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Abstract— This paper provides an accurate bound on the num-
ber of numeric operations (fixed or floating point) that can safely
be performed before accuracy is lost based on the assumption
that accumulated errors are uniformly distributed in ±

1

2
unit in

the last place. This work has important implications for control
systems with safety-critical software, as these systems are now
running fast enough and long enough for their errors to impact
on their functionality. Furthermore, worst-case analysis would
blindly advise the replacement of existing systems that have been
successfully running for years and that will continue running
before software development practices evolve. We present here
new theorems that we are currently validating with the PVS
proof assistant. This theory will allow code analyzing tools to
produce formal certificates of accurate behavior. FAA regulations
for aircraft require that the probability of an error be belo w 10

−9

for a 10 hour flight [1]. Such a low failure rate is stretching
the limits of generic calculations solely based on the standard
deviation of random variables for the intermediate sums. We
need many individual errors for the Central Limit Theorem
approximation to be sufficiently accurate (distance well below
10

−9). The precise bound presented here enhances the number
of bits of the result that can safely be regarded as correct.

I. I NTRODUCTION

Formal proof assistants are used in areas where errors can
cause loss of life or significant financial damage as well as
in areas where common misunderstandings can falsify key
assumptions. For this reason, formal proof assistants havebeen
much used for floating point arithmetic [2], [3], [4], [5], [6]
and probabilistic or randomized algorithms [7], [8]. Previous
references just link to a few projects using proof assistants
such as ACL2, HOL [9], Coq [10] and PVS [11].

All the above projects that deal with floating point arith-
metic aim at containing worst case behavior. Recent work
has shown that worst case analysis may be meaningless for
applications that run for a long time. For example, a process
adds numbers in±1 with a measure error of±2−25. If this
process adds225 items, then the accumulated error is±1, and
note that 10 hours of flight time at operating frequency of
1 kHz is approximately225 operations. Yet we easily agree
that provided the measure errors are not correlated, the actual
accumulated error will be much smaller.

We recall in Section II the model that we are using. Section
III recalls our formal developments in probability and presents
our new theorems. The Doobs-Kolmogorov inequality was

used in [12] but precise definitions of measure and round-off
errors used in Section IV provide a much more precise way to
compute the probability that a piece of software will success-
fully run within an acceptable error bound. We use the result
of Section IV for intermediate sums before approximations
based on the Central Limit Theorem are sufficiently accurate.
As this new bound is long to obtain, it might not be required
for ordinary pieces of software. Yet, failure rate as defined
in aeronautics is very low and this new bound is necessary
whatever the computational price.

We cannot use the Central Limit Theorem before the
approximation to normal distribution is sufficiently closeso
that the sum including the additional approximation errorsis
bounded by10−9 (there are potentially225 additional errors).
Our suggestion is to carry on precise computing as long as
possible and revert to results linked to Doobs-Kolmogorov
inequality [12] and the Central Limit Theorem when the
approximation error becomes negligible compared to10−9

In the rest of this text, we assume that the created round-off
and measure errors are unbiased independent random variables
or that their expectation conditional to the previous errors is
zero.

II. STOCHASTIC MODEL AND STATE OF THE ART

A. Individual round-off and measure errors

We are dealing with fixed or floating point numbers. A
floating point number representsv = m × 2e wheree is an
integer andm is a fixed point number [13]. IEEE 754 standard
[14] uses sign-magnitude notation for the mantissa and the first
bit b0 of the mantissa is implicit in most cases (b0 = 1) leading
to the following definition wheres and all thebi are either 0
or 1 (bits).

v = (−1)s × b0.b1 · · · bp−1 × 2e

Some circuits such as the TMS320 use two’s complement
notation form leading to the following definition [15].

v = (b0.b1 · · · bp−1 − 2 × s) × 2e

In fixed point notatione is a constant provided by the data
type and the first bit is no longer implicitly equal to 1.



