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We introduce a class of damage models on regular lattices with isotropic interactions between the broken
cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the
sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The
system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated
quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith’s principle
which states that a cell breaks when the release in potentialselasticd energy in the system exceeds the surface-
energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched
disorder, we obtain the probability distribution of each damage configuration at any level of the imposed
external deformation. We demonstrate an isomorphism between the distributions so obtained and standard
generalized Ising models, in which the coupling constants and effective temperature in the Ising model are
functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In par-
ticular, we show that damage models with global load sharing are isomorphic to standard percolation theory
and that damage models with a local load sharing rule are isomorphic to the standard Ising model, and draw
consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown
transitions corresponding to these models. We also treat damage models having more general power-law
interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, we
also show that the probability distribution over configurations is a maximum of Shannon’s entropy under some
specific constraints related to the energetic balance of the fracture process, which firmly relates this type of
quenched-disorder based damage model to standard statistical mechanics.

DOI: 10.1103/PhysRevE.71.046127 PACS numberssd: 46.50.1a, 46.65.1g, 62.20.Mk, 64.60.Fr

I. INTRODUCTION

The physics of breakdown processes that lead, for ex-
ample, to stress-induced catastrophic failure of both man-
made and geological structures, remains an ongoing subject
of research. Stress-induced fracture of a homogeneous mate-
rial containing a geometrically simple single flaw has been
studied since the work of Griffithf1g and is now well under-
stood. However, the breakdown of heterogeneous structures,
in which the local mechanical properties are randomly dis-
tributed in space and/or time, continues to present challenges
despite the many advances over the last 15 yearsf2g. The
difficulty is in characterizing and quantifying the effects of
interaction between the multitude of constituents.

Most of the knowledge about these types of systems has
been obtained from lattice network simulations. One of the
most well-studied lattice network models is the 80 year old
fiber bundle modelsFBMd f3–6g that describes the rupture of
bundles of parallel fibers. This model originally considered
elastic fibers of identical elastic constant, breaking when
their elongation exceeds individual thresholds distributed ac-
cording to a given uncorrelated random distribution. A global

load sharing rulesGLSd is assumed by which the load carried
by a fiber is uniformly distributed to the surviving fibers
when it breaks. Analytical results for this model have been
obtainedf7–11g that concern the average load-deformation
propertiesf7–9g, the distribution of avalanchesf10g, or the
relationship between such quenched-disorder based models
and standard statistical mechanicsf11g.

The original FBM model with global load sharing has
been generalized to allow for nonuniform load sharing rules,
considered either as purely local load sharingsnearest-
neighbor interactionsd, in which case distribution of ava-
lanches and mechanical properties have been analytically
studiedf12–14g, or as power laws of distance from the failed
fiber, which have been studied numericallyf15,16g.

Closely related to these models of fiber bundles in elastic
interaction, many studies have addressed fuse networks
f17–25g, or networks of isotropic damage with interactions
having the range of the elastostatic Green functionf26–28g.

The classification of lattice breakdown processes as
critical-point phenomena is still subject to debatef9,29–37g.
Local load sharing models are usually understood as break-
ing through a process similar to a first-order transitionf29g,
while models with long-range elastic interactions or GLS are
analyzed either as a critical-point transitionf9,29,30,35g, or
as a spinodal nucleation processf31,38g. The issue depends
on whether the accumulated damage has a correlation length
that diverges as a power law of the average deformation in
the approach to macroscopic failure. Numerical evidence in
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the literature suggests that the nature of the correlation length
in the approach to failure depends on the specific model be-
ing analyzed, the damage interaction range, and the type of
quenched-disorder distribution considered. A major difficulty
of such attempts to classify the breakdown process is that no
analytical form for the distribution of the damage configura-
tions at a given external load is availablesat least that has a
firm basisd. Numerical simulations of the scaling behavior of
avalanches are limited in size due to computational restric-
tions which makes critical-point analysis difficult.

It is proven here that quasistatic interacting damage mod-
els such as the FBM, that possess randomly quenched local
breaking thresholds, can be mapped onto percolation, Ising,
or generalized Ising models depending on the range of the
damage interaction. Our demonstration holds in the limit of
small damage; i.e., under the restriction that the stress per-
turbation emanating from each broken cell is much smaller
than the average stress in the system. More specifically, the
change in elastic energy in the system at fixed imposed
boundary deformation due to damage that arrives is the sum
of a mean-field softening term proportional to the number of
damaged cells, and an additive function over pairs of dam-
aged cells that is small compared to the mean-field softening
terms. This corresponds to the general validity conditions of
a Born approximation. In real solids accumulating damage,
the cracks represent only small local changes in the elastic
moduli, and so this weak perturbation limit has direct prac-
tical importance.

The stress-induced emergent-damage distribution is
proven to be a Boltzmannian with a temperaturesprobabilis-
tic energy scaled that is an explicit analytical function of both
the applied deformation and the quenched-disorder threshold
probability distribution funtionsPDFd. The damage-model
Hamiltonian is shown to have an Ising form with coupling
constants that have explicit functional dependence on the
applied deformation, the quenched-disorder PDF, and the na-
ture of the damage interactionsnearest neighbor or long
ranged. The critical point of the Ising model is of course well
known. So for a given numerical simulation or laboratory
experiment, one can use the expressions for the coupling
constants developed here to determine how the system is
evolving in coupling-parameter space as deformation in-
creases and thus be able to predict the nature of any phase
transition that might arrivesfirst order, continuous, or no
transitiond. Knowing whether catastrophic failuresi.e., dam-
age correlation-length divergenced is an imminent possibility
has practical application.

We have recently proposed a statistical theory for the lo-
calization of oriented fractures that emerge and elastically
interact when the system has a shear stress applied to it
f39–41g. The distribution of the emergent crack states was
obtained using the postulate that the fracture arrival would
maximize Shannon’s entropy under constraints representing
the energetic balance of the process. In the present work, we
do not make this postulate but instead prove its validity by
direct integration over the damage evolution. The present
work also presents more general ranges of interaction. How-
ever, unlike our previous work, the present analysis is for a
purely isotropicsscalard description of damage interaction.
The interaction of real fractures in an anisotropic load, where

microfractures present high aspect ratios, necessarily re-
quires a tensorial elastic description as in our earlier work
f39–41g.

The organization of the paper is as follows. In Sec. II, we
introducesand justify in the Appendixd the general type of
scalar damage models that are considered. In Sec. III, the
probability of each damage configuration is obtained by in-
tegrating over all paths that lead to it. In Sec. IV, we establish
the relationship between these configurational distributions
and standard statistical mechanics, which allows the standard
toolbox of statistical mechanics to be applied to damage
models entirely based on quenched disorder. These analytical
developments will then be utilized in Sec. V to establish that
fracture processes in such damage models are isomorphic to
percolation for GLSsSec. V Ad, or to the Ising model for
nearest-neighbor interactionssSec. V Bd. This allows us to
isolate some transition points in these models, and to predict
the nature of the correlation length in the approach to the
transition. We will also discuss in Sec. V C the case of dam-
age models with arbitrary power-law decay of the interac-
tions, and show how they are related to generalized Ising
models, which can themselves be mapped onto standard ones
via renormalization of the coupling constants. The results are
summarized and discussed in a concluding section.

