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Abstract

Neural Gas (NG) constitutes a very robust clustering aflyarigiven euclidian data which
does not suffer from the problem of local minima like simpéetor quantization, or topo-
logical restrictions like the self-organizing map. Basedtbe cost function of NG, we
introduce a batch variant of NG which shows much faster cgarece and which can be
interpreted as an optimization of the cost function by thestéae method. This formulation
has the additional benefit that, based on the notion of thergéred median in analogy to
Median SOM, a variant for non-vectorial proximity data camittroduced. We prove con-
vergence of batch and median versions of NG, SOM, and k-meangnified formulation,

and we investigate the behavior of the algorithms in sevexpériments.

Key words: Neural gas, batch algorithm, proximity data, median-ertisg, convergence

1 Introduction

Clustering constitutes a fundamental problem in varioeasof applications such
as pattern recognition, image processing, data minin@ datpression, or ma-
chine learning [23]. The goal of clustering is grouping giveaining data into

classes of similar objects such that data points with smsgaantical meaning are
linked together. Clustering methods differ in various aspéncluding the assign-
ment of data points to classes which might be crisp or fuzmy,arrangement of
clusters which might be flat or hierarchical, or the représtgmn of clusters which

might be represented by the collection of data points assigma given class or by
few prototypical vectors. In this article, we are interesteneural clustering algo-

rithms which deal with crisp assignments and represemtaticlusters by neurons
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or prototypes.

Popular neural algorithms representing data by a small eurobtypical proto-
types include k-means, the self-organizing map (SOM), alegais (NG), and al-
ternatives [11,27]. Depending on the task and model at ltaede methods can be
used for data compression, data mining and visualizationljmear projection and
interpolation, or preprocessing for supervised learrfagieans clustering directly
aims at a minimization of the quantization error [5]. Howewus update scheme is
local, therefore it easily gets stuck in local optima. Né&ighhood cooperation as
for SOM and NG offers one biologically plausible solutiorpat from a reduction
of the influence of initialization, additional semanticasight is gained: browsing
within the map and, if a prior low dimensional lattice is censdata visualization
become possible. However, a fixed prior lattice as chose®M &ight be subop-
timal for a given task depending on the data topology andltmpcal mismatches
can easily occur [30]. SOM does not possess a cost functigheircontinuous
case, and the mathematical analysis is quite difficult wNesiations of the origi-
nal learning rule are considered for which cost functiorsloa found [9,16]. NG
optimizes a cost function which, as a limit case, yields thargization error [21].
Thereby, a data optimum (irregular) lattice can be deteschiautomatically dur-
ing training which perfectly mirrors the data topology ankieh allows to browse
within the result [22]. This yields very robust clusteringhavior. Due to the po-

tentially irregular lattice, visualization requires afiloinal projection methods.

These neural algorithms (or a variation thereof for SOM)rojte some form of
cost function connected to the quantization error of tha dat. There exist mainly
two different optimization schemes for these objectivedine variants, which

adapt the prototypes after each pattern, and batch vawenth adapt the pro-



totypes according to all patterns at once. Batch approaieegsually much faster
in particular for high dimensional vectors, since only odaation is necessary in
each cycle and convergence can usually be observed aftestéps. However, the
problem of local optima for k-means remains in the batchardriFor SOM, topo-

logical ordering might be very difficult to achieve sincetla beginning, ordering
does usually not exist and, once settled in a topologicaimaish, the topology can
hardly be corrected. The problem of topological mismataeesuch more pro-

nounced in Batch SOM than in online SOM as shown in [12] suahdlgood (and

possibly costly) initialization is essential for the susseHowever, due to their ef-
ficiency, batch variants are often chosen for SOM or k-mebdata are available
a priori, whereby the existence of local optima and topaabmismatches might
cause severe problems. For NG, some variants of batch aidapsghemes oc-
cur at singular points in the literature [32], however, sQ feo NG-batch scheme
has been explicitely derived from the NG cost function tbgetwith a proof of

the convergence of the algorithm. In this article, we putdbst functions of NG,

(modified) SOM, and k-means into a uniform notation and aehbatch versions
thereof together with a proof for convergence. In additivg,relate Batch NG to
an optimization by means of the Newton method, and we contparmethods on

different representative clustering problems.

