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1 Introduction:

The purpose of this note is to extend Dynkin’s isomorphim involving functionals

of the occupation field of a symmetric Markov processes and of the associated

Gaussian field to a suitable class of non symmetric Markov processes. This

was briefly proposed in [5] using Grassmann variables, extending to the non

symmetric case some results of [4]. Here we propose an alternative approach,

not relying on Grassmann variables that can be applied to the study of local

times, in the spirit of [6]. It works in general on a finite space and on an infinite

space under some assumption on the skew symmetric part of the generator which

is checked on two examples.

2 The finite case

2.1 Dual processes

Let us first consider the case of an irreducible Markov process on a finite space

X , with finite lifetime ζ, generator L and potential V = (−L)−1.

Let m = µV for any nonnegative probability µ on X . Recall that L can be

written in the form L = q(Π−I) with q positive and Π submarkovian . Then the

m-adjoint L̂ can be expressed similarly with the same q and a possibly different

submarkovian matrix Π̂. Moreover, m = µ̂V̂ , with µ̂ the law of xζ− under Pµ.

Note that for any z = x+iy ∈ CX , the ”energy”< −Lz, z >m=
∑−(Lz)xzxmx.

is nonnegative as it can be written
∑
Cx,y(zx − zy)(zx − zy)+ < Π1 + Π̂1 −

2, zz >m, with Cx,y = Cy,x = mxqxΠx,y. The highest eigenvector of 1
2 (Π + Π̂)

is nonnegative by the well known argument which shows that the module con-

traction lowers the energy. and it follows from the strict submarkovianity that

the corresponding eigenvalue is strictly smaller than 1. Hence there is a ”mass
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gap”: For some positive ε, the ”energy” < −Lz, z >m dominates ε < z, z >m

for all z.

2.2 A twisted Gaussian measure

Then, although L is not symmetric, an elementary computation (given in a more

general context in the following section and in a footnote p.96 of [4]) shows that

for any χ ∈ RX+ , denoting Mχ the diagonal matrix with coefficients given by χ,

1

(2π)|X|

∫
e−<zz,χ>me

1
2<Lz,z>mΠdxudyu = det(−L+Mχ)

−1

As a consequence, differentiating with respect to χx,

1

(2π)|X|

∫
zxzxe

−<zz,χ>me
1
2<Lz,z>mΠdxudyu = det(−L+Mχ)−1(−L+Mχ)−1

xx

In a similar way by perturbation using a non diagonal matrix, one obtains

1

(2π)|X|

∫
zxzye

−<zz,χ>me
1
2<Lz,z>mΠdxudyu = det(−L+Mχ)

−1(−L+Mχ)−1
xy

But with the usual notations for Markov processes, setting lxt =
∫ t∧ζ
0

1
mxs

ds

and lxζ = lx, we have

(−L+Mχ)−1
xy = Ex(

∫ ζ

0

e−<χ,lt>mdlyt )

Defining the path measure Ex,y by: Ex(
∫ ζ
0
G(xs, s ≤ t)dlyt ) = Ex,y(G) the

above relation writes

(−L+Mχ)−1
xy = Ex,y(e

−<χ,l>m)

It follows that for any continuous function F on RX+

(∗)
∫
zxzyF (zuzu, u ∈ X)e

1
2<Lz,z>mΠdxudyu

=

∫
Ex,y(F (lu + zuzu, u ∈ X))e

1
2<Lz,z>Πdxudyu

2.3 Positivity

It should be noted that setting ρu = 1
2zuzu and zx =

√
ρx/2e

iθx the image on

RX+ of the normalized complex measure νX = 1
(2π)|X| det(−L)e

1
2<Lz,z>mΠdxudyu

by the map zu → ρu is an infinitely divisible probability distribution Q on RX+

with density 1
(2π)|X| det(−L)

∫
e<L

√
ρeiθ,

√
ρe−iθ>mΠdθu. Note that the positivity
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is not a priori obvious when L is not m-symmetric. This important fact follows

easily by considering the moment generating function Φ(s) = det(−L)

det(−L+Ms)
=

det(I + (−L)−1Ms)
−1 defined for all s with non negative coordinates, positive

and analytic. The expansion in power series around any s (which appears for

exemple in [8]) is explicit:
Φ(s+h)

Φ(s) = det(I+(−L+Ms)
−1Mh)

−1 = exp(− log(det(I+(−L+Ms)
−1Mh)))

= exp(
∑ (−1)k

k
Tr([(−L+Ms)

−1Mh]
k).