II. DEFINITION OF THE DAMAGE MODELS
CONSIDERED

Our models reside on a regular lattice of dimensionD
se.g., a square lattice inD=2d. Each cell of the lattice has a
locationx within the setV of cells making up the lattice, and
has a state described by a local order parameterwx, where
wx=0 if the cell is intact andwx=1 if it is broken. There is a
local stress and strain associated with each cell. The cells
elastically interact with each other; however, such interaction
must be isotropic for the present analysis to apply. A configu-
ration of damage is described as a damage fieldw corre-
sponding to the set ofN local variablesw;hwxjxPV where
N=NsVd is the total number of cells in the system.

Our systems are initially uniform by hypothesis; i.e., they
have a homogeneous damage fieldw=0 at zero strain and
stress and each cell starts with the same elastic moduli.
Strain is progressively applied through the application of a
uniform normal displacementl at the edges of the system. A
cell breaks at constant appliedl when the energy required to
break it swhich is a random quenched threshold sampled
from a probability distribution functiond just equals the re-
duction in stored elastic energy in the lattice due to the break.

A key requirement of the models treated here is that the
stress perturbation emanating from a broken cell must be
weak enough that a first Born approximation holds; i.e.,
stress interaction between any two broken cells is allowed
for while simultaneous interaction between three or more
broken cells is not. This approximation is valid whenever the
stress perturbation due to a broken site is much smaller than
the mean stress in the system.

One specific realization of such a “weak damage” model
is an appropriately defined fiber bundle model. In the model,
a set ofN elastic fibers are stretched between a free rigid
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plate and an elastic half space. The rigid plate is displaced by
a controlled amountl that puts the fibers in tension. Once
fibers begin to break, elastic interactions occur through the
elastic solid. As demonstrated in the Appendix, such interac-
tions will be weak if eithers1d the elastic solid is much stiffer
than the fiber material, ors2d the fibers are much longer than
wide and are sufficiently widely placed. In the limit that the
elastic half space becomes rigid, this model reduces to the
classic global load sharing fiber bundle.

Another realization is a uniform isotropic solid divided
into N cells. Uniform displacementsl are applied to the lim-
iting faces of the lattice in such a way that the material is in
a state of uniform dilation. The damage that arrives is as-
sumed to change the isotropic moduli without creating aniso-
tropy in the process. For example, the damage might be
modeled as a spherical cavity that opens at the center of the
cell thus reducing the elastic moduli of that cell. The weak
interaction is guaranteed if the change in the cell modulus is
small. We emphasize that the assumption of weak damage
holds for any configuration of damage over the underlying
lattice, including damage states with large fractions of bro-
ken cells.

As demonstrated in the Appendix, the energyEp revers-
ibly stored in such systems when the system is in a damage
statew at the applied loading levell is

Epfw,lg = sC0 + C1 + C2dl2, s1d

C0 = N, s2d

C1 = − c o
xPV

wx, s3d

C2 = − «o
x,y

Jxywxwy, s4d

wherec is a positive constant in the range 0,cø1 that is
independent of the damage or deformation state,« is a small
positive parameter in the range 0,« /c!1 that controls the
strength of the stress perturbations, andJxy areOs1d coupling
constants that allow for the load redistribution between cells
at positionsx and y when a cell is broken. Various spatial
ranges forJxy are considered includings1d global load shar-
ing in which caseJxy=0; s2d local load sharing in which case
Jxy=a.0 is a constant of order unity for pairsxy of nearest
neighbors, 0 otherwise;s3d elastic load sharing in which case
Jxy,s, / ux−yudD where , is the lattice step size; ands4d
fiber-bundle elastic sharing with fibers interacting through an
elastic plate in which caseD=2 andJxy,, / ux−yu ssee the
Appendixd.

The local load sharing cases2d can in principle happen in
a fiber bundle stretched between plates enduring both elastic
and plastic deformations capable of screening the stress per-
turbations caused by broken fibers to only nearest neighbors,
which always can carry some load if damaging them only
decreases their elastic constantsi.e., c,1d. We treat cases2d
for the sake of generality and do not specify the detailed
constitutive relations required for it to be realized in practice.

The cost in surface energy to break any of the cellsswhich
represents either the energy required to create new surface

area within a cell or to break a fiberd is a random variable
fixed ab initio, with no spatial correlations between the dif-
ferent cells. The breaking energy is thus a quenched uncor-
related disorder, described by a probability distribution func-
tion psed for which psedde is the probability that a cell’s
surface energy is infe,e+deg, and having a cumulative dis-
tribution Psed=e0

epszddz. For a given realization of each
cell’s surface energyex, there is thus a certain total surface
energy

Esfwg = o
xPV

exs1 − wxd s5d

associated with each damage fieldw=hwxjxPV.
Given thatB,V is a certain subset of locations, the no-

tation wB refers to the state where this subset is broken and
its complementary intact; i.e.,wx

B=1 for every xPB, and
wx

I =0 for everyxP I =BC.
As the external deformationl is increased, damage evolu-

tion is ruled by Griffith’s principle: Given the system in a
certain configurationwB and deformationl, it can undergo a
transition towards a more broken statewBøhxj that differs
from the previous state by one additional broken cell atx, if
the release in potential energy is equal to the surface energy
cost of the new break; i.e., if

DEpfwB,x,lg = ex, s6d

where

DEpfwB,x,lg = EpfwB,lg − EpfwBøhxj,lg = Sc + «o
y

JxywyDl2.

s7d

If ex.DEpfwB,x, lg for any surviving cellxP I, there is no
break and the deformation can be further increased while the
system remains in the same statewB. If a break happens in
cell x, which leads to the new statewE where E=Bø hxj
while the external deformationl is kept constant, there is a
possibility of avalanche at fixedl if there is someyPEC

such that

DEpfwE,y,lg ù ey. s8d

If there is more than one possible location satisfying Eq.s8d,
the one that breaks is determined by maximizing the energy
release; i.e., its location corresponds to

DEpfwE,y,lg − ey = maxzPECsDEpfwE,z,lg − ezd. s9d

The avalanche testfEq. s8dg is then computed again until the
system stabilizes in a given configuration.

Eventually, although we have chosen to base the evolution
of our damage model on minimization of energy, we note
that the formal integration of path probabilities presented in
the following sections could similarly be obtained as well for
the case of a rule based on force thresholds, with at any
given external deformation a force carried per intact fiber
equal to an average one, plus perturbations due to the already
broken fibers. However, this approach will not be pursued
here.
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III. PROBABILITY DISTRIBUTION OF DAMAGE STATES

The probability of occurrence of any damage configura-
tion w is now determined when the system is at a given
external deformationl that was reached monotonicallysl as
defined here does not include any elastic unloadingd.

More specifically, in the previous section, we have de-
fined a deterministic rule for the evolution of our studied
systems. Given a particular realization of the quenched dis-
ordersQDd over each lattice cell, and an initially intact state,
the system experiences a progressive damage that builds up
as the external deformation is increased. Given a specific
emergent damage configuration over the lattice, and a final
elongationl, we determine here what fraction of all possible
realizations of the QD lead to the given damage state at the
given deformation. By definition, this probability of occur-
rence integrates over all possible wayssand ordersd through
which this configuration arises at finall. Consequently, the
probability distribution over configurations that we obtain
contains no information about the order at which the cells
broke.

