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due to the Accumulation of Errors
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Abstract— This paper provides an accurate bound on the num-

ber of numeric operations (fixed or floating point) that can sdely

be performed before accuracy is lost based on the assumption

that accumulated errors are uniformly distributed in i% unit in
the last place. This work has important implications for cortrol
systems with safety-critical software, as these systemseanow
running fast enough and long enough for their errors to impac¢
on their functionality. Furthermore, worst-case analysis would
blindly advise the replacement of existing systems that havbeen
successfully running for years and that will continue running
before software development practices evolve. We presenete
new theorems that we are currently validating with the PVS
proof assistant. This theory will allow code analyzing toad to
produce formal certificates of accurate behavior. FAA reguations
for aircraft require that the probability of an error be belo w 10~°
for a 10 hour flight [ﬂl. Such a low failure rate is stretching
the limits of generic calculations solely based on the staradd
deviation of random variables for the intermediate sums. We
need many individual errors for the Central Limit Theorem
approximation to be sufficiently accurate (distance well bw

107%). The precise bound presented here enhances the number

of bits of the result that can safely be regarded as correct.

I. INTRODUCTION

David Lester
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used in ] but precise definitions of measure and round-off
errors used in SectiV provide a much more precise way to
compute the probability that a piece of software will susees
fully run within an acceptable error bound. We use the result
of Sectionm’ for intermediate sums before approximations
based on the Central Limit Theorem are sufficiently accurate
As this new bound is long to obtain, it might not be required
for ordinary pieces of software. Yet, failure rate as defined
in aeronautics is very low and this new bound is necessary
whatever the computational price.

We cannot use the Central Limit Theorem before the
approximation to normal distribution is sufficiently close
that the sum including the additional approximation eriisrs
bounded byl0~? (there are potentiallp2® additional errors).
Our suggestion is to carry on precise computing as long as
possible and revert to results linked to Doobs-Kolmogorov
inequality ] and the Central Limit Theorem when the
approximation error becomes negligible compared@o®

In the rest of this text, we assume that the created round-off
and measure errors are unbiased independent random eariabl
or that their expectation conditional to the previous esrisr

Formal proof assistants are used in areas where errors gafp.
cause loss of life or significant financial damage as well as

in areas where common misunderstandings can falsify key

assumptions. For this reason, formal proof assistants leme
much used for floating point arithmetiEl [2

and probabilistic or randomized algorith [7ﬂ|, [8]. Paays

Il. STOCHASTIC MODEL AND STATE OF THE ART

[3][| [4][| [5][|][6 A. Individual round-off and measure errors

We are dealing with fixed or floating point numbers. A

references just link to a few projects using proof assistarfloating point number represents= m x 2¢ wheree is an

such as ACL2, HOL[[9], Coq[[10] and PV$ [11].

integer andn is a fixed point numbelm_S]. IEEE 754 standard

All the above projects that deal with floating point arith{fl4] uses sign-magnitude notation for the mantissa and e fi
metic aim at containing worst case behavior. Recent woblt b, of the mantissa is implicit in most caség & 1) leading
has shown that worst case analysis may be meaninglesstéothe following definition wheres and all theb; are either 0
applications that run for a long time. For example, a process 1 (bits).

adds numbers in-1 with a measure error of-2-2. If this
process add’?® items, then the accumulated errortig, and

note that 10 hours of flight time at operating frequency
1 kHz is approximatel\22° operations. Yet we easily agre o
that provided the measure errors are not correlated, thelact’

accumulated error will be much smaller.

v = (—1)8 X bg.by - - 'bp_l x 2¢

e(gome circuits such as the TMS320 use two’s complement

tation form leading to the following definitionm5].

’U:(bo.bl'-'bp_l—2><8)><2e

We recall in Sectiofi]ll the model that we are using. Section

m]recalls our formal developments in probability and prets

In fixed point notatione is a constant provided by the data

our new theorems. The Doobs-Kolmogorov inequality wagpe and the first bit is no longer implicitly equal to 1.



For all the previous notations, we define for any repre key issue as typically. < 22° meaning that the quadratic
sentable number, the unit in the last place function whete algorithm proposed Sectiomlv should be considered as the
is the exponent ofr as above. biggest amenable algorithm.