As (−L +Ms)
−1 is nonnegative, it implies that Φ is completely monotone

as in this last expression, all coefficients of h-monomials of order n are of the

sign of (−1)n. 1

Note that the same argument works for fractional powers of Φ(s) which

shows the infinite divisibility. Let us incidentally mention it has been known

for a long time (cf [8] ) that this expansion can be simplified further in terms of

permanents.

For x = y, formula (*) becomes:

(∗∗)
∫
ρxF (ρu, u ∈ X)Q(dρ) =

∫
Ex,x(F (lu + zuzu, u ∈ X))Q(dρ)

Note that this last formula is also obtained in [2] after a direct definition of

the measure Q.

REMARK: If Y ⊂ X , it is well known that the trace of the process on Y is

a Markov process the potential of which is the restriction of V to Y × Y . The

distribution νX induces νY . Therefore the formulas (*) and (**) on X and Y

are consistent.

EXAMPLE: let us consider, as an example, the case where X = {1, 2....N},
qi = 1, Πi,j = 1i<N,j=i+1, µi = 1i=1, mi = 1 and (−L)−1

i,j = 1i≤j .

The characteristic polynomial of 1
2 (Π + Π̂) is (−λ +

√
λ2 − 1)N + (−λ −√

λ2 − 1)N hence one gets easily that the mass gap equals 2 sin2( π
2N )

Under Ex,x all local times vanish except lx which, follows an exponential

distribution. Moreover an easy calculation shows that Q reduces to a product

of exponential distibution. The formula (**) reduces to the convolution of two

exponentials.

1Characterisation of ompletely monotone functions in several variables are related to the
moment problem treated in [3]
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3 The infinite case

We now explain how in certain situations, the above can be extended to a

Markov process on an infinite space X . Of course, a Markov process for which

points are not polar can always be viewed elementarily as a consistent system of

processes on finite subspaces but we aim at a stronger representation allowing

to consider any functional of the occupation field. There are some obvious

obstructions to a generalisation. The mass gap property does not always hold:

consider for exemple the case of a constant drift on an interval, analogous to

our first exemple. Some conditions have to be assumed in order that the energy

controls the antisymmetric part of the generator.

3.1 Some calculations in Gaussian space

Let H be a real Hilbert space with scalar product <,>. At first the reader may

suppose it finite dimensional and then check that the assumptions we will make

allow to extend the results to the infinite dimensional case.

Let φ be the canonical Gaussian field indexed by H . Given any ONB ek of

H , wk = φ(ek) are independent normal variables. Recall that for all f ∈ H ,

φ(f) =
∑

k < f, ek > wk and E(eiφ(f)) = e−
‖f‖2

2 .

In the following, φ(f) can be denoted by < φ, f > though of course φ does

not belong to H .

Let K be any Hilbert-Schmidt operator on H . Note that Kφ =
∑

k wkKek

is well defined as a H-valued random variable, and that E(‖Kφ‖2) = Tr(KK∗).

Let C be a symmetric non negative trace-class linear operator on H . Recall

that the positive integrable random variable < Cφ, φ >∈ L1 can be defined by∑
k < Cek, ek > w2

k for any ONB diagonalizing C, and by
∑

k,l < Cek, el >

wkwl for any ONB.

Moreover, E(e−
1
2<Cφ,φ>+iφ(f)) = det(I +C)−

1
2 e−

<(I+C)−1f,f>

2 (the determi-

nant can be defined as
∏

(1 + λi), where the λi are the eigenvalues of C.