The PDF we obtain thus corresponds to the classical
quantity estimated in numerical simulations of deterministic
systems with QD in the damage thresholds; namely, givenNr
realizations of the QD, a specific damage configuration is
realizednr times, and the probability of occurrence of this
configuration is estimated as the fractionnr /Nr at largeNr.

We will first summarize the results for the simplest case,
global load sharing, which was performed inf11g, and which
will serve as a basis for a perturbative treatment to include
the effect of interactions.

A. Global load sharing

In this case, the interaction term of Eq.s4d is C2=0 for
any configuration, and from Eq.s7d, DEpfw ,x, lg=cl2 regard-
less of the statew and new break locationx considered.

Each of the cells then shares the same level of deforma-
tion l, and the probability for any one of them to be broken is
simply sfrom the cumulative surface energy distributiond

P0 = Pse, cl2d =E
0

cl2

pszddz, s10d

independently of the state of the other cells since there are no
interactions between them, and each fiber simply sustains the
mean-field deformationl, which was reached monotonically
from zero.

The probability of being in a given configurationw with n
cells broken out ofN is then

Pfw,lg = P0sldnf1 − P0sldgN−n. s11d

This corresponds to the behavior of a so-called “two-state
system” in which each of theN independent sites has a prob-
ability P0sld of being broken and 1−P0sld of being intact.

To avoid confusion, note that the above probability is the
probability of reaching aspecific configurationw at l, which
specifies the state of every cell, and depends only on the
number of broken cellsn in the statew in this GLS case.
Accordingly, the probabilityPfn, lg of reachingany state

with n broken cells can be obtained by adding this probabil-
ity Pfw , lg for every statew containingn broken cells out of
N, so thatPfn, lg=N! / fsN−nd!n!gP0sldnf1−P0sldgN−n.

The consequences of this distribution function for the me-
chanical behavior and correlation length at the transition
point of macroscopic rupture will be developed in Sec. V A
As a consistency check, we will then show that the derived
ensemble-averaged mechanical response of the system has
exactly the known formf7g for a fiber bundle in global load
sharing, in the limit of large sizesN.

Note that working at an imposed deformation levell,
rather than an imposed total forcet over the bundle, results
in the local deformation level of each cell being that imposed
on the entire system. Considering instead an imposed total
force t carried by the bundle would require global informa-
tion on the total number of broken cellsn in order to know
the elongation of each cellsand hence the force carried by
each surviving celld. In the present notation, the force carried
by an intact cell isdE/dl=2l, the one carried by a damaged
cell is similarly 2s1−cdl, so that the total force carried by the
bundle ist=sN−ncd2l. If we impose the total forcet on the
bundle as an external control parameter, the probability for
any cell to break would depend both ont and on the past
history of the bundle, through the dependence of the indi-
vidual elongationssor forcesd on the numbern of already
broken cells, sincel =t / f2sN−ncdg. Considering the imposed
total forcet as a control parameter allows us to compute the
statistics of avalanchesf10,12,13g, but involves more com-
plicated expressions to obtain the probability of states at a
fixed global force levelf7g. This led us to choose here to
work instead at imposed global deformationl, which imme-
diately makes the states of the cells at given elongation in-
dependent random variables from each other in the GLS
case. The advantage of this choice in the case of interactions
of variable ranges, where these events are no longer statisti-
cally independent, is that we will be able to analytically ex-
plore the effect of these interactions by a perturbative treate-
ment from the simple Eq.s11d above.

B. Local load sharing

1. Damage-state probability distribution

We now consider the case where each broken cell in-
creases the local deformation by an amounta«l on each of
its nearest neighbors; i.e.,Jxy=a for each nearest-neighbor
pair, orJxy=0 for more distant cells.

Note that for a given cellx, the potential energy release
defined in Eq.s7d, DEpfw ,x, lg, is a growing function of both
the deformationl and the subset of cracked cellsw consid-
ered; i.e., if we consider two subsetsB,D andxPDC, then
DEpfwD ,x, lgùDEpfwB,x, lg. Physically, this inequality
means that the local load over each cell increases with the
external load imposed, and that any cell breaking anywhere
else induces an additional increase in local load. This in-
equality will play a key role in obtaining the damage-state
probability distribution.

To aid the pedagogic development, we first derive the
probability of occurrence of a configurationwB with n iso-
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lated broken cells forming a subsetB, which do not share
any common nearest neighbors. There arezn nearest neigh-
bors to thesen cells sin a subsetF corresponding to the
boundary of broken cellsd wherez is the coordination num-
ber of the lattice considered. There are thenN−sz+1dn cells
completely isolated from the broken ones in the subset
sBøFdC. For a cellx having broken from an intermediate
stage wA with A,B, at an intermediate external loadh
P f0,lg, the change in the stored energy satisfies
DEpfwA,x,hg=ch2øcl2. For every cell having survived, we
have eitherDEpfwB,x, lg=sc+a«dl2 if xPF sx is on the
boundary of the broken cell setd, or DEpfwB,x, lg=cl2 if x
P sBøFdC sx is completely disconnected from the broken
cell setd. Applying Griffith’s principle fEq. s6dg to every cell
and intermediate deformationhP f0,lg, and using the mo-
notony ofDEpfw ,x, lg in both l andw, we obtain that a nec-
essary and sufficient condition for all cells inB to be broken
is that their surface-energy thresholds were belowcl2, while
those of their neighbors inF were abovesc+a«dl2, and the
remaining ones insBøFdC abovecl2. Defining

P1sld = P„e, sc + a«dl2… =E
0

sc+a«dl2

pszddz, s12d

this then implies that

Pfw,xg = P0
ns1 − P1dzns1 − P0dN−sz+1dn s13d

is the probability of occurrence of such a configuration.
We now pass to the more general case. In the argument,

we obtain upper and lower bounds for the probability of
some arbitrary damage state, and then demonstrate that in the
limit « /c!1, the two bounds converge to the unique prob-
ability distribution of interest.

For any configurationw, uk is defined as the number of
intact cells withk broken nearest neighbors andnk as the
number of broken cells withk broken neighbors. Ifn out of
theN cells are broken, we haveoknk=n andokuk=N−n. The
way the above quantities are associated with any particular
configuration is illustrated in Fig. 1.

For a cellx that broke from an intermediate statec,w
with k already broken neighbors inc, at an external loadh,
we have

DEpfc,x,hg = sc + ka«dh2. s14d

Using again the monotony ofDEp, a necessary and sufficient
condition for any intact cellyPBC to have survived is that
its threshold exceededDEpfw ,y, lg. The probability for each
of these independent statistical events to occur is expressed
as 1−Pksld, where

Pksld = P„e, sc + ka«dl2…. s15d

For any cell that brokexPB, we note that they have broken
with certainty at the ultimate deformationl if the external
load was sufficient to trigger their break without the help of
overload due to breaks of the other ones; i.e., they have
broken with certainty if their energy threshold was below
DEpsw0” ,x, ld=cl2 where 0” denotes the empty setsno broken
cellsd. Furthermore, if every threshold inB was belowcl2,

except a particular onexPB which haskx broken neighbors
in the considered configurationwB and has a breaking energy
betweencl2 andsc+kxa«dl2, thekx neighbors of this consid-
ered cellx will have broken with certainty at the ultimate
load l, so thatx will also break with certainty under the effect
of the overload due to its broken neighbors. The probability
that this individual threshold broke under the sole effect of
the overload due to its neighbors can be expressed

DPkx
= Pkx

sld − P0sld. s16d

Thus, a lower bound for the probability of occurrence of the
configurationwB can be expressed as

PfwB,lg . FP0
n + So

xPB

P0
n−1DPkxDGp

kPN

s1 − Pkduk, s17d

where the indexk runs formally toN; however,uk=0 when
k.z sthe coordination number of the latticed.