_ 9e—p+1
UIp(U) =2 I1l. PROBABILITY DISTRIBUTION OF BEING SAFE

A variable v is set either by an external sensor or by ap. Probability
operation. Trailing digits of numbers randomly chosen from

a logarithmic dIStI’IbutIOI’IIEG, p. 254-264] are approxisigt informal approach while taking foundational matters sgslg.

uniformly distributed [1}7]. So we can assume thawiis a . e
data obtained by an accurate sensor, the difference betwggﬁfpvsd iysterfn undgrlg!lr)tgj ttr?ese res_ults s built on the
v and the actual value is uniformly distributed in the range Ifm foundations for probability theory (using measure ifygo

+ulp(v)/2. We can model the errar—o by a random variable k), @]' A m|ddIe_ way be_tWt_-:‘en extreme fo_rmahty and an
X with expectationE(X) = 0 and varianceVar(X) = acce35|ble_ level of |ml‘orn?al|13./ s 1o be f(_)u.n_d 'E.[23]'
ulp(v)?/12. The sensor may be less accurate leading to a Iarg?ewe begl by recalling in Figurf 1 def|n|t|ons_|.mplemente.d
variance but we assume that it is not biased. n PVS [22]. The PVS developm.ent of probability spaces in
Round-off errors created by operators are discrete and tiﬁ-ilgure@’ takes three parameters.the sample _s_pacél,, ao-
are not necessarily distributed uniform|ﬂ18]. The disttion & _ebra Of_ permitted events, _anE, a probability measure,
is very specific but as soon as we verify that the expectati ich assigns to each_ permitied qyentSn a p_robablllty
is E(X) = 0 and the error is bounded, we may safely use etweer) apdl. Propgrtles of probability that are mdc_ependent
replacement variabl&” such that ;)histhfﬁepartmular details of", S andP are then provided in
Ve P(|X'|>¢)>P(X]>e). If T is countable — as it is for discrete random variables —
then we may take = (7). As we wish to discuss continuous
random variables then we partially instantiate this PVS file
We will use only one example for very long accumulationgith T = real , andS = borel _set (the Borel sets). If
as calculations carried on at the end of Secfioh IV heavijye go further and also specify, we will have described the
rely on the fact that all the errors introduced are uniformlyandom variable distributions as well. Of particular it
distributed over the same interval. In other cases such |gger is the fact that the sum of two random variables isfitsel
the second example of [12], one may either revert to therandom variable, and consequently any finite sum of random
exponential-time formula stated in Secti@/—A or use th@griables will be a random variable.

magnitude of the largest possible error for all the random Note that the product probabilit; has the effect of

We presented inm2] an account of probability with an

B. Error of an accumulation loop

variables. o declaring that the experiments carried out in probabiliyces
~ The example given in listing] 1 sums data produced by @), 51, P,) and (T3, 02, P2) are independent. Obviously, the
fixed point sensor; with a measure erroX;;. process of forming products can be extended to any finite

product of finitely many probability spaces.

Listing 1. _Simple discrete integration from [19 : , " .
=g imple discrete integration frorh [16] In F|gure|}, we define the conditional probability4; B)

Lag=0 (written P(A,B) as PVS will not permit the use of “;” as an
2 for (i=0; i<n; i=i+1) operator). We take the opportunity to prove Bayes’ Theorem
3 ikl =0 T along the way.

We can safely assume tha; are independent identicalB. Continuous Uniform Random Variables

uniformly distributed random variables ovéulp(z;)/2. Data  |f X is a continuous random variable distributed uniformly
are fixed point meaning that the sumz; does not introduce gyer the intervala, b], then informally it takes any value within
any rounding error and the weight of one unit in the last plagge interval[a, b] with equal probability.

does not depend ory so we write ulp instead of uf@;). After 1o make this more formal, we define theharacteristic

measure error have always been constrained into user specifi or ) depending on whether it is applied to a membeSof
boundsc. Using the Doobs-KoImogorovinequalitﬂlZ] where pefinition 1:

S; = 23:1 X, we have that

i s(@) = 1 z€8
P max (|S;]) <e Sl—nuP. . L0 zgs .
1<i<n 12€2 Now the probability density functioyi of the uniform random