In a variety of tasks such as classification of protein stmad, text documents,
surveys, or biological signals, an explicit metric vectpase such as the standard
euclidian vector space is not available, rather discretesformations of data e.g.
the edit distance or pairwise proximities are availableIB®8]. In such cases, a
clustering method which does not rely on a vector space hae t@pplied such
as spectral clustering [2]. Several alternatives to SOMeHsen proposed which

can deal with more general, mostly discrete data [10,1328} article [19] pro-



poses a particularly simple and intuitive possibility fdustering proximity data:

the mean value of the Batch SOM is substituted by the gemedhinedian result-
ing in Median SOM, a prototype-based neural network in whinbtotypes loca-

tion are adapted within the data space by batch computatuatsrally, the same
idea can be transferred to Batch NG and k-means as we will dstmate in this

contribution. As for the euclidian versions, it can be shdiat the median vari-
ants of SOM, NG, and k-means converge after a finite numbedaghtation steps.
Thus, the formulation of neural clustering schemes by meahstch adaptation
opens the way towards the important field of clustering cexghata structures for
which pairwise proximities or a kernel matrix constitute thterface to the neural

clustering method.

2 Neural gas

Assume data pointg € R™ are distributed according to an underlying distribution
P, the goal of NG as introduced in [21] is to find prototype lomas @' € R™,
1 = 1,...,n, such that these prototypes represent the distributi@s accurately

as possible, minimizing the cost function

Exalif) = gy 2 (2.1 - (i) P

where
d(Z,7) = (Z —i))°

denotes the squared euclidian distance,



is the rank of the prototypes sorted according to the dissnhg () = exp(—t/))
is a Gaussian shaped curve with neighborhood range0, andC(\) is the con-
stanty>"" ; hy(k;). The learning rule consists of a stochastic gradient desgietd-
ing

AW = € hy(ki(27,0)) - (&7 — )
for all prototypesu® given a data poing’. Thereby, the neighborhood ranges
decreased during training to ensure independence oflintieon at the beginning
of training and optimization of the quantization error i final stages. As pointed
outin [22], the result can be associated with a data optinaiticé such that brows-

ing within the data space constitutes an additional feaititke solution.

Due to its simple adaptation rule, the independence of a [aitice, and the inde-
pendence of initialization because of the integrated rmgiood cooperation, NG
is a simple and highly effective algorithm for data clustgriPopular alternative
clustering algorithms are offered by the SOM as introduce&dhonen [18] and

k-means clustering [11].

SOM uses the adaptation strengtf{nd(1(77),1)) instead ofh (k;(77, W), I(z7)
denoting the index of the closest prototype, the winnerzfoandnd a priorly cho-
sen, often two-dimensional neighborhood structure of thgons. A low-dimensional
lattice offers the possibility to easily visualize datavitwer, if the primary goal is
clustering, a fixed topology puts restrictions on the maptapdlogy preservation
often cannot be achieved [30]. SOM does not possess a casiduim the continu-
ous case and its mathematical investigation is difficultf@jwever, if the winner is
chosen as the neurémwith minimum averaged distange"_, hy(nd (i, 1))d(Z7, @),

it optimizes the cost

n

Eson (i@ Z / X+ Z (nd(i,1)) - d(Z, @) P(d7)
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as pointed out by Heskes [16]. Heré(7) denotes the winner index according to

the averaged distance aggl:) is the characteristic function gf

K-means clustering adapts only the winner in each step,ittmimizes the stan-

dard quantization error

Ekmeans(u_j> ~ Z/XI(E) (Z) ’ d(fa wl) P<df)
i=1

wherel (%) denotes the winner index fafin the classical sense. Unlike SOM and
NG, k-means is very sensitive to initialization of the pitgfmes since it adapts the
prototypes only locally according to their nearest data{soiAn initialization of

the prototypes within the data points is therefore mangator

2.1 Batch clustering

If training dataz?, ...,z are given priorly, fast alternative batch training schemes
exist for both, k-means and SOM. Starting from random pasgtiof the prototypes,

batch learning iteratively performs the following two stemtil convergence

(1) determine the winnef(z?) resp.I*(z*) for each data poin’,
(2) determine new prototypes as
w'= > F/NjIE) =i}
j (@)=
for k-means and
@' =" ha(nd(I*(27),1)) - @) ha(nd(I*(2), 1))
j=1 j=1

for SOM.