For any cellxPB that broke, its associated energy thresh-
old was necessarily lower thanDEpfwB\hxj ,x, lg whereB\ hxj
denotes the setB with cell hxj excluded from it. Thus, an
upper bound for the probability of occurrence of the configu-
ration under study is

PfwB,lg , Fp
xPB

PkxGp
k

s1 − Pkduk

= Fp
xPB

sP0 + DPkx
dGp

k

s1 − Pkduk. s18d

For a continuous PDF over thresholdsswhich guarantees no

FIG. 1. Typical configuration and associated connectivity
measures.
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jumps in the cumulative distributionP and is the only restric-
tion placed on the PDFd, DPk is a quantity of order«, andP0
is of order 1. In the limit of a Born modelsweak stress
perturbations for which« /c!1d, the upper and lower bounds
for the probability of occurrence are identical to order«. We
have thus established in this framework that

Pfw,lg = p
m=0

`

Pm
nmp

k=0

`

s1 − Pkduk. s19d

2. Identification of a surface tension and cohesion energy

The above can be reexpressed for small interactions«
!1 by a Taylor expansion of the cumulative QD distribution
as

DPksld = gsldk, whereg = pscl2da«l2. s20d

Then, Eq.s19d becomes

ln Pfw,lg = lnFp
m=0

`

sP0 + gmdnmp
k=0

`

s1 − P0 − gkdukG
s21d

.n ln P0 + sN − ndlns1 − P0d

+
g

P0
o
m=1

`

mnm −
g

1 − P0
o
k=1

`

kuk

= n ln P0 + sN − ndlns1 − P0d

+ 2
g

P0
nI −

g

1 − P0
nS, s22d

where in the statew considered,n is the number of broken
sites, andnI andnS refer, respectively, to the number of in-
ternal bonds between pairs of broken cells and the number of
boundary bonds between broken and intact cells.

These probabilities are thus of the form

Pfw,lg = Pfw0”gen lnfP0/s1−P0dg+2nIg/P0−nSg/s1−P0d s23d

with the probability of the intact state

Pfw0”g = s1 − P0dN. s24d

The probabilities are thus classic Boltzmann distributions
Pfw0”ge−H where

− Hfw,lg = lnF P0

s1 − P0dGn + 2
g

P0
nI −

g

1 − P0
nS. s25d

For no interactions,g=0 and the above reduces to the global
load model of Eq.s11d. Sincen and nI can be formally in-
terpreted as volume integrals over the interior of clusters of
broken cells, andnS as a surface integral along the boundary
of these clusters, we can make the following analogies to the
quantities of classical statistical physics:

lnfP0/s1 − P0dg → − m/T schemical potentiald, s26d

2
g

P0
→ − e

T
sbulk energyd, s27d

g,

1 − P0
→ gS

T
ssurface tensiond, s28d

where , is the lattice step size. The first term in Eq.s25d
accounts for the average energy required to break a cell, the
second term for an increase in the probability of finding
some clusters of connected cracks due to positive interac-
tions between them, and the third term for a decrease in the
probability of finding clusters with a long interface between
cracked and noncracked regions due to the fact that intact
cells along the boundary are more likely to have broken from
overloading from cracked neighbors, thus leading to even
more fractured states.

In the beginning of the process, the two first terms domi-
nate, and to leading order

− Hfw,lg = sln P0dn + 2
g

P0
nI . s29d

C. Arbitrary-range interactions

As long as screening effects are absent or neglectedsas
they are in the present model of weak interactionsd, the
above arguments based on Griffith’s principle and the mo-
notony of DEp in w and l extend directly to the case of
arbitrary ranges of interactions.

At external deformationl, a cell x s1d has broken with
certainty if the external load alone could break it, i.e., if its
associated surface energy is lower thancl2; and s2d is intact
with certainty if the external load plus the load perturbation
due to the broken cells in the final configuration could not
break it at final deformation, i.e., if its surface energy is
higher thansc+«oyJxywy

Bdl2. Denoting

P0 = Pse, cl2d, s30d

DPx = PXe, Sc + «o
y

Jxywy
BDl2C − Pse, cl2d

= pscl2d«l2o
y

Jxywy
B, s31d

a necessary condition to end up at a certain configurationwB

at deformationl is that all surviving cellsxPBC in that con-
figuration have their threshold abovesc+«oyJxywy

Bdl2, and all
cells that broke xPB have their threshold belowsc
+«oyJxywy

Bdl2. Thus,

PfwB,lg , p
xPB

sP0 + DPxd p
zPBC

s1 − P0 − DPzd s32d

provides an upper bound for the probabilities in the case of
arbitrary ranges of interaction.

Conversely, a sufficient condition to end up in this con-
figuration is that all surviving cells have their threshold
abovesc+«oyJxywy

Bdl2, and that the broken cells eithers1d
have all their thresholds belowcl2; or s2d all but one located
at x have such thresholds, the last one breaking only due to
the overload from the others; i.e., the last one has its thresh-
old bounded bycl2,e, sc+«oyJxywy

Bdl2. This gives a lower
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bound for the probability of the configurationwB,

PfwB,lg . o
xPB

sP0 + DPxd p
yPB\hxj

P0 p
zPBC

s1 − P0 − DPzd.

s33d

As earlier, both lower and upper bounds coincide to order«,
so that upon Taylor expanding lnPfw , lg to this order, we
again obtain the BoltzmannianPfw , lg=Pfw0”ge−Hfw,lg with an
intact probability given again byPfw0”g=s1−P0dN and

− Hfw,lg = lnfP0/s1 − P0dgn +
pscl2d«l2

P0
o
xy

Jxywxwy

−
pscl2d«l2

1 − P0
o Jxywxs1 − wyd. s34d

In the beginning of the process, the two first terms once
again dominate and

− Hfw,lg = lnfP0gn +
pscl2d«l2oxy

Jxywxwy

P0
. s35d

This expresses the equivalence between this most general
weakly interacting damage model and an Ising model with
generalized interaction rules.

IV. EQUIVALENCE WITH A MAXIMUM ENTROPY
POSTULATE

We now obtain these same probability distributions using
the standard entropy maximization argument. The reason for
doing this is to make explicit connection to usual thermosta-
tistics and to define a partition function from which all ther-
modynamic properties of interest may be obtained through
differentiation.

It is convenient to introduce the indexj to denote each
possible damage configurationw. We postulate that the prob-
ability distribution function over configurationsj maximizes
Shannon’s disorderf42g

S= − o
j

pj ln pj s36d

subject to the constraints

o
j

pjEj = U, o pjnj = n, o
j

pj = 1, ∀ j , l j = l ,

s37d

whereU is the total average energy that has been put into the
system andn is again the average number of broken cells.
The validity of this maximization postulate will be directly
demonstrated in what follows. However, independent of the
formal demonstration, one can anticipate that Shannon en-
tropy should be maximized since the initial quenched disor-
der in the breaking energies allows each possible damage
configuration to be accessible. The constraints allow for the
content of the Griffith principle and are what make certain
emergent damage states more probable than others.