In fact det(I + T ) is well defined for any trace class operator T as 1 +∑∞
n=1 Tr(T

∧n).(Cf [7] Chapter 3). It extends continuously the determinant

defined with finite ranks operators and it verifies the identity:

det(I + T1 + T2 + T1T2) = det(I + T1)det(I + T2). By Lidskii’s theorem, it

is also given by the product
∏

(1 + λi) defined by the eigenvalues of the trace

class (hence compact) operator T , counted with their algebraic multiplicity.

Let φ1 and φ2 be two independent copies of the canonical Gaussian process

indexed by H . Let B be a skew-symmetric Hilbert-Schmidt operator on H .

Note that < Bφ1, φ2 >=
∑

< Bek, el > w1
kw

2
l = − < Bφ2, φ1 > is well defined

in L2 and that E(ei<Bφ1,φ2>) = E(e−
1
2‖Bφ1‖2

) = det(I +BB∗)−
1
2 .

4



As B is Hilbert-Schmidt, BB∗ is trace-class. The renormalized determinant

det2(I+B) = det((I+B)e−B) is well defined (Cf [7]), and as the eigenvalues of

B are purely imaginary and pairwise conjugated, it is strictly positive. Moreover

since B∗ = −B, det2(I +B) = det2(I −B)= det(I +BB∗)
1
2

Finally, it comes that

E(ei<Bφ1,φ2>) = det2(I +B)−1

More generally, setting ψ = φ1 + iφ2,

E(e−
1
2<(C−B)ψ,ψ>) = det2(I + C +B)−1 exp(−Tr(C))

(Recall that when T is trace class, det2(I + T ) exp(Tr(T )) = det(I + T )).

Indeed, E(e−
1
2<(C−B)ψ,ψ>) = E(e−

1
2<Cφ1,φ1>− 1

2<Cφ2,φ2>+i<Bφ1,φ2>)

= det(I + C)−
1
2E(e−

1
2 (<(I+C)−1Bφ1,Bφ1>+<Cφ1,φ1>)) (by integration in φ2)

= det(I + C)−
1
2 det(I + C −B(I + C)−1B)−

1
2

= det(I − (I + C)−
1
2B(I + C)−1B(I + C)−

1
2 )−

1
2 det(I + C)−1

=det((I+(I+C)−
1
2B(I+C)−

1
2 )(I−(I+C)−

1
2B(I+C)−

1
2 ))−

1
2 det(I+C)−1

= det2(I+(I+C)−
1
2B(I+C)−

1
2 )−1det(I+C)−1(since det2(I+(I+C)−

1
2B(I+

C)−
1
2 ) = det2(I − (I + C)−

1
2B(I + C)−

1
2 ) by skew symmetry as before)

= det2(I + C +B)−1 exp(−Tr(C)).

Note that I + C + B is always invertible, as C + B is a compact operator

and −1 is not an eigenvalue.

Let f1 and f2 be two elements of H . Set D(f) =< f, f1 > f2. For small

enough ε, E(e−
1
2 (<(C−B)ψ,ψ>+εψ(f1)ψ(f2)))

= E(e−
1
2<Cφ1,φ1>− 1

2<Cφ2,φ2>+i<Bφ1,φ2>+ε(<φ1(f1),φ1(f2)>+<φ2(f1),φ2(f2)>))

= det2(I + C +B + εD)−1 exp(−Tr(C + εD))

= det2(I + C +B)−1 exp(−Tr(C))det(I + ε(I + C +B)−1D)−1.

Hence, differentiating both members at ε = 0, E(ψ(f1)ψ(f2)e
− 1

2 (<(C−B)ψ,ψ>)) =

det2(I + C +B)−1 exp(−Tr(C))Tr((I + C +B)−1D). Therefore

E(ψ(f1)ψ(f2)e
− 1

2 (<(C−B)ψ,ψ>))

E(e−
1
2 (<(C−B)ψ,ψ>)

=< (I + C +B)−1(f1), f2 > .