For all the previous notations, we define for any repre-
sentable numberv, the unit in the last place function wheree
is the exponent ofv as above.

ulp(v) = 2e−p+1

A variable v is set either by an external sensor or by an
operation. Trailing digits of numbers randomly chosen from
a logarithmic distribution [16, p. 254-264] are approximately
uniformly distributed [17]. So we can assume that ifv is a
data obtained by an accurate sensor, the difference between
v and the actual valuev is uniformly distributed in the range
±ulp(v)/2. We can model the errorv−v by a random variable
X with expectationE(X) = 0 and varianceV ar(X) =
ulp(v)2/12. The sensor may be less accurate leading to a larger
variance but we assume that it is not biased.

Round-off errors created by operators are discrete and they
are not necessarily distributed uniformly [18]. The distribution
is very specific but as soon as we verify that the expectation
is E(X) = 0 and the error is bounded, we may safely use a
replacement variableX ′ such that

∀ǫ P(|X ′| > ǫ) ≥ P(|X | > ǫ).

B. Error of an accumulation loop

We will use only one example for very long accumulations
as calculations carried on at the end of Section IV heavily
rely on the fact that all the errors introduced are uniformly
distributed over the same interval. In other cases such as
the second example of [12], one may either revert to the
exponential-time formula stated in Section IV-A or use the
magnitude of the largest possible error for all the random
variables.

The example given in listing 1 sums data produced by a
fixed point sensorxi with a measure errorXi.

Listing 1. Simple discrete integration from [19]

1 a0 = 0

2 f o r ( i = 0 ; i < n ; i = i + 1 )
3 ai+1 = ai + xi

We can safely assume thatXi are independent identical
uniformly distributed random variables over±ulp(xi)/2. Data
are fixed point meaning that the sumai+xi does not introduce
any rounding error and the weight of one unit in the last place
does not depend onxi so we write ulp instead of ulp(xi). After
n iterations, we want the probability that the accumulated
measure error have always been constrained into user specified
boundsǫ. Using the Doobs-Kolmogorov inequality [12] where
Si =

∑i

j=1 Xj , we have that

P

(

max
1≤i≤n

(|Si|) ≤ ǫ

)

≤ 1 −
nulp2

12ǫ2
.

We will see that we can exhibit a tighter bound using
[20]. This bound can be produced using a time- and space-
polynomial algorithm provided all the random variables are
uniformly distributed over the same interval. Complexity is

a key issue as typicallyn - 225 meaning that the quadratic
algorithm proposed Section IV should be considered as the
biggest amenable algorithm.

III. PROBABILITY DISTRIBUTION OF BEING SAFE

A. Probability

We presented in [12] an account of probability with an
informal approach while taking foundational matters seriously.
The PVS system underlying these results is built on the
firm foundations for probability theory (using measure theory)
[21], [22]. A middle way between extreme formality and an
accessible level of informality is to be found in [23].

We begin by recalling in Figure 1 definitions implemented
in PVS [12]. The PVS development of probability spaces in
Figure 2, takes three parameters:T , the sample space,S, a σ-
algebra of permitted events, and,P, a probability measure,
which assigns to each permitted event inS, a probability
between0 and1. Properties of probability that are independent
of the particular details ofT , S and P are then provided in
this file.

If T is countable – as it is for discrete random variables –
then we may takeσ = ℘(T ). As we wish to discuss continuous
random variables then we partially instantiate this PVS file
with T = real , and S = borel set (the Borel sets). If
we go further and also specifyP, we will have described the
random variable distributions as well. Of particular interest
later is the fact that the sum of two random variables is itself
a random variable, and consequently any finite sum of random
variables will be a random variable.

Note that the product probabilityP3 has the effect of
declaring that the experiments carried out in probability spaces
(T1, σ1, P1) and (T2, σ2, P2) are independent. Obviously, the
process of forming products can be extended to any finite
product of finitely many probability spaces.

In Figure 3, we define the conditional probabilityP(A; B)
(written P(A,B) as PVS will not permit the use of “;” as an
operator). We take the opportunity to prove Bayes’ Theorem
along the way.