Throughout the remainder of the paper,pj denotes the
probability of finding a configurationj over all possible re-

alizations of the qd, when the system has been brought to
average deformationl starting from an initially intact state.
The termnj now refers to the total number of cracks in the
configurationj , while n is the statistical average ofnj. A few
classical results can directly be derived from these assump-
tions:

pj =
e−bsEj−mnjd

Z
, s38d

Z ; o
j

e−bsEj−mnjd,

where ub=]S/]Uul,n and ubm=−]S/]nul,U. From these one
further has

G ; − lnsZd/b,

G = U − S/b − mn,

dG= t dl − Sds1/bd − n dm,

dU = t dl + dS/b + m dn, s39d

where

t = o
j

pjt j and t j ;
dEj

dl
. s40d

The thermodynamic parametersb and m are obtained here
by comparing Eq.s38d to the earlier probabilities obtained by
direct integration over the microstate space.

The PDF over configurations is a maximum of Shannon’s
entropy under the above constraints, if and only if there are
two constantssb ,md such that

Hj − bsEj − mnjd = const ∀ j s41d

with Hj given by Eq.s34d. From Eqs.s1d–s4d and Eq.s34d,
we have

− Hj = lnS P0

1 − P0
Dnj +

pscl2d«l2

P0
o
xy

Jxywxwy

−
pscl2d«l2

1 − P0
o
xy

Jxywxs1 − wyd,

Ej = SN − cnj − «o
xy

JxywxwyDl2,

o
xy

Jxywxs1 − wyd = − o
xy

Jxywxwy + njo
r

Jr , s42d

where translational invariance ofJxy=Jr=uy−xu has been as-
sumed. Equations41d then requires

b =
pscl2d

P0s1 − P0d
, s43d
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m =
1

b
lnF P0

s1 − P0dG − l2Sc + «P0o
r

JrD . s44d

Thus, the PDF over configurations indeed maximizes en-
tropy fEq. s36dg under the constraints of Eq.s37d, with no
unknowns. The inverse temperature and chemical potential
depend on the deformation level through Eqs.s43d ands44d.
They are well defined analytical functions ofl and the model
parameters considered, the qd distribution viaP0, and the
interaction couplingJr. So the usual machinery of equilib-
rium statistical mechanicsfEqs. s38d and s39dg is valid and
can be used for any of our damage models.

The autocorrelation functionkwxwyl can therefore be ob-
tained in the standard way bys1d defining a new Hamiltonian
Ej8=Ej +oxQxwx that incorporates a coupling with a formal
external fieldQx; s2d evaluating the associated generalized
partition functionZ8; and s3d performing second-order de-
rivatives with respect to the external field,

kwxwyl =
1

b2Z8
U ]2Z8

]Qx]Qy
U

Q;0
. s45d

Second-order derivatives of the free energyG with respect to
b andm can also be directly related to variances of the num-
ber of broken cracksnj and the potential energyEj, but these
standard derivations are left to the reader.

Note that the coupling constantsJr above are nonrandom
functions ofr. All randomness has been integrated over, giv-
ing rise to the Boltzmann distribution and the two statistical
parametersb and m. An alternative approach used by other
authors on similar systems, namely, random fuse networks,
would be to not integrate over the underlying quenched dis-
order, but to instead map the quasistatic evolving system
onto a random field Ising modelf43g with zero temperature.
In this case, the underlying quenched disorder would mani-
fest as randomness in the coupling parameters of some
Hamiltonian function that must be minimized to obtain the
realized configurations. This is an alternative approach quite
distinct from the one used here. Our approach is the usual
one of equilibrium statistical mechanics, in which the cou-
pling constants are nonrandom functions, but there are many
configurations in the neighborhood of the minimum of the
HamiltonianH that are of statistical importance in determin-
ing the average properties of the system.

The energy yardstick 1/b stemperatured that decides
whether a given configuration is statistically significant be-
haves regularly throughout the damage processsat least for
continuous QD distributionsd. In the case of a uniform QD
on f0,1g, it will take the particularly simple form 1/b
=P0s1−P0d, starting from zero and going back to it, with a
maximum whenP0=1/2. Thechemical potentialm behaves
regularly as well.

V. APPLICATIONS

A. Global load model

A consistency check of the results in Sec. IV is now per-
formed for the case of the simple global load sharing model.
From Eqs.s43d and s44d with Jr =0, we have

Ej = sN − cnjdl2, s46d

bsEj − mnjd = − lnF P0

1 − P0
Gnj +

pscl2d
P0s1 − P0d

fsN − cnjdl2

+ cnjl
2g

= lnF P0

1 − P0
Gnj + fsld. s47d

Independently, we also have the direct result from Eq.s11d

pj = P0
njs1 − P0dN−nj = P0e

−nj lnfP0/s1−P0dg. s48d

Thus, the Boltzmann distribution Eq.s38d with temperature
and chemical potential given by Eqs.s43d ands44d is indeed
identical to the known solution Eq.s48d, which confirms the
validity of the expressions forb andm.

It is also instructive to look at all terms in the first law Eq.
s39d to see exactly what they represent. The values of the
average quantities in this simplest model can be obtained
using the lemma

o
j

P0
njs1 − P0dN−njnj = NP0,

which is demonstrated by applying the operatorx] /]x to the
binomial theorem,

sx + ydN = o
n=0

N
N!

sN − nd!n!
xnyN−n = o

j

njx
njyN−nj ,

and then takingx=P0 and y=1−P0. Using Eqs.s36d, s37d,
s40d, s46d, ands48d, one obtains

n = P0N, s49d

U = o
j

P0
njs1 − P0dN−njsN − cnjdl2 = Ns1 − cP0dl2, s50d

S= − NfP0 ln P0 + s1 − P0dlns1 − P0dg, s51d

t j =
dEj

dl
= sN − cnjd2l , s52d

t = Ns1 − cP0d2l . s53d

Taking the derivatives of these quantities yields

dn= N dP0, s54d

dS= lnF P0

1 − P0
GdP0,

m dn= SP0s1 − P0d
pscl2d

lnF P0

1 − P0
G − cl2DN dP0,

dS

b
= −

P0s1 − P0d
pscl2d

lnF P0

1 − P0
GN dP0,

m dn+
dS

b
= − cl2N dP0,
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t dl = Ns1 − cP0d2l dl ,

m dn+
dS

b
+ t dl = Ns1 − cP0d2l dl − cl2N dP0,

= dfNs1 − cP0dl2g = dU,

which is a consistency check for the validity of the first law
fEq. s39dg. The average mechanical behavior of this model,
as well as the evolution of entropy and formal temperature,
are illustrated in Fig. 2 for flat QD distributions between 0
and lmax and for various values ofc sthe parameter that con-
trols the relative change in stiffness due to a cell breakingd.