Thereby, the neighborhood cooperation is annealed for SOtk same way as in

the online case.

It has been shown in [5,7] that Batch k-means and Batch SOMnhog# the same
cost functions as their online variants, whereby the madifignner notation as
proposed by Heskes is used for SOM. In addition, as pointeth§Li6], this formu-
lation allows to link the models to statistical formulatgoand it can be interpreted

as a limit case of EM optimization schemes for appropriateuneé models.

Often, batch training converges after only few (10-100)eysuch that this train-
ing mode offers considerable speedup in comparison to theeovariants: adap-
tation of the (possibly high dimensional) prototypes isyonécessary after the

presentation of all training patterns instead of each singk.

Here, we introduce Batch NG. As for SOM and k-means, it candyeveld from

the cost function of NG, which, for discrete dats . .., 27, reads as

n p ) ) )
Eng (W) ~ Z Z hy(k; (27, 0)) - d(27,w")
i=1j=1

d being the standard euclidian metric. For the batch algmrithe quantities;; :=
k;(27,w) are treated as hidden variables with the constraint thavéheesk;;
(@ = 1,...,n) constitute a permutation 0, ...,n — 1} for each point??. Exc
is interpreted as a function depending@@ndk;; which is optimized in turn with
respect to the hidden variablég and with respect to the prototypes, yielding

the two adaptation steps of Batch NG which are iterated oativergence:
(1) determine
kij = k(@ @) = [{' | d(&, ") < d(@, ")}

as the rank of prototypé”,



(2) based on the hidden variables, set

_ Y halky) - 2
SE oy halky)

As for Batch SOM and k-means, adaptation takes place ordy tifé presentation
of all patterns with a step size which is optimized by mearth@partial cost func-
tion. Only few adaptation steps are usually necessary diettact that Batch NG
can be interpreted as Newton optimization method whichstakeond order infor-
mation into account whereas online NG is given by a simplelsistic gradient

descent.

To show this claim, we formulate the Batch NG update in thenfor

A — i1 halky) - (& — ')
by ha(kig)

Newton’s method for an optimization @iy yields the formula
A = —J (@) - HH(w'),

where.J denotes the Jacobian 8% andH the Hessian matrix. Sindg; is locally

constant, we get up to sets of measure zero
J(W') =23 ha(ky) - (@ —27)
j=1
and the Hessian matrix equals a diagonal matrix with entries
p
2->  ha(ky).
j=1

The inverse gives the scaling factor of the Batch NG adaptaiie. Batch NG

equals Newton’s method for the optimization/gf.



2.2 Median clustering

Before turning to the problem of clustering proximity datge formulate Batch
NG, SOM, and k-means within a common cost function. In theréig setting,

these three models optimize a cost function of the form

B =33 ) - ()
=1 j=

where f, (k;;(w)) is the characteristic function of the winner, ixg: (i) resp.
Xr-((7), for k-means and SOM, and it is, (k;(, w)) for neural gas.fy’ ()
equals the distancé(7?,w’) for k-means and NG, and it is the averaged dis-
tanceX"", ha(nd(i, 1)) - d(7, ') for SOM. The batch algorithms optimiZe with
respect tok;; in step(1) assuming fixedd. Thereby, for eacly, the vectork;;
(: = 1,...,n) is restricted to a vector with exactly one enirnand0, otherwise,
for k-means and SOM. It is restricted to a permutatioq@f...,n — 1} for NG.
Thus, the elements;; come from a discrete set which we denote Ky In step
(2), E is optimized with respect to”’ assuming fixed;;. The update formulas as

introduced above can be derived by taking the derivativgofvith respect taz.