B. Continuous Uniform Random Variables

If X is a continuous random variable distributed uniformly
over the interval[a, b], then informally it takes any value within
the interval[a, b] with equal probability.

To make this more formal, we define thecharacteristic
functionof a setS as the functionχS , which takes the values
1 or 0 depending on whether it is applied to a member ofS.

Definition 1:

χS(x) =

{

1 x ∈ S
0 x 6∈ S

Now the probability density functionf of the uniform random
variable over the closed interval[a, b] is 1

b−a
χ(a,b]. From this

we can calculate the distribution function:

F (x) =

∫ x

−∞

f(x)dx,



probability_space[T:TYPE+, (IMPORTING finite_measure@ subset_algebra_def[T]) % sample space
S:sigma_algebra, (IMPORTING probability_measure[T,S]) % permitted events
P:probability_measure % probability measure

]: THEORY

BEGIN
IMPORTING finite_measure@sigma_algebra[T,S],probabil ity_measure[T,S],continuous_functions_aux[real]

A,B: VAR (S)
x,y: VAR real
n0z: VAR nzreal
t: VAR T
n: VAR nat

null?(A) :bool = P(A) = 0
non_null?(A) :bool = NOT null?(A)
independent?(A,B):bool = P(intersection(A,B)) = P(A) * P( B) % Note that it DOES NOT say = 0
random_variable?(X:[T->real]):bool = FORALL x: member({ t | X(t) <= x},S)
zero: (random_variable?) = (LAMBDA t: 0)
random_variable: TYPE+ = (random_variable?) CONTAINING z ero

X,Y: VAR random_variable
XS: VAR [nat->random_variable]

<=(X,x):(S) = {t | X(t) <= x}; % Needed for syntax purposes! < > = /= >= omitted

complement_le1: LEMMA complement(X <= x) = (x < X)
complement_lt1: LEMMA complement(x < X) = (X <= x)
complement_eq : LEMMA complement(X = x) = (X /= x)
complement_lt2: LEMMA complement(X < x) = (x <= X)
complement_le2: LEMMA complement(x <= X) = (X < x)
complement_ne: LEMMA complement(X /= x) = (X = x)

-(X) :random_variable = (LAMBDA t: -X(t)); % Needed for synt ax purposes! + - * / omitted

+(X,Y) :random_variable = (LAMBDA t: X(t) + Y(t));
-(X,Y) :random_variable = (LAMBDA t: X(t) - Y(t));

partial_sum_is_random_variable:
LEMMA random_variable?(LAMBDA t: sigma(0,n,LAMBDA n: XS( n)(t)))

distribution_function?(F:[real->probability]):bool
= EXISTS X: FORALL x: F(x) = P(X <= x)

distribution_function: TYPE+ = (distribution_function? ) CONTAINING
(LAMBDA x: IF x < 0 THEN 0 ELSE 1 ENDIF)

distribution_function(X)(x):probability = P(X <= x)

F: VAR distribution_function

convergence_in_distribution?(XS,X):bool
= FORALL x: continuous(distribution_function(X),x) IMPL IES

convergence((LAMBDA n: distribution_function(XS(n))(x )),
distribution_function(X)(x))

invert_distribution: LEMMA LET F = distribution_function (X) IN
P(x < X) = 1 - F(x) % Lemma 2.1.11-a (G&S)

interval_distribution: LEMMA LET F = distribution_functi on(X) IN
x <= y IMPLIES
P(intersection(x < X, X <= y)) = F(y) - F(x) % Lemma 2.1.11-b (G &S)

limit_distribution: LEMMA LET F = distribution_function( X) IN
P(X = x) = F(x) - limit(LAMBDA n: F(x-1/(n+1))) % Lemma 2.1.11 -c (G&S)

distribution_0: LEMMA convergence(F o (lambda (n:nat): -n ),0) % Lemma 2.1.6-a0 (G&S)
distribution_1: LEMMA convergence(F,1) % Lemma 2.1.6-a1 ( G&S)
distribution_increasing: LEMMA increasing?(F) % Lemma 2. 1.6-b (G&S)
distribution_right_continuous: LEMMA right_continuous (F) % Lemma 2.1.6-c (G&S)

