also use E(e™) < (1 -E(U))e'" + E(U)e".
the following definition when Lebesgue’s integral exists: As X is centeredE(U) = —a/(b— a) and

E(X) = /X dP Mx (t) < e2(t-a)
T

Markov’s theorem below is heavily used to obtaiMith
concrete properties on random variables. ®(s) = —sEU) + In (1 — E(U) +EU)e*).

Theorem 1 (Markov’s inequality)For any random
variable X and any constant, The bound is obtained using Taylor series since

E(|X]) ®(0) =0, ¢'(0) =0 andd”(0) < 1/4. [
P(X]|>¢€) < . A complete study ofMx for absolutely continuous

€ random variables would ultimately lead to a theory of

Many theorems relate to independent random variable@place transform. _
and their proof are much easier once independence ifuture work may lead us to implement a theory

well defined. We write of probability the lawPx associated to each random
variable X with a transfer theorem for a functighfrom
(X1,...,X,) I TtoR
if and only if, for any family of Borel set$B;, ..., B,), E(f(X)) = /f o X dP= [ fdPx,
T T/

n n
P /\ X, eB;| = Hp(Xi € B)) and most properties of Lebesgue integral including Fu-
i=1 =1 bini’'s theorem.



[1l. ALMOST CERTAIN A PRIORI ERROR BOUND is bounded by

What we are actually interested in is whether a series

of calculations might accumulate a sufficiently large ZP(‘S"‘ >e A N=j)

error to become meaningless. In the language we have =1

developed, we are computing the probability that a n . ‘

sequence ofn calculations has failed because it has + ZP (’Sr(zj)’ ze NN :J)
exceeded the error-bound somewhere. =1

A. Use of evy’s Inequality This ends the proof of Lévy’s inequality. u

. Doob-Kolmogorov's inequality was used in previous
More formally, we _have a sequence of random Vallork. It is an application of Doob’s inequality that can
ables(X,) and_we define their partial sums as asequengg proved with elementary manipulations for second

of random variableg5n). order moment. It is better than Lévy’s inequality in the
n sense that it can applied to any sum of independent and
S, = ZX,—. centered variableX(,,. Yet it is limited by the fact that
i=1 it bounds only second order moments.

Should we need to provide some formula beyond the
potheses of Lévy’s inequality, we may have to prove in
VS Doob’s original inequality for martingales and sub-
martingales [[32]. It follows a proof path very different
from Doob-Kolmogorov’s inequality but it is not limited
P (g@ﬂsﬂ) = €> < 2P([Snl 2 €) to second order moment and it can be applied to any

. sub-martingalé.S?*| with k& > 1 to lead to
Proof: We use a proof path similar to the one galgsi| -

published in [2]L]. We defines{) with Dirichlet's op-

Theorem 3 (Bvy’s inequality): Provided the (X))
are independent and symmetric the following proper
holds for any constant

2%
eratordp that is equal to 1 if the predicate holds and 0 P | max (|S;]) > €] < E (S" )
: 1<i<n - )T ek
otherwise. ==
n
SP = (-1 X; Shall we need to create a sub-martingale different
i=1 from |S?*|, we may have to prove Jensen’s conditional

inequality that let us introduck(|S;|) whereh : Ry —

As the X,, are symmetric, the random variabl8s and ! ; A
j R is convex. The inequality becomes

(Sﬁf)) share the same probability density function.
We now defineN = inf{k such that|S;| > €}

with the addition thatnf () = co and similarly NU) = P <

inf{%k such that]S,gj)] > e}. Eventsmaxi<i<,(|Si]) > €

and N < n are identical. Furthermore

D) - EG(S)
max (|.S;]) > > < ( .

1<i<n h(e)

B. Use of Markov’s Inequality

P(|S,| >¢) = ZP(|5n| >e¢ A N=j) We use Markov inequality applied t§f = S¥.
j=1

- Zp(ysﬁgﬂ >e A N:j).
j=1

E k
P(S,I > o =P (151> ) < EU5)

As soon asj < n, 25; = S, + s¥) and 2|55 =

- We derive for second order moments wh&mp are
|Sn| + |S,(3)|. Therefore, the ever{lS;| > €} is included "

uniformly distributed over[—ulp/2,ulp/2] a formula

i () : . .
in {[Sn| > €} U{|S"| > ¢} and that is less accurate than the one obtained using Doob-
n Kolmogorov's inequality. We focus on the fourth mo-
P(N <n)= Z]p(ysjy >e¢ A N=j) ment and we easily check the following identity from

j=1 the property of the expectation operator sinkg are



independent and symmetric. Proof: We first prove thatt (S)") is equal to the
following formula by induction o for any exponent

n 4
E(|S) = E(SH=E X "
(I1Sa1) (Sn) ((2 ) ) E(X™)E(XF?) E(X™)

> ml—— mel T ]
n mitma+--m,= 1 2 n
= E| ) XiX;XipX It holds forn = 1. We now write the following identity
i,5,k,1=1 based on the facts that,, are independent and centered.
n E (Sm1) =E((Sp + Xnt1)™) is also equal to
= Y E(XX;XeX))
0,3,k =1 E zp: m! an+1 St
n n i (M — M1y "HL TR
- YEED Y E(XX)
i=1 i,j=1 and i#;j and
nulp  n(n — 1)ulp? P m! m _
= E (X)) E (Smman
80 144 mz_o (m — M)y (i) E (S )
n+1=—
ick highest order instantiation of the variable sho
thgw '9 ! att var W We expand the terms of the sum fer,, 1 =0,...,p
and> " m; =m — mp4q
P (s (15i) = ¢) < up,
1<i<n m! (m - mn+1)! n+1E .
leads to (m —mpg1)!mpga! TT ma! le[l (X™)
4 2 B
9 <£ 4 n(n — 1)> UIE ~ u|p4 < ulp We end the proof for the even values of after
80 144 € 72¢ noticing thatE (Xf’““) = 0 for anyi and anyk since
and X,, are symmetric. [
sfulp We easily check that for a random variablég
2 uniformly distributed ovef—ulp/2,ulp/2],
This means that about a fourth of the bits are still 1 ulp/2 1 [Pt ulp/2
significant with a probability of failure of one against E(X?) = _I/ xPdx = un [ 1]
almost a billion. UIP J —uip2 Uip Lo+ L] 2
We conclude that if the individual errors are random ulp?
variables uniformly distributed ovérulp/2,ulp/2], we = pri12e