. . T .
We will see that we can exhibit a tighter bound usin ariable over the cIoseq |r_1tery{ii,b] 'S 5= X(ab]- From this
e can calculate the distribution function:

[@]. This bound can be produced using a time- and spa
polynomial algorithm provided all the random variables are Flz) = ’ F(2)d
uniformly distributed over the same interval. Complexity i () = e (w)de,



probability_space[T:TYPE+,

P:probability_measure

]: THEORY
BEGIN
IMPORTING finite_measure@sigma_algebra[T,S],probabil
AB: VAR (S)
x,y: VAR real
n0z: VAR nzreal
t: VAR T
n: VAR nat
null?(A) :bool = P(A) = 0
non_null?(A) :bool = NOT null?(A)

independent?(A,B):bool = P(intersection(A,B)) = P(A) * P(
random_variable?(X:[T->real]):bool = FORALL x: member({
zero: (random_variable?) = (LAMBDA t: 0)

random_variable: TYPE+ = (random_variable?) CONTAINING z

X,Y: VAR random_variable
XS: VAR [nat->random_variable]

<=(X,x):(S) = {t | X(t) <= x}; % Needed for syntax purposes! < >

complement_lel: LEMMA complement(X <= x) = (x < X)
complement_Itl: LEMMA complement(x < X) = (X <= x)
complement_eq : LEMMA complement(X = x) = (X /= X)

complement_It2: LEMMA complement(X < x) = (x <= X)
complement_le2: LEMMA complement(x <= X) = (X < Xx)
complement_ne: LEMMA complement(X /= x) = (X = X)
-(X) :random_variable = (LAMBDA t: -X(t)); % Needed for synt

+(X,Y) :random_variable = (LAMBDA t: X(t) + Y(t));
-(X,Y) :random_variable = (LAMBDA t: X(t) - Y(b);

partial_sum_is_random_variable:

LEMMA random_variable?(LAMBDA t: sigma(0,n,LAMBDA n: XS(

distribution_function?(F:[real->probability]):bool

(IMPORTING finite_measure@
S:sigma_algebra, (IMPORTING probability_measure[T,S])

subset_algebra_def[T]) % sample space
% permitted events
% probability measure

ity_measure[T,S],continuous_functions_aux[real]

B) % Note that it DOES NOT say = 0
t | X(t) <= x}.5)

ero

= /= >= omitted

ax purposes! + - * / omitted

n)(®))

= EXISTS X: FORALL x: F(x) = P(X <= X)

distribution_function: TYPE+ = (distribution_function?

) CONTAINING

(LAMBDA x: IF x < 0 THEN 0 ELSE 1 ENDIF)

distribution_function(X)(x):probability = P(X <= Xx)
F: VAR distribution_function

convergence_in_distribution?(XS,X):bool

= FORALL x: continuous(distribution_function(X),x) IMPL IES
convergence((LAMBDA n: distribution_function(XS(n))(x ),
distribution_function(X)(x))

invert_distribution: LEMMA LET F = distribution_function (X) IN

Px < X) =1 - FXx) % Lemma 2.1.11-a (G&S)
interval_distribution: LEMMA LET F = distribution_functi on(X) IN

x <=y IMPLIES

P(intersection(x < X, X <=y)) = F(y) - F(X) % Lemma 2.1.11-b (G &S)
limit_distribution: LEMMA LET F = distribution_function( X) IN

P(X = x) = F(x) - limit(LAMBDA n: F(x-1/(n+1))) % Lemma 2.1.11 -c (G&S)
distribution_0: LEMMA convergence(F o (lambda (n:nat): -n ),0) % Lemma 2.1.6-a0 (G&S)
distribution_1: LEMMA convergence(F,1) % Lemma 2.1.6-al ( G&S)
distribution_increasing: LEMMA increasing?(F) % Lemma 2. 1.6-b (G&S)
distribution_right_continuous: LEMMA right_continuous (3 % Lemma 2.1.6-c (G&S)