If C is only Hilbert-Schmidt, we can consider only the renormalized ”Wick

product” :< Cφ, φ >:=
∑

k < Cek, ek > (w2
k − 1) for any ONB diagonalizing C

and

E(e−
1
2 :<Cφ,φ>:+iφ(f)) = det2(I + C)−

1
2 e−

<(I+C)−1f,f>

2

The results given above extend immediatly as follows:

E(e−
1
2 :<(C−B)ψ,ψ>:) = det2(I + C + B)−1
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E(ψ(f1)ψ(f2)e
− 1

2 (:<(C−B)ψ,ψ>:))

E(e−
1
2 (:<(C−B)ψ,ψ>:))

=< (I + C +B)−1(f1), f2 > .

3.2 A class of Markov processes in duality

Let (Vα, α ≥ 0) and V̂α be two Markovian or submarkovian resolvents in duality

in a space L
2(X,B,m) with generators L and L̂ , such that, denoting D = D(L)∩

D(L̂):

1) D and L(D) are dense in L2(m)

2) < −Lf, f >m≥ ε < f, f >m for some ε > 0 and any f ∈ D (i.e. we

assume the existence of a spectral gap: it can always be obtained by adding a

negative constant to L).

Let H be the completion of D with respect to the energy norm. It is a

functional space imbedded in L2(X,B,m). Let A be the associated self adjoint

generator so that H = D(
√
−A). On D, 1

2 (L+ L̂) = A.

The final assumption is crucial to allow the control of the antisymmetric

part:

3) B = (−A)−1 L−L̂
2 extends in a Hilbert-Schmidt operator on H .

Then, (−A)−
1
2
L−L̂

2 (−A)−
1
2 is an antisymmetric Hilbert Schmidt operator

on L
2(m) since for any ONB ek of H , (−A)

1
2 ek is an ONB of L

2(m). Note that

I − B is bounded and invertible on H and that V0 = (I − B)−1(−A)−1 maps

L2(m) into H . Indeed, one can see first that on D, A(I − B) = L so that on

L(D), V0 = (I −B)−1(−A)−1

EXAMPLES

This applies to the case of the finite space considered above.

Let us mention other examples:

1) Diffusion with drift on the circle: X = S1, A = ∂2

∂θ2
− ε, L− L̂ = b(θ) ∂

∂θ
,

where b is a bounded function on S1.

Indeed, considering the orthonormal basis eikθ in L2(dθ), 1√
k2+ε

eikθ is an

orthonormal basis in H = H1, and
∑

k

∥∥∥(−A)−
1
2 b(θ) ∂

∂θ
1√
k2+ε

eikθ
∥∥∥

2

L2(dθ)
=

∑
k,l

k2

k2+ε (̂b(l − k))2 1
l2+ε <∞

2) Levy processes on the circle: The Fourier coefficients ak+ ibk of L should

verify
∑
k(
bk

ak
)2 <∞

3.3 An extension of Dynkin’s isomorphism

Assume X is locally compact and separable, and that functions of H are con-

tinuous. By Banach-Steinhaus theorem, given any point x ∈ X , there exists an
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element of H , denoted ηx defined by the identity: f(x) =< ηx, f >H . Note

that ηx =
∑
ek(x)ek for all ONB of H .

The resolvent Vλ is Fellerian and induces a strong Markov process. Denote by

lxt the local time at x of this Markov process. Let x and y be two points ofX . Set:

< ηx, ηy >H=
∑
ek(x)ek(y) = K(x, y) so that A−1f(x) =

∫
K(x, y)f(y)m(dy)

or A−1f =
∫
ηyf(y)m(dy).

Set V0(x, y) =< I +B)−1ηx, ηy >H and note that V0(x, y) is a kernel for V0.