For proximity datar”, ..., 27, only the distance matri;; := d(7", 27) is available
but data are not embedded in a vector space and no contindapt#on is possi-
ble, nor does the derivative of the distance functi@xist. A solution to tackle this
setting with SOM-like learning algorithms proposed by Kohko is offered by the
Median SOM: it is based on the notion of the generalized nme(dif]. Prototypes
are chosen from thdiscreteset given by the training point& = {7,... 77} in

an optimum way. In mathematical term’s,is optimized within the seX™ given
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by the training data instead GR™)". This leads to the choice af’ as
P
W' =37 where [ =argmin Y hy(nd(I*(),4)) - d(z¥, 3"

j=1
in step(2). In [19], Kohonen considers only the data points mapped teighior-
hood of neuron as potential candidates faf and, in addition, reduces the above
sum to points mapped into a neighborhood:.ofFor small neighborhood range
and approximately ordered maps, this does not change thk bes considerably

speeds up the computation.

The same principle can be applied to k-means and Batch NGep(3), instead
of taking the vectors itiR™)" which minimizeFE, prototypei is chosen as the data
point in X with
p
@' =" where [ =argmin, Y xyaiy(l) - d(@, 7"
j=1
assuming fixed (/) for Median k-means and
P
W' =3 where [ =argmin, > hy(ky) - d(@, ")
j=1
assuming fixed:;; = k; (27, ) for Median NG. For roughly ordered maps, a re-
striction of potential candidate® to data points mapped to a neighborhood of

can speed up training as for Median SOM.

Obviously, a direct implementation of the new prototypeakians requires time
O(p?n), p being the number of patterns andeing the number of neurons, since
for every prototype and every possible prototype locatioXia sum ofp terms
needs to be evaluated. Hence, an implementation of Mediarej@res the com-
plexity O(p?n + pnlogn) for each cycle, including the computation/of for ev-
ery: andj. For Median SOM, a possibility to speed up training has régdreen

presented in [8] which yields an exact computation with sastly O(p* + pn?)

11



instead ofO(p?n) for the sum. Unfortunately, the same technique does notdwgpr
the complexity of NG. However, further heuristic possiiels to speed-up median-
training are discussed in [8] which can be transferred toigtetlG. In particular,
the fact that data and prototype assignments are in large identical for consec-
utive runs at late stages of training and a restriction taite median points in
the neighborhood of the previous one allows a reuse of ajreachputed values

and a considerable speedup.

2.3 Convergence

All batch algorithms optimizéZ = E () by consecutive optimization of the hid-
den variableg;;(«w) andw. We can assume that, for given the values:;; deter-
mined by the above algorithms are unique, introducing sorderan case of ties.
Note that the values;; come from a discrete sé{. If the valuesk;; are fixed, the
choice of the optimumd is unique in the algorithms for the continuous case, as
is obvious from the formulas given above, and we can assunggiemess for the

median variants by introducing an order. Consider the fanct
/ L 0] /
Q' @) =D > filky(w)) - fo' (&) .
i=1j=1

Note thatZ(w) = Q(w, w). Assume prototypes are given, and new prototypes

are computed based @ () using one of the above batch or median algorithms.
It holds E'(w') = Q(w', w') < Q(w',w) becausé:;;(«') are optimum assignments
for k;; in E, given'. In addition, Q(', W) < Q(w,w) = E(w) becaused’

are optimum assignments of the prototypes gikg(w). Thus,E(w') — E(W) =
E(W') — Q(w,w) + Q(u',w) — E(w) <0, i.e., in each step of the algorithm’s,

is decreased. Since there exists only a finite number ofrdiffevaluest;; and the

12



assignments are unique, the algorithms converge in a finitéoer of steps toward

a fixed pointw* for which (w*)" = «w* holds.

Consider the case of continuous Sincek;; are discretek;;(w) is constant in a
vicinity of a fixed pointw* if no data points lie at the borders of two receptive
fields. ThenE(-) andQ(-,w*) are identical in a neighborhood af* and thus, a
local optimum of() is also a local optimum of. Therefore, ifii can be varied in
a real vector space, a local optimumBfis found by the batch variant if no data

points are directly located at the borders of receptivedigéd the final solution.