END probability_space

Fig. 2. Abbreviated probability space file in PVS



conditional[T:TYPE+, (IMPORTING finite_measure@subset _algebra_def[T]) % sample space
S:sigma_algebra, (IMPORTING probability_measure[T,S]) % permitted events
P:probability_measure % probability measure

]: THEORY

BEGIN

IMPORTING probability_space[T,S,P],finite_measure@si gma_algebra[T,S]

A,B: VAR (S)
n,i,j: VAR nat
AA,BB: VAR disjoint_sequence

P(A,B):probability = IF null?(B) THEN 0 ELSE P(intersectio n(A,B))/P(B) ENDIF

conditional_complement: LEMMA
P(A,B) * P(B) + P(A,complement(B)) * P(complement(B)) = P(A )

conditional_partition: LEMMA
Union(image(BB,fullset[below[n+1]])) = fullset[T] IMPL IES
P(A) = sigma(0,n, LAMBDA i: P(A, BB(i)) * P(BB(i)))

bayes_theorem: THEOREM
NOT null?(B) AND
Union(image(AA,fullset[below[n+1]])) = fullset[T] IMPL IES
P(AA(j),B) = P(B,AA(j))*P(AA(j))/

sigma(0,n, LAMBDA i: P(B, AA(i)) * P(AA(i)))

END conditional

Fig. 3. Conditional probability file in PVS

from which we can calculate the probability

P(x < X <= y) = F (y) − F (x).

In the case whereX is distributedU[0,1], and because – for
any f(x) with

∫

f = F – we have
∫ ∞

−∞

f(x)χ(a,b](x)dx =

(F (x) − F (a))χ(a,b](x) + (F (b) − F (a))χ(b,∞)(x).

We also observe that ifX is distributedU[a,b], thenE(X) =
a+b
2 , and Var(X) = (a−b)2

12 . So, with a = 0, b = 1 we get:
µ = 1

2 , σ2 = 1
12 .

Definition 2: If we have a sequence of continuous random
variables{Xn}, then we define their partial sums as a se-
quence of continuous random variables{Sn} with the property

Sn =

n
∑

i=1

Xi.

Theorem 1:If continuous random variablesX andY have
joint probability density functionsf , then Z = X + Y has
probability density function:

fZ(z) =

∫ ∞

−∞

f(x, z − x)dx.

In the special case whereX and Y are independent, then
(because the joint probability density functionf(x, y) can be
expressed as the productfX(x)fY (y)) we have theContinuous
Convolution Theorem:

Theorem 2:If continuous random variablesX and Y are
independent and have probability density functionsfX andfY

respectively, thenZ = X+Y has probability density function:

fZ(z) =

∫ ∞

−∞

fX(x)fY (z−x)dx =

∫ ∞

−∞

fX(z−x)fY (x)dx.

C. Continuous random vectors

We want to generalize Theorem 2 in a probability space
(T, σ, P ) to a large number of random variables{Xn} to
produce a bound for each intermediate sum in{Sn}. We
introduce random vectors.

Definition 3: A random vectorof dimensionn is a collec-
tion of n random variables

X = (X1, · · · , Xn)
In this definition, the components need not to be indepen-

dent variables meaning that the information on the distribution
function of the components does not fully characterize the
probabilistic behavior of random vectorX .

Definition 4: A random vectorX hasdistribution function
F , if

P(X1 ≤ x1, · · · , Xn ≤ xn) = F (x1, · · · , xn).

Once we have defined the distribution function of a random
vector we want to define it’s probability density.

Definition 5: A random vectorX is continuousif its dis-
tribution function can be expressed as

F (x1, · · · , xn) =

∫ x1

−∞

· · ·

∫ xn

−∞

f(x1, · · · , xn)dx1 · · · dxn

for someσ-integrable functionf : R
n → [0,∞). We call the

function f the probability density for random vectorX .