END probability_space

Fig. 2. Abbreviated probability space file in PVS




conditional[T:TYPE+,
S:sigma_algebra,
P:probability_measure
]: THEORY

BEGIN

IMPORTING probability_space[T,S,P],finite_measure@si

AB: VAR (S)

n,i,jj VAR nat

AA,BB: VAR disjoint_sequence

P(A,B):probability = IF null?(B) THEN 0 ELSE P(intersectio

conditional_complement: LEMMA

conditional_partition: LEMMA
Union(image(BB,fullset[below[n+1]])) = fullset[T] IMPL
P(A) = sigma(0,n, LAMBDA i: P(A, BB(i)) * P(BB(i)))

bayes_theorem: THEOREM
NOT null?(B) AND

Union(image(AA,fullset[below[n+1]])) = fullset[T] IMPL
P(AA(),B) = P(BAA()*P(AAG))

END conditional

(IMPORTING finite_measure@subset
(IMPORTING probability_measure[T,S])

P(A,B) * P(B) + P(A,complement(B)) * P(complement(B)) = P(A )

sigma(0,n, LAMBDA i: P(B, AA()) * P(AA()))

_algebra_def[T]) % sample space
% permitted events
% probability measure

gma_algebra[T,S]

n(A,B))/P(B) ENDIF

IES

IES

Fig. 3. Conditional probability file in PVS

from which we can calculate the probability
Plx < X <=vy) = F(y) — F(x).
In the case wher« is distributedU|, 1}, and because — for
any f(z) with [ f = F — we have

/ F(@)X (0] (2)da
(F(z) = F(a))X(a) (%) + (F(b) = F(a))X (b,00) (7)-
We also observe that X is distributed, ), thenE(X ) =

a— 2 H .
“T’Lb.land Va(lX) = % So, witha = 0, b = 1 we get:

1 2 1
H=13,0"= 13-

Definition 2: If we have a sequence of continuous random

variables{X,,}, then we define their partial sums as a s
guence of continuous random variab{es, } with the property

B

=1
Theorem 1:If continuous random variable¥ andY have
joint probability density functionsf, thenZ = X + Y has
probability density function:

(o]

fz(z) = / f(x,z — x)d.

respectively, thet = X +Y has probability density function:
f20)= [ x@pve-ode= [ fx-a)y @

C. Continuous random vectors

We want to generalize Theoreﬂ1 2 in a probability space
(T,o,P) to a large number of random variablgs(,,} to
produce a bound for each intermediate sum{is,}. We
introduce random vectors.

Definition 3: A random vectoof dimensionn is a collec-
tion of n random variables

X = (Xla"' 7Xn)
In this definition, the components need not to be indepen-

Sent variables meaning that the information on the distidiou

function of the components does not fully characterize the
probabilistic behavior of random vectof.

Definition 4: A random vectorX hasdistribution function
F,if

P(X; <z, -, Xp <axp)=F(z1, - ,zp).
Once we have defined the distribution function of a random
vector we want to define it's probability density.
Definition 5: A random vectorX is continuousif its dis-

In the special case wher¥ andY are independent, thentribution function can be expressed as

(because the joint probability density functigi, y) can be
expressed as the prodytt (z) fy (v)) we have theContinuous
Convolution Theorem

Theorem 2:If continuous random variableX andY are
independent and have probability density functiggsand fy

T Tn
F(l’l,"',xn):/ / f(xla"'axn)d‘rl"'dxn

for someo-integrable functionf : R* — [0, c0). We call the
function f the probability density for random vectof.



A random variableX hasdistribution functionF’, if
P(X <z)= F(x)

A random variableX is continuousf its distribution
function can be expressed as

Fla) = [ s

for some integrable functiorf : R — [0,00). We
call the functionf the probability density functior
for the random variable .

We define the probability of A given B” (written

P(A; B)) as:
P(A; B) = ]P(g(i;)B)

wheneverP(B) > 0.
A o-algebra over a typeT, is a subset of the
power-set ofT, which includes the empty set},

and is closed under the operations of complement,

countable union and countable intersection.
A Measurable SpacéT’, o) is a set (or in PVS g
type) T, and as-algebraoverT.

A function p : ¢ — R>( is a Measureover theo-
algebrac, whenpu({}) = 0, and for a sequence gf
disjoint element§ E,, } of o:

H <U En) = Zu(En)
n=0 n=0

A Measure SpacéT, o, ) is a measurable spag
(T, o) equipped with a measuye
A Probability Space(T’,0,P) is a measure space
(T, 0,P) in which the measur@ is finite for any
set ing, and in which:

P(X¢) =1 — P(X).