3 Experiments

We demonstrate the behavior of the algorithms in differeetarios which cover
a variety of characteristic situations. All algorithms Bdeen implemented based
on the SOM Toolbox for Matlab [24]. We used k-means, SOM, B&OM, and
NG with default parameters as provided in the toolbox. Batch and median
versions of NG, SOM, and k-means have been implementeddingdo the above
formulas. Note that, for all batch versions, prototypeschitiie at identical points
of the data space do not separate in consecutive runs. Heusifiation of exactly
identical prototypes must be avoided. For the euclidiasives, this situation is a
set of measure zero if prototypes are initialized at diffié@ositions. For median
versions, however, it can easily happen that prototypesrbeddentical due to a
limited number of different positions in the data space,artipular for small data
sets. Due to this fact, we add a small amount of noise to therdies in each epoch
in order to separate identical prototypes. Vectorial iragrsets are normalized prior
to training using z-transformation. Initialization of potypes takes place using

small random values. The initial neighborhood rate for akgas isA = n/2, n

13



Quantization error on (normalized) 2D synthetic data

1.4 T T T T

—&— NeuralGas

—@— BatchNeuralGas
1.2< —»— MedianNeuralGas|

—<4— kMeans
—%— MediankMeans

0 . . . .
5 10 15 20 25
number of neurons
Quantization error on (normalized) segmentation data
16 T T T T

—&— NeuralGas
—@@— BatchNeuralGas
—»— MedianNeuralGas|
—%— Som
—~A— BatchSom
—¥— MedianSom 1
—<4— kMeans
—#— MediankMeans

5 10 15 20 25
number of neurons

Fig. 1. Mean quantization error of the methods for the syithdata set (top) and the

segmentation data set (bottom).

being the number of neurons, and it is multiplicatively @éased during training.
For Median SOM, we restrict to square latticesrof= /n x /n neurons and
a rectangular neighborhood structure, wherghyis rounded to the next integer.

Here the initial neighborhood rate {gn/2.
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Fig. 2. Location of the prototypes for the synthetic datad@etlifferent variants of NG.

3.1

The first data set is the two-dimensional synthetic datarset {27] consisting of
250 data points andl000 training points. Clustering has been done using 2, . . .,

25 prototypes, resp. the closest number of prototypes impiéeddy a rectangular

Location of prototypes (6) for 2D synthetic data
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lattice for SOM. Training takes place férn. epochs.
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The mean quantization errory_, >°-7_, x (i) - d(27,w")/p on the test set and
the location of prototypes within the training set are degicin Figs. 1 and 2.
Obviously, the location of prototypes coincides for diffet versions of NG. This
observation also holds for different numbers of prototypdsereby the result is
subject to random fluctuations for larger numbers. For kfmagile prototypes can
be observed for large. For Batch SOM and standard SOM, the quantization error
is worse (ranging from.7 for 2 neurons up t®.3 for 24 neurons, not depicted in
the diagram), which can be attributed to the fact that the dusgs not fully unfold
upon the data set and edge effects remain, which could bessktf to a small but
nonvanishing neighborhood in the convergent phase in atdrichplementations
of SOM which is necessary to preserve topological order. iste&OM (which
has been directly implemented in analogy to Median NG) gieddquantization
error competitive to NG. Thus, Batch and Median NG allow thiece results

competitive to NG in this case, however, using less effort.

3.2 Segmentation data

The segmentation data set from the UCI repository consfsid @ (training set)
resp.2100 (test set)19 dimensional data points which are obtained as pixels from
outdoor images preprocessed by standard filters such aasgawgr saturation, in-
tensity, etc. The problem is interesting since it contaigé ldimensional and only
sparsely covered data. The quantization error obtainetthéatest set is depicted in
Fig. 1. As beforehand, SOM suffers from the restriction eftbpology. Neural gas
yields very robust behavior, whereas for k-means, idlegiypies can be observed.
The median versions yield a larger quantization error coagpto the vector-based

algorithms. The reason lies in the fact that a high dimeradidata set with only few
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training patterns is considered, such that the search $panedian algorithms is
small in these cases and random effects and restrictiomgiattor the increased

error.