Most importantly for our present purposes, since the
probabityP0 of having a site broken in this model is inde-
pendent of the configuration and site location, the global load
sharing damage model is exactly equivalent to the percola-
tion model with occupation probabilityP0sld. There is a
critical-point phase transition in this model, whenP0slcd
=1/2, for which S goes through a maximumS=N ln 2. The
correlation length diverges then as

j , uP0sld − 1/2u−n s55d

with n=4/3 in dimensionD=2 f44g. We have in general

P0sld − P0slcd , psclc
2dsl − lcd s56d

and thus

j , ul − lcu−4/3. s57d

In pathological cases, special QD distributions satisfy
psclc

2d=0 so thatP0sld−P0slcd,sl − lcda with aÞ1. This re-
sults in

j , ul − lcu−4a/3. s58d

Note that in Ref.f11g, we have treated this model withc
=1, which did not change anything in the nature of the tran-
sition, but only changed the minimum stiffness associated
with the most damaged configuration wheretmin=2Ns1
−cdl, and, consequently, the position or existence of a peak
stress in the average mechanical responsetsld. This is seen in
Fig. 2sbd: the existence, and the position of a possible peak-
stress position relative to the percolation transitionsblack dot
l / lmax=1/Î2d, depends on the particular model considered.
However, the divergence of the correlation length and the
associated critical-point nature of the percolation transition
are insensitive toc.

The present approach does not allow a direct exploration
of the avalanche distributions as the critical point is ap-
proached. This is because the probability distribution over
configurations was obtained at each elongationl by averag-
ing over all realizations of the quenched disorder. To obtain
directly a result on avalanches, on the contrary, correlations
between successive elongations should be considered for
each realization of the QD, and the average over the QD
should only be considered afterward. Our damage model
nonetheless behaves as a fiber bundle with GLS for which
results about the avalanche distribution have been deter-
mined f10,12,13g.

B. Local load model

In this case,Jxy=a when x,y are nearest neighbors, and
zero otherwise. To make explicit connection to the Ising
model in its usual form, we map the order parameter onto
h−1,1j by defining s=2w−1. The probability distribution
over configurations is then

Pfs,lg = expFbSEo
x

sx + Jo
kxyl

sxsyDGYZ, s59d

wherekxyl denotes a sum on nearest neighbors only. This is
exactly the classical Ising model, with coupling constant and
external field given by

bJ =
apscl2d«l2

4P0s1 − P0d
, s60d

bE =
1

2
lnF P0

1 − P0
G +

2apscl2d«l2

P0
. s61d

The critical point of this model is atf45g

sbJc,bEd = sAc,0d

with Ac=lns1+Î2d /2. The external fieldbE starts at infi-
nitely negative values, and ends up at infinitely positive ones.
It evolves continuously and thus necessarily crossesE=0 at
the lc satisfying, from Eq.s61d,

P0slcdhlnf1 − P0slcdg − lnfP0slcdgj = 4apsclc
2d«lc

2. s62d

The mean-field percolation result ofP0slcd=1/2 is thus re-
covered when the coupling vanishessa=0d, which is a con-
sistency check.

More generally, for nonzero nearest coupling constantsa,
the system will undergo a first-order transition if atlc satis-
fying Eq. s62d the formal inverse temperature satisfies

bslcdJ =
apsclc

2d«lc
2

4P0slcdf1 − P0slcdg

=
lnf1 − P0slcdg − lnfP0slcdg

16f1 − P0slcdg
. Ac. s63d

Depending on the value ofbslcdJ, the system can display
four types of behavior, which are schematically depicted in
Fig. 3.

sid For many QD distributions, the first value oflc satis-
fying Eq. s62d occurs for very small values ofP0slcd, which
correspond to small values of 2apsclc

2d«lc
2, since x lnfs1

−xd /xg→0+ when x→0. In this case, lnhf1
−P0slcdg /P0slcdj / f1−P0slcdg.−lnfP0slcdgù1, and the condi-
tion of Eq. s63d is satisfied. The system thus goes through a
first-order phase transition at thislc and there is a discontinu-
ous jump in the average number of broken cells and the
average stressswhich are related to first derivatives of the
free energy with respect tol or m, and are similar to the
average number of spins up in an Ising modeld f46g. The
correlation length increases up to the transition but remains
finite. All of this behavior for such local load models has
been documented in the literaturef12,13,15g.
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However, three other behaviors are also possible if
bslcdJ,Ac at the pointlc at which the external field vanishes
fEq. s62dg. Whether this occurs is controlled by the type of

QD distribution and the value of the coupling constanta.
WhenbslcdJ,Ac, no first-order transition is encountered and
one can further classify the transition into three subcatego-
ries.

sii d If bslcd has a finite value of order unity, significantly
below Ac, the system simply goes continuously throughlc,
without discontinuity in sustained load or average number of
cracks. The correlation length remains finite.

siii d If bslcdJ!1 swhich should happen for vanishingad,
the distribution over configurations is dominated by the ex-
ternal field, and the system essentially behaves as a percola-
tion model going through the percolation transition. Al-
though there should be corrections due to the nonzero
character ofbslcdJ, these might be smaller than the finite size
corrections in numerical realizations, and the correlation
length would then be found to diverge up to the system size
asj,ul − lcu−4/3.

sivd Finally, if bslcdJ,Ac
−, the system comes close to the

critical point of the Ising model atlc, and the correlation
length should diverge correspondingly as in an Ising system
whose temperature comes close to 1/Ac=Tc from above,
while the external field changes sign. The slope of the aver-
age mechanical curvetsld should also locally diverge around
lc. The exponents associated with the divergence ofj as a
function of sl − lcd depend on the way the critical point is
approached as a function ofl. For values ofl such that
bEsld!1, we write 1/bsldJ,Tc+ fsld, and j,uTsld−Tcu−n

= ufsldu−n where n=1 for the two dimensionals2Dd Ising
model. The correlation length therefore diverges asul − lcu−n,
unless the temperature has a quadratic minimum inl close to
lc in which case it diverges asul − lcu−2n.

C. Power-law decay

We last consider the general case of stress perturbations
decaying as power laws of the distance to broken cells,

FIG. 2. Thermodynamic and mechanical response as a function
of imposed deformation for the global load sharing model:sad the
difference between the average Young’s modulust / l and the mini-
mum Young’s modulustmin/ l swhich holds in the entirely damaged
configurationd; sbd average stress for a few particular modelssthe
black dot is the percolation critical-point transitiond; scd Shannon
entropy; andsdd temperature.

FIG. 3. Possible paths in the space of coupling constants of
Ising models, under increasing imposed elongation associated with
different local load sharing damage models.
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Jsxd,asx/dd−g /Fsgd, where a is of order unity,d is the
lattice constant, andFsgd=oyÞxsuy−xu /dd−g is a normalizing
factorswhich depends on the lattice size ifg.D, whereD is
the system dimensiond. To be consistent, the models consid-
ered here are biperiodic of linear sizeL, and the interactions
are put to 0 for distances aboveL. This type of model, con-
sidered for example by Hidalgoet al. f15,16g, allows us to
span ranges between purely global sharingswhen g=0d to
the local sharing limitsg→`d. Equationss42d–s44d show
that this model leads to probability distributions over con-
figurations of the form

Pfs,lg = expFbSEo
x

sx + o
xÞy

Jsux − yudsxsyDGYZ,

s64d

which is a generalized long-range Ising model with coupling
constants and external field given by

bJsrd =
apscl2d«l2

4P0s1 − P0d
sr/dd−g

Fsgd
, s65d

bE =
1

2
lnS P0

1 − P0
D +

apscl2d«l2

2P0
. s66d

Note that although the caseg→` is isomorphic to the local
load sharing model introduced in the previous section, the
global load sharing model of Sec. V A corresponds toa=0,
but not to the exponentg=0. The presence of the quadratic
coupling makes this latter case isomorphic to a Curie-Weiss
model, which is the mean-field theory of Ising models.