• A random variableX hasdistribution functionF , if
P(X ≤ x) = F (x)

• A random variableX is continuousif its distribution
function can be expressed as

F (x) =

∫ x

−∞

f(x)dx

for some integrable functionf : R → [0,∞). We
call the functionf the probability density function
for the random variableX .

• We define the probability of “A given B” (written
P(A; B)) as:

P(A; B) =
P(A ∩ B)

P(B)

wheneverP(B) > 0.
• A σ-algebra over a typeT , is a subset of the

power-set ofT , which includes the empty set{},
and is closed under the operations of complement,
countable union and countable intersection.

• A Measurable Space(T, σ) is a set (or in PVS a
type) T, and aσ-algebraover T .

• A function µ : σ → R≥0 is a Measureover theσ-
algebraσ, whenµ({}) = 0, and for a sequence of
disjoint elements{En} of σ:

µ

(

∞
⋃

n=0

En

)

=

∞
∑

n=0

µ(En).

• A Measure Space(T, σ, µ) is a measurable space
(T, σ) equipped with a measureµ.

• A Probability Space(T, σ, P) is a measure space
(T, σ, P) in which the measureP is finite for any
set inσ, and in which:

P(Xc) = 1 − P(X).

• If (T1, σ1, P1) and (T2, σ2, P2) are probability
spaces then we can construct aproduct probability
space(T3, σ3, P3), where:

T3 = T1 × T2

σ3 = σ(σ1 × σ2)
P
′
3(a, b) = P1(a)P2(b)

whereP3 is the extension ofP′
3 that has the whole

of σ3 as its domain.

Fig. 1. Definitions implemented in PVS [12]

We compute simple density functions through the following
theorem that is proved by induction using the definition of
independent random variables.

Theorem 3:A random vectorX of continuous random
variables (X1, · · · , Xn) with respective density functions
f1, · · · , fn is continuous and has a density function

f(x1, · · · , xn) = f1(x1) × · · · × fn(xn)

if and only if X1, · · · , Xn are independent.
During the proof, we show by Fubini’s theorem that for

independent random variables

P(X1 ∈ A1, · · · , Xn ∈ An) = P(X1 ∈ A1)×· · ·×P(Xn ∈ An).

More complex density functions are handled through a
smooth change of variables.

Theorem 4:Let X = (X1, · · · , Xn) be a continuous ran-
dom vector with density functionfX andg a transformation
from R

n to R
n to a random vectorY = (Y1, · · · , Yn).

Provided that
• g is continuously differentiable on an open subsetU of

R
n,

• the Jacobian matrix

Jg =

[

∂gi

∂xj

]

1≤i,j≤n

is never singular,
• g admits an inverse onU with the same properties, in

particular its Jacobian matrix is never singular and it is
the inverse of the Jacobian matrix ofg,

• and finallyP (X ∈ U) = 1

then Y is a continuous random vector and with density
function

fY (y) = fX

(

g−1(y)
)
∣

∣detJg

(

g−1(y)
)
∣

∣

−1
χV (y).

Notice that we obtain{Sn} from {Xn} through the follow-
ing transformation:

g(x1, · · · , xn) =

(

x1, x1 + x2, · · · ,
n
∑

i=1

xi

)

.

Its inverseg−1 on U = R
n is

g(y1, · · · , yn) =

(

y1, y2 − y1, · · · , yn −

n−1
∑

i=1

yi

)

,

its Jacobian matrix is an upper triangular matrix with all
components equal to1 and its determinant is also equal to
1. Finally V = R

n.

IV. CORNERS OF HYPERCUBES

What we are actually interested in is whether a series of
calculations might accumulate a sufficiently large error to
become meaningless. In the language we have developed, we
are computing the probability that a sequence ofn calculations
has failed because it has exceeded the error-bound somewhere.