Indeed, for any f, g ∈ L2(m), < V0f, g >L2(m)=< (I −B)−1(−A)−1f, g >L2(m)

=< (I −B)−1(−A)−1f,A−1g >H=
∫
f(x)g(y)V0(x, y)m(dx)m(dy)

As a consequence, V0(x, y) = Ex(l
y
ζ )

Applying the construction of the section 3-1, we see the kernel K(x, y) is the

covariance of a Gaussian process (Zx = ψ(ηx) =
∑
ek(x)wk, x ∈ X), for any

ONB ek of H .

More generally, for any non-negative finitely supported measure χ =
∑N

1 pjδuj

on X , letting C be the finite rank operator: C =
∑N

1 pjηuj
⊗ ηuj

, set

Vχ(x, y) =< (I −B + C)−1ηx, ηy >H

In a similar way as above for V0, we have Vχ(x, y) = Ex(e
−

∫
lzt χ(dz)dlyt ).

Then, from section 3-1

E(ZxZye
− 1

2 (<(C−B)ψ,ψ>H )) = E(e−
1
2 (<(C−B)ψ,ψ>H)) < (I−B+C)−1ηx, ηy >H

= E(e−
1
2 (<(C−B)ψ,ψ>H))Vχ(x, y)

But (< Cψ,ψ >H=
∫
ψ(ηu)ψ(ηu)χ(du) =

∫
ZuZuχ(du) and

< Bψ,ψ >H=< (−A)−1 L−L̂
2 ψ, ψ >H=

∑
< (−A)−1 L−L̂

2 ek, el >H w1
kw

2
l .

On the other hand, at least formally in general but exactly in the finite

dimensional case,∫
L−L̂

2 ZuZum(du) =< (−A)−1 L−L̂
2 Z,Z >H=

∑
w1
kw

2
l < (−A)−1 L−L̂

2 ek, el >H

Hence we can denote: < Bψ,ψ >H by < L−L̂
2 Z,Z >L2(m). Therefore

E(ZxZye
1
2<

L−L̂
2 Z,Z>

L2(m)−
∫
ZuZuχ(du))

= E ⊗ Ex(
∫ ζ
0 e

1
2<

L−L̂
2 Z,Z>

L2(m)e−
∫
lzt χ(dz)−

∫
ZuZuχ(du)dlyt )

= E(Ex,y(e
−

∫
lzt χ(dz))e

1
2<

L−L̂
2 Z,Z>

L2(m)−
∫
ZuZuχ(du))

Finally, we get that for any continuous bounded function F ofN non negative

real coordinates, and any N -uple of points uj in X ,

E(ZxZye
1
2<

L−L̂
2 Z,Z>

L2(m)F (Zuj
Zuj

)) = E⊗Ex,y(e
1
2<

L−L̂
2 Z,Z>

L2(m)F (l
uj

t +Zuj
Zuj

))

and the formula finally extends to any bounded measurable function of a

real field on X :

(∗bis) E(ZxZye
1
2<

L−L̂
2 Z,Z>

L2(m)F (ZZ)) = E⊗Ex,y(e
1
2<

L−L̂
2 Z,Z>

L2(m)F (lt+ZZ))
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It induces the formula (*) obtained in the finite case if we consider the trace

of the process on any finite subset. Then it follows that the restriction of the

twisted Gaussian measure e
1
2<

L−L̂
2 Z,Z>

L2(m)P (dZ) to σ(ZuZu, u ∈ X) is a prob-

ability measure Q under which the distribution of the process (ZuZu, u ∈ X) is

infinitely divisible. It is clear that that formula (**) extends in the same way.

Moreover, the important fact is that this probability is absolutely continuous

with respect to the restriction of P to σ(ZuZu, u ∈ X).

Hence it follows for example that the continuity Gaussian field Z implies the

continuity of the local time field l under all loop measures Pxx.

Note finally that these results, as in the symmetric case, can be extended to

some situations where the local time does not exist (like the two dimensional

Brownian motion), by considering the occupation field lx and the ”Wick square”

: ZxZx : (formally given by ZxZx−K(x, x)) as generalized random fields. This

makes sense for the Wick square provided K is a Hilbert-Schmidt operator.
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