Such long-range Ising models are still an open area of
research, with the precise value of the critical point for any
power-law interaction not precisely known. Nonetheless, it
has been proposedf46–48g that one can classify the critical-
ity into two categories depending on whetherg.D or g
,D. In the shorter-range case,g.D, this model admits a
traditional thermodynamic limit whenL→`. AlthoughFsgd
diverges whenL→`, the thermodynamic limit is well de-
fined onceFsgd is introduced into the coupling constants
Jsrd=sr /dd−g /Fsgd. Thus, the free or internal energy per lat-
tice site, entropy, and magnetization all admit a finite limit
whenL→`, and are functions ofb and the external fieldE.
As g→` in the thermodynamic limit, Eq.s65d reduces to the
result of the standard Ising modelfEq. s60dg and so

lim
g→`

bc = lns1 +Î2d/2.

It has also been shownf48g that asg→D+, bc,1. Thus, for
g /D in the rangef1+,`g, bc is bound between 1 and lns1
+Î2d /2. However, more precise details of howbc varies
with g in this range are not presently available.

In the other category of longer-range interactions where
g /D lies in f0,1−g, the only thing certain is that wheng /D
=0, the Curie-Weiss model is obtained for whichbc is also
of order unity. It has thus been conjectured that all power-law
interactions for whichg /D,1 should be in the Curie-Weiss
universality classf49g. The Curie-Weiss model corresponds
to the mean-field couplingJxy=1/N, independently of
x andy, whereN is the total number of cells in the system.

For the Curie-Weiss model, the PDF over state
configurations is Pfsg~expfbsEoxsx+oxysxsy/Ndg
~exphbfEoxsx+soxsxd2/2Ngj.

All this suggests the following classifications of our dam-
age models.

s1d If the coupling constant is smallsa!1d, the damage
model is close to the percolation model so that in the ap-
proach to the transition at elongationlc, the correlation
length behaves asj,ul − lcu−n, with n=4/3.

s2d For non-negligible coupling constantsa, in the
shorter-range caseg.D, we recover the same three possible
behaviors as described above for the local load sharing rule.

s3d In the longer-range case whereg,D, we again re-
cover the same four types of scenarios depending on the ratio
bslcd /Ac sas discussed in the local load sharing cased. The
model behaves as percolation whena!1. Otherwise, the
behavior is determined by the ratiobslcd /Ac. Note thatAc is
of order unity, but depends on the particular exponentg and
on the system size. Ifbslcd /Ac,1, the system behaves con-
tinuously and no transition is observed. Ifbslcd /Ac.1, there
is a discrete jump in both the average number of broken cells
and the sustained load. The correlation length remains finite
in both of these two cases. Only the limiting case of
bslcd /Ac,1 corresponds to a second-order phase transition.
In any of these cases, for large enough systems, the Curie-
Weiss description holds according to Refs.f46–48g. Accord-
ingly, if there is any divergence of correlation length due to
the system coming close tobslcd /Ac,1 at E=0, the associ-
ated exponents should be those of the Curie-Weiss mean-
field critical point sn=1/2d, and not the Ising one.

These results can be compared to numerical-simulation
results in the literature for related models. In fiber-bundle
models with power-law interactionsf15g, a transition has
been found as a function of the interaction exponentg that is
consistent with the above analysis, predicting mean-field be-
havior for the long-range caseg,D, and Ising-like behavior
in the short-range caseg.D. Typical configurations prior to
breakdown for this type of system are displayed in Fig. 5 of
Ref. f15g, and look very similar to percolation configurations
close to the transition in the caseg=0, displaying smaller
and smaller cluster sizesscharacteristic of the autocorrelation
lengthd and compact configurations asg increases aboveD.
This is coherent with a mean-field behavior close to perco-
lation transition in the first case, as opposed to a first-order
transitionsanalogous to Ising model crossingE=0 belowTcd
when g,D. This analogy is even more apparent in Fig. 7,
bottom, of Ref.f16g, where an extension of this model was
considered, with time-delayed fiber breaking process in ad-
dition to power-law decaying interactionsf16g.

Burned fuse models, in which the interactions between
burned fuses decay as 1/rD, exhibit diverging autocorrelation
lengths at breakdown, withj,ul − lcu−n, where l is the im-
posed voltage, andn is equal to the percolation exponent
f44g, n=4/3 in 2D f22,50g or 0.88 in 3Df51g. Roux et al.
f50g showed that in the limit of “infinitely large” disorder,
such models are isomorphic to percolation models. When the
disorder is less pronounced, stress concentration leads to re-
gimes of localizing damage. At low disorders, stress concen-
tration entirely dominates, and fuses burn in clusters of size
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scaling as the lattice step, leading to a so-called “total local-
ization regime.” At intermediate disorders, fuses burn essen-
tially in regions that scale as the lateral size of the system
ssize in the direction perpendicular to the main current flowd,
a priori much larger than the lattice step, which constitutes
the “soft localization regime”f22,52g. It has been shown
f22,51g that such a process is still in the percolation univer-
sality class, in the sense that there is still a growing autocor-
relation length with an exponent identical to the percolation
one. Based on the fact that these soft localizing regimes are
in the percolation universality class, coupled with the large-
scale profile of damage in the system, Hansenet al. f22g
related the roughness of the final fracture spanning through
the system to the autocorrelation length exponent, based on
arguments of percolation in a gradient, and this properly pre-
dicts the Hurst exponent of the final damage fronts, in both
2D and 3D. The morphology of the connected “fracture” at
breakdown is oriented, and different from percolating clus-
ters in the percolation model. This is related to the aniso-
tropic character of interactions in the burned fuse model; i.e.,
the current perturbation from a burned fuse varies as a dipo-
lar field decaying as 1/rD, but also having an orientational
aspect not included in the models under study in this paper.
This anisotropic aspect is absent from the models discussed
here, but the fact that the autocorrelation length exponent is
similar to the ones of percolation is coherent with the fact
that long-range systems are in the percolation universality
class. Burned fuse systems are at the overlap between short-
and long-range interactions, in the sense that they correspond
to g=D.

Last, fiber bundles connected to elastic plates, whereg
=1 andD=2, have been numerically studied in Ref.f28g and
an autocorrelation length exponent ofn.1.54 numerically
determined. The discrepancy between this result and the per-
colation or Curie-Weiss critical-point result might presum-
ably result from finite-size effects making this modelsg
=1d still significantly different from the Curie-Weiss one
sg=0d, or from the fact that the stress perturbation in this
numerical model might have been too large for the interac-
tions to be considered weaksa requirement for the validity of
the present analysisd.