D

If (T1,01,P1) and (T3,02,P2) are probability
spaces then we can construcp@duct probability
space(Ts, 03, P3), where:

T3 = T1 X Tg
o3 = 0(01 X 0'2)
Py(a,b) = Pi(a)Pa(b)

whereP; is the extension oP% that has the whole
of o3 as its domain.

Fig. 1. Definitions implemented in PVﬂlZ]

We compute simple density functions through the following
theorem that is proved by induction using the definition of
independent random variables.

Theorem 3:A random vector X of continuous random
variables (X1,---,X,) with respective density functions
f1, -, fn is continuous and has a density function

f(xla"' 71'71) = fl(xl) XX fn(xn)

if and only if Xq,---, X, are independent.
During the proof, we show by Fubini’'s theorem that for
independent random variables

]P)(Xl €A, , X, € An) Z]P)(Xl S Al)XXP(Xn S An)

More complex density functions are handled through a
smooth change of variables.

Theorem 4:Let X = (X4,---,X,,) be a continuous ran-
dom vector with density functiorfx andg a transformation
from R™ to R" to a random vectoryY = (Y1, ---,Y,).
Provided that

« ¢ is continuously differentiable on an open sub&ebf

R",
« the Jacobian matrix
=[5
J11<i,j<n
is never singular,
o g admits an inverse o/ with the same properties, in
particular its Jacobian matrix is never singular and it is
the inverse of the Jacobian matrix @f

o and finallyP(X e U) =1
then Y is a continuous random vector and with density
function

Frw) = fx (97 W) |det, (97" )|~ xv (v).
Notice that we obtaif S,, } from {X,,} through the follow-
ing transformation:

n
g(x].?"' axn) = <x17xl +x27"' azxi> .
i=1

Its inverseg—! on U = R" is

n—1
91, yn) = (yl,yz — Y1, Yn — Z%) ;
i=1

its Jacobian matrix is an upper triangular matrix with all
components equal té and its determinant is also equal to
1. Finally V" = R".

IV. CORNERS OF HYPERCUBES

What we are actually interested in is whether a series of
calculations might accumulate a sufficiently large error to
become meaningless. In the language we have developed, we
are computing the probability that a sequence chlculations
has failed because it has exceeded the error-bound sonewher

P (@aﬁxnusm > )



A. Sums of Arbitrary Continuous Uniform Random Variables In the rest of the text, we heavily use notations and results
For a little while, we assume that each random variabje ©f [Bd] to obtain V(Pt,(x)) for appropriaten and . (we

is uniform on a given interval—;, \;]. Theoremd]3 an] 4 change summation index fromto n for this reason). For a

imply that the probability of failure is given by the ratio ~ 9iven vector

_V(PSNnH,)
o o wherea; = A;/p, we define they x (n+1) matrix S = (1, A)

V(Hn)
whereV is the volume operator applied to the following setgnd we deduce x (n+1) matrix

A= (al,ag,...,an),

P < Inaxn(|S ) > 27"V (Sy)

1<i<

P=(1l,a1,az2...a,).

P, = ($1,...£L‘n) | Vi |$i|§1/\ Z/\jl‘j <e€,,

- We want to computd’ (Pt,(u)) = v(P) = Z-¢(S) and we
1=

obtaino(S) by a formula that require the definition of

Hy ={(z1,...2n) | Vi fa <1}, e m=1

o I ={k} wherex = (1), S, = (1) anddet(S,) =1
)

and P€ is the complement of polyhedrah,.
n | e oY b o K°=(2,3,...(n+1)), det(r$) = a;—1 and

There is no direct formula to comput&(P,,) due to linear

dependencies between the constraints. n
_ -1
|5171| < 1 A = H a;
i =1

Z)\jxj < € . fOI”}/ el

j=1
The authors of this work and the authors ¢f][20] agree (35,7:1) = 55 =1+ > Y4105,
that small or elementary perturbations are certainly thg ke j=1

to compute accuratelyy(P,) for small values ofn. Yet The formula becomes
perturbation are not amenable for large values.of