P

(

max
1≤i≤n

(|Si|) ≥ ǫ

)



A. Sums of Arbitrary Continuous Uniform Random Variables

For a little while, we assume that each random variableXi

is uniform on a given interval[−λi, λi]. Theorems 3 and 4
imply that the probability of failure is given by the ratio

P

(

max
1≤i≤n

(|Si|) ≥ ǫ

)

=
V
(

P C
n ∩ Hn

)

V (Hn)
= 1 − 2−nV (Sn)

whereV is the volume operator applied to the following sets

Pn =







(x1, . . . xn) | ∀i |xi| ≤ 1 ∧

∣

∣

∣

∣

∣

∣

i
∑

j=1

λjxj

∣

∣

∣

∣

∣

∣

≤ ǫ







,

Hn = {(x1, . . . xn) | ∀i |xi| ≤ 1} ,

andP C
n is the complement of polyhedronPn.

There is no direct formula to computeV (Pn) due to linear
dependencies between the constraints.















|xi| ≤ 1
∣

∣

∣

∣

∣

∣

i
∑

j=1

λjxj

∣

∣

∣

∣

∣

∣

≤ ǫ

The authors of this work and the authors of [20] agree
that small or elementary perturbations are certainly the key
to compute accuratelyV (Pn) for small values ofn. Yet
perturbation are not amenable for large values ofn.

So we have to revert to the boundV (Pn) using the following
sets with only one constraint which denotes no failure only at
iterationn

Pti(ǫ) =







(x1, . . . xi) | ∀j |xj | ≤ 1 ∧

∣

∣

∣

∣

∣

∣

i
∑

j=1

λjxj

∣

∣

∣

∣

∣

∣

≤ ǫ







.

We could have used

Pn =

n
⋂

i=1

Pti(ǫ) × Hn−i

wherePti(ǫ) × Hn−i is the Cartesian product of sets but we
obtain a better bound with

Pn =

n
⋂

i=1

(

Pti(ǫ) ∪ PtCi−1(ǫ + λi) × H1

)

× Hn−i

that is easily proved since

Pti−1(ǫ) ⊂ Pti−1(ǫ + λi)

with the convention thatPt0 = {}.
Using property of the complement and volume operators,

we deduce that

V
(

P C
n ∩ Hn

)

≤

n
∑

i=1

2n−i (2V (Pti−1(ǫ + λi)) − V (Pti(ǫ)))

The approximation is reduced due to the fact that

Pti(ǫ) ⊂ Pti−1(ǫ + λi) × H1

and so the volume of the set difference is the difference of the
volumes of the sets with the convention thatV ({}) = 1.

In the rest of the text, we heavily use notations and results
of [20] to obtain V (Ptn(µ)) for appropriaten and µ (we
change summation index fromi to n for this reason). For a
given vector

A = (a1, a2, . . . , an),

whereaj = λj/µ, we define then×(n+1) matrixS = (InA)
and we deduce1 × (n + 1) matrix

P = (1, a1, a2 . . . an).

We want to computeV (Ptn(µ)) = ν(P ) = 2n

π
σ(S) and we

obtainσ(S) by a formula that require the definition of

• m = 1
• I = {κ} whereκ = (1), Sκ = (1) anddet(Sκ) = 1
• κc = (2, 3, . . . (n + 1)), det(κc

j) = aj−1 and

ακ =
n
∏

j=1

a−1
i

• for γ ∈ Γ,

(sκ, γ; 1) = sγ = 1 +

n
∑

j=1

γj+1aj ,

The formula becomes

ν(P ) =
1

n!

n
∏

j=1

a−1
i

∑

γ∈Γ

ǫγsn
γsgnsγ

where all the quantities have been instantiated and the cardinal
of Γ is 2n (remember thatn - 225).

B. Sums of Independent Identical Continuous Uniformly Dis-
tributed Random Variables

In the rest of this section we assume that all theai are equal
to a (and all theλi are equal toλ). For aγ ∈ Γ, we define
nγ as the number of positions whereγj = −1 for j between
2 andn + 1.

The formula becomes

ν(P ) =
1

ann!