can bound the probability that the accumulated errors
were never above with IV. ALMOST CERTAIN VALIDATION IN -SITU
4\ ulp? A. Checking moments used ig\y’s inequality

P <II£?SX”(’SZ") < e> >1-n <n + 3> ol Following Hoeffding’s inequality [[33], [[34, p. 165],
_ ) _ we computel;, E» and E4 the observed mean, second
Notice that this bound can be applied to any sequenggjer moment and fourth order moment of tRg.
of random variable¢X,) provided thatX,, are indepen-  Theorem 4 (Hoeffding’s inequality)Provided,, are

dent, symmetric and they admit second and fourth ord@giependent and such thita; < X; < b;) = 1 then
moments such that R

1 _ %
% P(Sn E(Sn) > 6) < exp < Z;z:l(bi — ai)2>
Proof: We may replaceX; by X; — E(X;) and we
continue this proof forE(X;) = 0. The following
inequality is satisfied for any positive realthanks to
Markov's inequality:

2
Ex2) <Y and mxd) < WP
12 80

We may use and prove better bounds based on Wm
binomial formula ast (S2¥) is equal to

EO)E(S) g

k1+k2;kn=k(2k) (2k1)!  (2ko)! (2kp)! P(Sp > €) =P (exp(tSy,) > €) <

E(exp(tSy)) .

ete



Since theX,, are independent, we obtain Now we want to know if it is reasonable with a very
n low probability of failure to assume that th&, are
P(S, > ¢€) < e—tEHE(eXp(tXZ-)), identical random variables distributed evenly between
i=1 a and b. We build F,(z) the empirical distribution

The proof is finished by using a simple bound préunction,
sented Sectiofi]ll and finding a positivesuch that the n
following upper bound is as low as possible. Fp(z) = %ZX(_OM) (X:).
i=1

P(S, >¢) < exp | —te+1? b —a;)?/8 ) .
( ) p( i ;( i) ) We easily check tha{F,,) is a sequence of ran-
dom variable converging almost everywhere 1o
Ae the distribution function common oX,. Furthermore
-3 E(F,(x)) = F(z) and F,(z) is an unbiased estimator
> i1 (b — ay) of F(z).

u Now we defineFy as the distribution function ok,

Assuming that theX;, are identically distributed, the 3 random variable uniformly distributed betweerand
—a; andb; are bounded by a constafitand we deduce ;. The test should decide on

that
?

B. Comparison with a reference uniform distribution

We have just seen how to check the hypotheses Kalmogorov-Smirnov’s test is based under statistics
the mean, second order and fourth order moment usedfifnctions of £, and Fy), that can be considered as
Lévy's inequality in Sectiofi TJI. It seems that the roundPSeudo-distances between probability laws. It uses the
off errors should be continuous or discrete and uniformfgllowing result [28].
distributed in the rangg-ulp/2, ulp/2] as trailing digits ~ Theorem 5:1f X, are identically distributed toXo,
of numbers randomly chosen from a logarithmic dighen/n||F, — Fol. converge almost surely to a law
tribution [23, p. 254-264] are approximately uniformlycharacterized by its distribution function:
distributed [2p]. Any other distribution may mean that -
the round-off error contains more than trailing digits. 1 _1\k—1,—2k22?

Parametera andb of a uniform distribution ovefa, b] Rlz) =1 ZZ_;( D™ e '
can be estimated through the observed lower and uppetinder hypothesis(Ho_), the X,, are uniformly dis-
bounds that tends to the actual lower and upper bouihuted betweeru and b and the answer is easy. We

The value is

t =

Ej, — E(XF)
ck

> e> < 27N /2 (Ho) F = Fy,
(Hy) F # Fy.

of the distribution, will accept null hypothesis if statistic
I, = min X; and M, = X;.
n T i nT Ky = ||F — Fylloo = sup |Fu(z) — Fo(a)]
As the observed bounds are biased ’
b—a b—a takes only low values. The critical domain of the test
B(ln)=at+ — and  E(Mn)=b-———. s thereforeW = {(z1,,...,1,) such thatk, > c}
we need to correct them to wherec is found froma = P(W) and first order error
a (reject(Hyp) thought it was true) satisfies
_ n 1
[n = 1In - 1Mn7
e e a=PW)=P(VnK, > c/n)=1- R(cy/n)
_ 1
n—1 n—1 Therefore cy/n is the quantile of orderl — o of

These two bounds are converging estimators. As statise asymptote distribution functio® of \/n K,. The
tic (I,,, M,) is complete and sufficient, we deduce fronasymptotic law has been tabulated far = 0.05 or
Lehmann-Scheffé’s theorem that they are minimuna- = 0.01 [B7], [B9]. It yieldsc = 1.63//n for o = 0.01
variance unbiased estimatofs][27]. andc = 1.36/y/n for a = 0.05 assumingn > 100.
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