3.3 Checkerboard

This data set is taken from [15]. Two-dimensional data ararged on a checker-
board, resulting i 0 times10 clusters, each consisting 0f to 20 points. For each
algorithm, we trairb times100 epochs forl 00 prototypes. Obviously, the problem
is highly multimodal and usually the algorithms do not finbciisters. The num-

ber of missed clusters can easily be judged in the followiag:vthe clusters are

NG batch median SOM batch median kmeans median

NG NG SOM SOM kmeans

quantization error

train | 0.0043 0.0028 0.0043 0.0127 0.0126 0.0040 0.0043 0.0046

test | 0.0051 0.0033 0.0048 0.0125 0.0124 0.0043 0.0050 0.0052

classification error

train | 0.1032 0.0330 0.0338 0.2744 0.2770 0.0088 0.1136 0.0464

test | 0.1207 0.0426 0.0473 0.2944 0.2926.0111 0.1376 0.0606
Table 1

Quantization error and classification error for posteraireling for training and test set
(both are of size abou00). The mean oves runs is reported. The best results on the test

set is depicted in boldface.
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labeled consecutively using labdland2 according to the color black resp. white
of the data on the corresponding field of the checkerboardcaieassign labels
to prototypes a posteriori based on a majority vote on thaitrg set. The num-
ber of errors which arise from this classification on an iredefent test set count
the number of missed clusters, sinicé error roughly corresponds to one missed

cluster.

The results are collected in Tab. 1. The smallest quantizagiror is obtained by
Batch NG, the smallest classification error can be found fedidn SOM. As be-
forehand, the implementations for SOM and Batch SOM do nibt finfold the
map among the data. In the same way online NG does not achisveak error
because of a restricted number of epochs and a large dataisbtpvevents online
NG from full unfolding. K-means also shows a quite high erfiormisses more
than10 clusters) which can be explained by the existence of meltgpdal optima
in this setting, i.e. the sensitivity of k-means with redgednitialization of proto-
types. In contrast, Batch NG and Median NG find all Bub 4 clusters. Median
SOM even finds all but only or 2 clusters since the topology of the checkerboard
exactly matches the underlying data topology consistintpot 10 clusters. Sur-
prisingly, also Median k-means shows quite good behavidike k-means itself,
which might be due to the fact that the generalized mediafts@nthe prototypes
to settle within the clusters. Thus, median versions anghiirhood cooperation
seem beneficial in this task due to the multiple modes. Bagchians show much
better behavior than their online correspondents, due égterf convergence of the
algorithms. Here, SOM suffers from border effects, wheidagian SOM settles
within the data clusters, whereby the topology mirrors @&y the data topology.
Both, Batch NG and Median NG, yield quite good classificatesults which are

even competitive to supervised prototype-based clasifiteesults as reported in
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Fig. 3. Distance matrix for protein data.

[15].

3.4 Proximity data — protein clusters

We used the protein data set described in [29] and [28]: thsidilarity of 145
globin proteins of different families is given in matrix faras depicted in Fig. 3.
Thereby, the matrix is determined based on sequence alignmeng biochemical
and structural information. In addition, prior informatiabout the underlying pro-
tein families is available, i.e. a prior clustering into s@rtically meaningful classes
of the proteins is known: as depicted in Fig 4 by verticaldinde first 42 proteins
belong to hemoglobim, the next clusters denote hemoglobing, etc. Thereby,
several clusters are rather small, comprising only fewegingt(one or two). In ad-

dition, the cluster depicted on the right has a very largeraitister distance.

Since only a proximity matrix is available, we cannot appghnslard NG, k-means,
or SOM, but we can rely on the median versions. We train alleémnedian versions

10 times usingl0 prototypes and00 epochs. The mean quantization errors (and
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variances) arg8.7151 (0.0032) for Median NG3.7236 (0.0026) for Median SOM,
and4.5450 (0.0) for Median k-means, thus k-means yields worse results eoatp
to NG and SOM and neighborhood integration clearly seemsfhmal in this ap-

plication scenario.

We can check whether the decomposition into clusters by sefitine prototypes
is meaningful by comparing the receptive fields of the tertgiypes to the prior
semantic clustering. Typical results are depicted in Figlhk classification pro-
vided by experts is indicated by vertical lines in the imagédee classification by
the respective median method is indicated by assigningue\at the y-achses to
each pattern corresponding to the number of its winner me(bblack squares in
the figure). Thus, an assignment of all or nearly all pattermsme semantic cluster
to one or few dedicated prototypes gives a hint for the faat thedian clustering

finds semantically meaningful entities.