So we have to revert to the bouid P,,) using the following H Z €, 57'SQrs.,
sets with only one constraint which denotes no failure only a Tl Ser
iterationn

where all the quantities have been instantiated and théneard

: of I' is 2" (remember that =< 225).
Pti(e) =S (x1,...m:) | Vi || STAD Nay| <e ( <2

j=1 B. Sums of Independent Identical Continuous Uniformly Dis-
We could have used tributed Random Variables

In the rest of this section we assume that alldhare equal
P, = ﬂ Pti(e) x Hp—; to a (and all the); are equal to\). For ay € I', we define
' n~ as the number of positions whetie = —1 for j between
where Pt;(¢) x H,_; is the Cartesian product of sets but w& andn + 1.

obtain a better bound with The formula becomes
Py =) (Pti(e) UPL (e + \;) x Hy) x Hy_; = ann, 1) (1+(n—2ny)a)" sgn1+(n—2n,)a),
i=1 'yEF
that is easily proved since or equivalently
Pti_l(e) C Pti_l(é-f—)\i) = Z LRI 2nV) sgr(a_l +n_2nv)7
with the convention thaPt, = {}. V€T
Using property of the complement and volume operatorgnq we change the summation ingex n.—n., of n—2n., =
we deduce that 9p — n to obtain

n

C n—i i—1(€ i) — (€ " n
VRSN H) < 322 OV (Plins(e +00) = VIP() %Z( >(_ Pln— ' — 2p)sgria —n+2p)

The approximation is reduced due to the fact that

Pti(e) C Pti_1(6+/\i) x Hy

with

1 if 2p>n—at!
and so the volume of the set difference is the difference®f th  sgna™! —n + 2p) = 0 if 2p=n—a!
volumes of the sets with the convention thé¢{}) = 1. -1 if 2p<n—a!



We observe that is trivial whenna < 1 and so we consider introduces a drift and our development cannot be used. 8houl
only the case where —a~! > 0. Whenn = ¢~ !, we obtain we wish to extend this work to account for drifts (non-zero
the volume of the full cube means for the random variablgs(,, }), we will also have to

1 & " consider higher-order error terms that also introduce . dri
— Z ( » ) (=1)P(=2p)" =2 This library and future work will be included into NASA
p=1
deriving a known formula|E4].

Langley PVS library as soon as it becomes stable.
So the probability of failure is bounded by

(e (5w ()

VI. CONCLUSIONS

To the best of our knowledge this paper presents the first
application of the volume of theorner of a n-dimension
hypercube to software reliability witm large enough for
exponential-time solution to be impractical. In additione
are finishing certification of our results with PVS. The major
restriction lies in the fact that we have been forced to trikist
individual errors have no drift, and are independent. Notic
‘ that even with a high tolerance of error, and with indepehden
for n > i andV;(n) = 2' otherwise. errors, we will still eventually fail. Our results permiteth

We obtain the equivalent formula below starting at the firgleyelopment of safe upper limits on the number of operations
index wherei > ¢/A that a piece of numeric software should be permitted to

with

Vi) = %,Z_%< ; ) (=1)P(i —n — 2p)'sgr(n — i + 2p)

n € undertake.
Bu(e,A) = 1_12 Va (X) It is worth pointing out that violating our assumptions
— o—i (v (£ 11 v (€ (independence of errors, and zero drift) would lead to worse
+ }Z;l ( ‘ (X + ) - (X)) results, so one should treat the limits we have deduced with
=X

caution, should these assumptions not be met.
V. FUTURE WORK

At the time that we are submitting this work, results of
Sections[1lI-¢ and[IV-p are not fully certified using PVS This work has been partially funded by CNRS PICS 2533
proof assistant. But we anticipate no problem has theséisesand by the EVA-Flo project of the ANR. It was initiated
are generalizations to vector of our earlier W [12] and s@hile one of the authors was an invited professor at the
theory except that our results are based on a formula olstaingniversity of Perpignan Via Domitia. It benefits from links
through Fourier Analysis. As Fourier Analysis has not bedsetween the cole Normale Suprieure de Lyon where one author
implemented in any proof checking environment, we are usinged to work and the University of Manchester started in the
the formula as a assumption to our theory. We hope theathlogaps multi-participant Early Stage Research Trajni
Fourier Analysis will be available in the future so we cametwork of the European Union. The authors would like to
remove any assumption from the theory we have developéanks Philippe Langlois, Harold Simmons and Jean-Marc
Yet certifying the results of [20] will be challenging. Vincent for fruitful informal discussions on this work andna