∑

γ∈Γ

(−1)nγ (1+(n−2nγ)a)nsgn(1+(n−2nγ)a),

or equivalently

ν(P ) =
1

n!

∑

γ∈Γ

(−1)nγ (a−1 + n− 2nγ)nsgn(a−1 + n− 2nγ),

and we change the summation indexp = n−nγ or n−2nγ =
2p − n to obtain

1

n!

n
∑

p=0

(

n
p

)

(−1)p(n − a−1 − 2p)nsgn(a−1 − n + 2p).

with

sgn(a−1 − n + 2p) =







1 if 2p > n − a−1

0 if 2p = n − a−1

−1 if 2p < n − a−1



We observe thatν is trivial whenna < 1 and so we consider
only the case wheren− a−1 ≥ 0. Whenn = a−1, we obtain
the volume of the full cube

1

n!

n
∑

p=1

(

n
p

)

(−1)p(−2p)n = 2n

deriving a known formula [24].
So the probability of failure is bounded by

Bn(ǫ, λ) =

n
∑

i=1

2−i
(

2Vi−1

( ǫ

λ
+ 1
)

− Vi

( ǫ

λ

))

with

Vi(η) =
1

i!

i
∑

p=0

(

i
p

)

(−1)p(i − η − 2p)isgn(η − i + 2p)

for η ≥ i andVi(η) = 2i otherwise.
We obtain the equivalent formula below starting at the first

index wherei > ǫ/λ

Bn(ǫ, λ) = 1 − 2−nVn

( ǫ

λ

)

+

n−1
∑

i= ǫ
λ

+1

2−i
(

Vi

( ǫ

λ
+ 1
)

− Vi

( ǫ

λ

))

V. FUTURE WORK

At the time that we are submitting this work, results of
Sections III-C and IV-A are not fully certified using PVS
proof assistant. But we anticipate no problem has these results
are generalizations to vector of our earlier work [12] and set
theory except that our results are based on a formula obtained
through Fourier Analysis. As Fourier Analysis has not been
implemented in any proof checking environment, we are using
the formula as a assumption to our theory. We hope that
Fourier Analysis will be available in the future so we can
remove any assumption from the theory we have developed.
Yet certifying the results of [20] will be challenging.

This work will be continued in two directions. The first
direction is to modify Fluctuat to generate theorems that can be
checked automatically by PVS using ProofLite1 as proposed
in [5], [6]. This work will be carried in collaboration with the
developers of Fluctuat within the EVA-Flo project of the ANR.
The software will conservatively estimate the final effect of the
errors introduced by each individual operations and compute
upper bounds of their magnitudes.

The second direction is to develop and check accurate
proofs about the errors of individual operations. A uniformly
distributed random variable whose variance depends only on
the operation and the computed result might provide a too
pessimistic bound. For example the floating point addition of
a large number with a small number absorbs the small number
meaning that the round-off error may be far below half an ulp
of the computed result.

Two’s complement operation of the TMS320 circuit can
either round or truncate the result. If truncation is used, it

1http://research.nianet.org/˜munoz/ProofLite/ .

introduces a drift and our development cannot be used. Should
we wish to extend this work to account for drifts (non-zero
means for the random variables{Xn}), we will also have to
consider higher-order error terms that also introduce a drift.

This library and future work will be included into NASA
Langley PVS library2 as soon as it becomes stable.

VI. CONCLUSIONS

To the best of our knowledge this paper presents the first
application of the volume of thecorner of a n-dimension
hypercube to software reliability withn large enough for
exponential-time solution to be impractical. In addition,we
are finishing certification of our results with PVS. The major
restriction lies in the fact that we have been forced to insist that
individual errors have no drift, and are independent. Notice
that even with a high tolerance of error, and with independent
errors, we will still eventually fail. Our results permit the
development of safe upper limits on the number of operations
that a piece of numeric software should be permitted to
undertake.

It is worth pointing out that violating our assumptions
(independence of errors, and zero drift) would lead to worse
results, so one should treat the limits we have deduced with
caution, should these assumptions not be met.
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