All methods detect the first cluster (hemoglobipand neural gas and SOM also
detect the eighth cluster (myoglobin). In addition, SOM &@ group together
elements of clusters two to seven in a reasonable way. Thesebording to the
variance in the clusters, more than one prototype is usddrige clusters and small
clusters containing only one or two patterns are groupeeth®y. The elements of
the last two clusters have a large intercluster distanck that they are grouped
together into some (random) cluster for all methods. No&¢ e goal of NG and
SOM is a minimization of their underlying cost function, Bubat the cluster bor-
der can lie between semantic clusters for these methods, Thriresults obtained
by SOM and NG are reasonable and they detect several sealgntieaningful
clusters. The formation of relevant clusters is also sujggovhen training with a

different number of prototypes
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3.5 Proximity data — chicken pieces silhouettes

The data set as given in [1] consists of silhouettesi6fchicken pieces of different
classes including wings, backs, drumsticks, thighs, aeddis. The task is a clas-
sification of the images (whereby the silhouettes are nehted) into the correct
class. As described in [26], a preprocessing of the imagasgtieg in a proximity
matrix can cope with the relevant properties of the silhtsuahd rotation symme-
try: the surrounding edges are detected and discretizedmall consecutive line
segments 020 pixels per segment. The images are then represented byffde di
ences of the angles of consecutive line segments. Distamspudation takes place
as described in [6] by a rotation and mirror symmetric varithe edit distance
of two sequences of angles, whereby the costs for a sulbstitot two angles is
given by their absolute distance, the costs for deletioniasertion are given by

k = 60.

We train Median k-means, Median NG, and Median SOM with dgife numbers
of neurons folb00 epochs, thereby annealing the neighborhood as beforelbad.
results on a training and test set of the same size, averagedem runs, are de-
picted in Tab. 2. Obviously, a posterior labeling of profmg obtained by median
clustering allows to achieve a classification accuracy ofentban80%. Thereby,
overfitting can be observed for all methods due to the largebau of prototypes
compared to the training set)(neurons constitute about4th of the training set!).
However, Median NG and Median SOM are less prone to this teffee to their

inherent regularization given by the neighborhood integna
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neurons| Median k-meang Median NG| Median SOM
train  test train test | train test
10 0.54 0.52 0.57 0.61 | 0.53 0.59
20 0.71 0.61 0.67 0.65 | 0.61 0.61
30 0.77 0.63 0.73 0.64 | 0.69 0.61
40 0.85 0.79 0.80 0.75] 0.74 0.69
50 0.90 0.79 0.84 080 | 0.76 0.68
60 0.88 0.82 0.88 083 | 0.80 0.73
70 0.93 0.82 0.89 084 | 0.89 0.78
80 0.94 0.82 0.92 084 | 0.87 0.78
90 0.95 0.81 0.93 084 | 0.87 0.78
100 0.96 0.83 0.94 0.83 | 0.88 0.80

Table 2
Results for the median variants for different numbers ofroesi on the chicken-piece-

silhouettes data base. The best test classifications aigetbm bold.

3.6 Proximity data — chromosomes

The Copenhagen Chromosomes Database [20] consist$00fdescriptions of
chromosomes by their silhouettes in images. A chromosordessribed by a se-
qguence over the alphabét, ..., 6}, whereby the number describes the thickness
of the density profile of the protein at the correspondingtpms The difference

between two profiles is determined by alignment assigniegctsts|z — y| to
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substitutions ofc andy, and assigning the costs5 to insertions and deletions, as
described in [26]. There ar&l different classes. The set is divided into a training

and test set of the same size.

We train median clustering with different numbers of nesrand100 cycles. The
classification accuracy on a training and test set, averaged 0 runs, is depicted
in Tab. 3. As beforehand, a classification accurac0gf can be achieved. Thereby,
Median NG shows the best results on the test set for almastiaibers of neurons,
accompanied by a good generalization error due to the inheggularization by

means of neighborhood cooperation.

4 Conclusions

We have proposed Batch NG derived from the NG cost functioiclwvallows fast
training for a priorly given data set. We have shown that thethmd converges
and it optimizes the same cost function as NG by means of adtemethod. In
addition, the batch formulation opens the way towards gén@oximity data by
means of the generalized median. These theoretical disogssere supported by
experiments for different vectorial data where the respfif8atch NG and NG are
very similar. In all settings, the quality of Batch NG was aast competitive to
standard NG, whereby training takes place in a fraction eftilme especially for
high-dimensional input data due to the radically reducechlver of updates of a
prototype. Unlike k-means, NG is not sensitive to initiatibn and, unlike SOM,
it automatically determines a data optimum lattice, suet ghsmall quantization

error can be achieved and topological initialization is croicial.