This work will be continued in two directions. The firstSrabonian Williams for his help in the library.
direction is to modify Fluctuat to generate theorems thattm
checked automatically by PVS using ProofLites proposed
in [B], [B]. This work will be carried in collaboration witthe
developers of Fluctuat within the EVA-Flo project of the ANR
The software will conservatively estimate the final effefcthe

ACKNOWLEDGMENT

REFERENCES
[1] S. C. Johnson and R. W. Butler, “Design for validationEEE

Aerospace and Electronic_Systems Magazir@. 7. no. 1. pp. 38-43,
1992. [Online]. Availablel http://dx.doi.org/lO.1109[62712E

D. M. Russinoff, “A mechanically checked proof of IEEE ropliance

errors introduced by each individual operations and compuP]
upper bounds of their magnitudes.

The second direction is to develop and check accurate
proofs about the errors of individual operations. A unifym .
distributed random variable whose variance depends only on
the operation and the computed result might provide a too
pessimistic bound. For example the floating point additibn o
a large number with a small number absorbs the small numbgy
meaning that the round-off error may be far below half an ulp
of the computed result.

Two’s complement operation of the TMS320 circuit can
either round or truncate the result. If truncation is used, i

thttp://research.nianet.org/"munoz/ProofLite/ |

of the floating point multiplication, division and square oto
algorithms of the AMD-K7 processor.MS Journal of Computation

— 8. [Online]. Available:
ttp://www.onr.com/user/russ/david/k7-div-sqit.ps

J. Harrison, “Formal verification of floating point trigometric
functions,” in Proceedings of the Third International Conference on
Formal Methods in Computer-Aided DesjgW. A. Hunt and S. D.
Johnson, Eds.. Austin. Texas. 2000 . 217-233. [OnliAgdilable:
ttp://www.springerlink.com/link.asp?id=wxvaquowg&j9
S. Boldo and M. Daumas, “Representable correcting telonpossibly
underflowing floating point operations,” iRProceedings of the 16th
Symposium on Computer Arithmetik-C. Bajard and M. Schulte, Eds.,

— linedilatble:
ttp://perso.ens-lyon.fr/marc.daumas/SoftArith/BalD3.pdf

2http://shemesh.larc.nasa.gov/fm/ftp/larc/

S Thrayrpvelb R

PVS-library/pvsli


http://research.nianet.org/~munoz/ProofLite/
http://dx.doi.org/10.1109/62.127129
http://www.onr.com/user/russ/david/k7-div-sqrt.ps
http://www.springerlink.com/link.asp?id=wxvaqu9wjrgc8l99
http://perso.ens-lyon.fr/marc.daumas/SoftArith/BolDau03.pdf
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]

M. Daumas, G. Melquiond, and C. Mufioz, “Guaranteed f{s00
using interval arithmetic,” inProceedings of the 17th Symposium
on Computer Arithmetic P. Montuschi and E. Schwarz, Eds.,

Cape Cod., Massachusetts. 2005, pp. 188-195. [Online]. lablai
http://perso.ens-lyon.fr/marc.daumas/SoftArith/DaiMun05.pdf

C. Munoz and D. Lester, “Real number calculations andotem
proving,” in 18th Internatlonal Conference on Theorem Proving in

Higher Or pp. 239-254. [Online].
Available: |http://dx.doi.org/10.1007/11541 8¢

J. Hurd “Formal verlflcatlon of probabl istic algomhs Ph.D.

i 2002. . :

Audebaud and C Paulln Mohring, "Proofs of randordizégorithms

in Cog,” in Proceedings of the 8th International Conference on
Mathematics of Program Constructipl. Uustalu, Ed., Kuressaare,
Estonia, 2006, pp. 49-68. [Online]. Available: http: /tdb:l org/10.
1007/11783596

M. J. C. Gordon and T. F. Melham, Edintroduction to HOL: A theorem
proving environment for higher order logic Cambridge University
Press, 1993.

G. Huet, G. Kahn, and C. Paulin-MohringThe Coq proof
assistant: a tutorial: version 8,02004. [Orline]l. Available: ftp:
[fftp.inria.fr/INRIA/cog/current/doc/Tutorial.pdfzy

S. Owre, J. M. Rushby, and N. Shankar, “PVS: a prototypefication
system,” in 11th International Conference on Automated Dedugtion
D. Kapur, Ed. Saratoga, New-York: Springer-Verlag, 1992. p
748-752. [Oplinel. Available; http:/pvs.csl.sri.corafiers/cade92-pvs/
cade92-pvs.ps

M. Daumas and D. Lester, “Stochastic formal methodsapplication

to accuracy of numeric software,” iProceedings of the IEEE 40

Annual Hawaii International Con
Hawaii, 2007. [Online]. Available} http://hal.ccsd.crrkcsd-000814 3

D. Goldberg, “What every computer scientist shouldwrabout floating

point arithmetic,” ACM Cfmpufng Surveys/ol. 23, no. 1. pp i—47,
1991. [Online]. Available] http://doi.acm.org/10.11468162.1031643

D. Stevensoret al, “An American national standard: IEEE standard for
binary floating point arithmetic,ACM SIGPLAN Noticesvol. 22, no. 2,
pp. 9-25, 1987.

TMS320C3x_— User's guideTexas Instruments, 1997. [Online].
Available: [http://www-s.ti.com/sc/psheets/spru03peai®31e. pgf

D. E. Knuth, The Art of Computer Programming: Seminumerical Algo-
rithms  Addison-Wesley, 1997, third edition.

A. Feldstein and R. Goodman, “Convergence estimates tfe
distribution of trailing digits,”Journal of the ACMvol. 23, no. 2, pp.
287-297, 1976 [Online]. Available: http://doi.acm.di9/1145/321941.
321948

J. Bustoz, A. Feldstein, R. Goodman, and S. Linnainnttraproved
trailing digits estimates applied to optimal computer hamietic,”

Journal oi_Lh.e_AQMmI_ZG_nu_pp_u_ﬁ_BO, 1979. [Online].
Available: |http://doi.acm.org/10.1145/322154.323162

N. Brisebarre, M. Daumas, P. Langlois, and M. Marteluf®l et
limitations des modles discrets-continus pour la sret mqume;” Centre
pour la Communication Scientifique et Directe, Villeurbantdrrance,
Tech. Rep., 2006.

D. Borwein, J. M. Borwein, and B. A. Mares Jr, “Multi-
variable sinc integrals and volumes of polyhedrafie Ramanujan
S —208, 2002. [Online]. Available:
http://dx.doi.org/10.1023/A:1015727317Pp07

P. R. Halmos, “The foundations of probability¥merican Mathematical
Monthly, vol. 51, pp. 493-510, 1944.

——, Measure Theory Van Nostrand Reinhold, 1950.

G. R. Grimmett and D. R. StirzakeProbability and Random Processes
Oxford University Press, 1982.

S. M. Ruiz, “An algebraic identity leading to wilson'q@orem,” The

Mathematj 79-583, 1996. [Online].
Available: |http://arxiv.org/abs/math.GM/0406(86



http://perso.ens-lyon.fr/marc.daumas/SoftArith/DauMelMun05.pdf
http://dx.doi.org/10.1007/11541868_13
http://www.cl.cam.ac.uk/~jeh1004/research/papers/thesis.pdf
http://dx.doi.org/10.1007/11783596_6
ftp://ftp.inria.fr/INRIA/coq/current/doc/Tutorial.pdf.gz
http://pvs.csl.sri.com/papers/cade92-pvs/cade92-pvs.ps
http://hal.ccsd.cnrs.fr/ccsd-00081413
http://doi.acm.org/10.1145/103162.103163
http://www-s.ti.com/sc/psheets/spru031e/spru031e.pdf
http://doi.acm.org/10.1145/321941.321948
http://doi.acm.org/10.1145/322154.322162
http://dx.doi.org/10.1023/A:1015727317007
http://arxiv.org/abs/math.GM/0406086