Median NG restricts the adaptation to locations within tla¢adset such that it
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neurons| Median k-meang Median NG| Median SOM
train  test train test | train test
10 0.31 0.25 0.43 040 | 040 0.34
20 0.52 045 0.46 0.42|{ 054 0.52
30 0.64 0.57 0.70 0.66 | 0.57 0.53
40 0.75 0.62 0.75 071 | 0.69 0.63
50 0.78 0.73 0.79 074 | 0.75 0.67
60 0.80 0.74 0.83 078 | 0.75 0.67
70 0.75 0.68 0.82 0.77 | 0.69 0.60
80 0.82 0.75 0.83 0.78 | 0.68 0.58
90 0.82 0.74 0.82 076 | 0.73 0.65
100 0.82 0.76 0.86 081 0.78 0.72

Table 3
Classification accuracy on the chromosome data set foreliffamaumbers of neurons. The

best results on the test set are depicted in bold.

can be applied to non-vectorial data. We compared MediandNi& @&lternatives
for vectorial data observing that competitive resultsearignough data are avail-
able. We added several experiments including proximitg edtere we could ob-
tain semantically meaningful grouping as demonstrateddpnaparison to known
clusters resp. a validation of the classification error wiieed in conjunction with
posterior labeling. Unlike SOM, NG solely aims at data auisiy and not data vi-

sualization, such that it can use a data optimum lattice arsdniot restricted by
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topological constraints. Therefore better results caarofte obtained in terms of
the quantization error or classification. If a visualizatiof the output of NG is
desired, a subsequent visualization of the prototype vetsopossible using fast

standard methods for the reduced set of prototypes such lagimensional scal-

ing [4].

Thus, very promising results could be achieved which haen laecompanied by
mathematical guarantees for the convergence of the algmsitNevertheless, sev-
eral issues remain: for sparsely covered data sets, mediaious might not have
enough flexibility to position the prototypes since only fewations in the data
space are available. We have already demonstrated that bffea comparison of
batch clustering to standard euclidian clustering in suditwtion. It might be
worth investigating metric-specific possibilities to extiethe adaptation space for
the prototypes in such situations, as possible e.g. for ditedestance, as demon-

strated in [14] and [25].

A problem of Median NG is given by the complexity of one cyeijich is quadratic
in the number of patterns. Since optimization of the exastmatation as proposed
in [8] is not possible, heuristic variants which restricé tomputation to regions
close to the winner seem particularly promising becausg lhge a minor effect
on the outcome. A thorough investigation of the effects ahsrestriction will be

investigated both theoretically and experimentally irufaetwork.

Often, an appropriate metric or proximity matrix is not fJuknown a priori. The
technique of learning metrics, which has been developetdtn, supervised as
well as unsupervised prototype-based methods [15,17vall principled inte-
gration of secondary knowledge into the framework and aitqg@ metric accord-

ingly, thus getting around the often problematic ‘garbaggarbage-out’ problem
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of metric-based approaches. It would be interesting tositgate the possibility to
enhance median versions for proximity data by an automdagpiation of the dis-
tance matrix during training driven by secondary inforroatiA recent possibility
to combine vector quantizers with prior (potentially fuxtgbel information has
been proposed in [31] by means of a straightforward extensidhe underlying
cost function of NG. This approach can immediately be tramstl to a median
computation scheme since a well-defined cost function igdadla, thus opening
the way towards supervised prototype-based median fuzsgification for non-
vectorial data. A visualization driven by secondary lalmgébimation can be de-
veloped within the same framework substituting the irrag®G lattice by a SOM
neighborhood and incorporating Heskes’ cost function. ygeeimental evaluation

of this framework is the subject of ongoing work.
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Fig. 4. Typical results for median classification anprototypes. The x-axes shows the
protein number, the y-axes its winner neuron. The verticesl indicate an expert clas-
sification into different protein families (from left to gz hemoglobina, 3, 0, €, v, F,

myoglobin, others). 30