VI. CONCLUSIONS

We have treated a class of damage models having weak
isotropic interactions between cells that become damaged in
the lattice. A quenched disorder is present in the rupture en-
ergies for each lattice cell, and the evolution of damage is
ruled by the Griffith principle. Averaging over all possible
realizations of the underlying quenched disorder, the prob-
ability distribution of each possible damage configuration
was obtained as a function of the deformation externally ap-
plied to the system.

The exact calculation is analytically tractable in the case
of a global load sharing model, and it has been shown to be
isomorphic to a percolation model. This corresponds to the
behavior of a system totally dominated by the underlying
disorder, where the next cell to break is always the weakest
one. Spatial interactions added to the system modify this

picture, since the overload created by broken cells induces
some degree of spatial ordering that competes with the weak-
est cell mechanism. By limiting ourselves to small overloads
compared to the average load of the system, it was possible
to obtain the probability of damage configurations as inte-
grated over all realizations of the quenched disorder.

In this weak interaction limit, the resulting probability
distributions were shown to be Boltzmannians in the number
of broken cells and in the stored elastic energy. This type of
distribution maximizes Shannon’s entropy under constraints
related to the energetic balance of the fracture process, and
we have demonstrated the formal relationship between our
quenched-disorder damage models and the standard distribu-
tions arising in equilibrium statistical mechanics. This then
allows the standard toolbox of statistical mechanics to be
applied to our damage models.

Our systems map onto three types of possible behaviors:
s1d percolation models in the case of interactions so weak
they may be neglected;s2d Ising models for non-negligible
short-range interactions; ands3d Curie-Weiss mean-field
theory for non-negligible long-range interactions. The tem-
perature and external field in the partition function of our
models are analytical functions that depend on the particular
sharing rule, on the type of quenched disorder considered,
and on the average elongationsor deformationd externally
loaded onto the system. The path followed in the Ising con-
trol parameter space when the load is increased from 0 de-
pends on the qd distribution and the load sharing rule. When
the formal external field changes sign, a phase transition is
possible. This can correspond to a first-order phase transi-
tion, a percolationlike transition, or an Ising critical-point
transition, depending on the value of the formal temperature
during the transition.

The systems studied here are limited to isotropic load per-
turbations. We have earlier studied oriented crack models in
f39–41g, which correspond to anisotropic load perturbations
that depend on the orientation of the crack opened in the
lattice. Those earlier studies were based on an entropy-
maximum assumption. The hypotheses of the present work
extend directly to oriented systems, and so the present paper
justifies the entropy-maximum assumption postulated in our
earlier work. The precise value of the temperature, and the
physical interpretation of the functional forms given in
f39–41g, should be modified according to the results of this
paper. Such modifications will, however, result in identical
functional forms relating the configuration space and the
PDF over configurations, and thus the present work confirms
the existence of a phase transition in such an oriented crack
model, with an associated divergence exponent of the auto-
correlation lengthn=2.

Experimentally, the emergence of correlated damage at
large scale has an important influence on the macroscopic
rupture of a heterogeneous object. For example, the rough-
ness of natural fracture surfaces, whose universality has long
been observed experimentallyf53g, has recently been related
to the behavior of the divergence of the damage correlation
length at the approach to breakdownf22g. Damage correlated
at large scale should also leave a signature on elastic wave
scattering through the damaged material. The knowledge of
the behavior of a damage autocorrelation function, as frac-
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turing progresses, is thus experimentally relevant in monitor-
ing the approach to macroscopic failure or shear banding
through the use of elastic-scattering experiments.

APPENDIX: RECOVERABLE ENERGY AS A FUNCTION
OF THE DAMAGE STATE

The argument here will be specific to a fiber bundle
model. However, as noted in the text, other weak damage
models will also be controlled by the same type of stored-
energy function obtained here.

Define a fiber bundle assinitially d N fibers stretched be-
tween a free rigid plate and an elastic half space. The rigid
plate has a controlled displacementl applied to it that
stretches the fibers and the elastic half space. As a fiber
breaks at fixedl, the force it held will be transmitted to the
other fibers through the elastic half space.

A fiber at pointx is stretched a distance,x. Where that
fiber is attached to the elastic half space, the surface of the
half space is displaced by an amountux. Thus, at those
placesx where fibers exist, we have

l = ,x + ux. sA1d

The fiber at pointx exerts a force on the elastic half space
that is

fx

AF
= YFs1 − wxd

,x

LF
, sA2d

whereAf is the cross-sectional area of the fibersassumed to
be independent of the extensiond, LF is the inital length of
each fiber, andYF is the Young’s modulus of each fiber. The
local order parameterwx is 0 if the fiber is intact and 1 if
broken.

The Green function for point forces acting on the surface
of an elastic half spacef54g yields

ux = u3sxd =
1 − ss

2

pYs
o
yÞx

fy

uy − xu
sA3d

=
1 − ss

2

p

YF

Ys

AF

LF
o
yÞx

s1 − wyd
uy − xu

,y,

sA4d

whereYs is the Young’s modulus andss the Poisson’s ratio
of the elastic solid. In general, the displacement at a point
x=sx1,x2,x3d within the elastic solidswherex3=0 defines the
surfaced due to a point force acting at a pointy=sy1,y2,0d on

the surfacefi.e., fsxd= fydsx−yd3̂g is given by

u1 =
1 + ss

2pYs
F sx1 − y1dx3

r3 −
s1 − 2ssdsx1 − y1d

rsr + x3d G fy, sA5d

u2 =
1 + ss

2pYs
F sx2 − y2dx3

r3 −
s1 − 2ssdsx2 − y2d

rsr + x3d G fy, sA6d

u3 =
1 + ss

2pYs
Fx3

2

r3 +
2s1 − ssd

r
G fy, sA7d

where

r = fsx1 − y1d2 + sx2 − y2d2 + x3
2g1/2. sA8d

Putting x3=0 in the expression foru3sx ;yd and then sum-
ming over ally yields the expression for the displacementux
of the surface.

We now define the dimensionless number

« =
s1 − ss

2d
p

YF

Ys

AF

LFLP
, sA9d

where a lengthLP has been defined as

1

LP
= o

yÞx

1

uy − xu
; sA10d

i.e., this sum is independent of which pointx is considered.
Assuming either that the elastic half space is stiffer than the
fibers, or that each fiber has a length much greater than its
width, or that fibers are spaced far enough apart thatLp is
large, allows« to be considered a small number. Since the
fiber bundle is assumed to be made of a finite numberN of
fibers, there is no divergence toLP.

Using these definitions along withux= l −,x and iterating
Eq. sA4d once to get the leading order in« contribution gives

,x

l
= 1 +«S− 1 + o

yÞx

LP

uy − xu
wyD + Os«2d. sA11d

The elastic strain energy reversibly stored in each surviving
fiber is then

Ex =
1

2
fx,x =

1

2

AFYF

LF
l2s1 − wxdS,x

l
D2

sA12d

=
1

2

AFYF

LF
l2H1 − wx + 2«F− 1 +wx

+ o
yÞx

LP

uy − xu
wys1 − wxdGJ , sA13d

where terms ofOs«2d have been dropped. Thus, upon sum-
ming over all the fibers we obtain the total energyEF stored
in the fibers as a function of the damage state

EF = o
x

Ex =
1

2

AFYF

LF
l2Fs1 − 2«dN − s1 − 4«do

x
wx

− « o
x,yÞx

JxywxwyG , sA14d

where the coupling constant is defined as

Jxy =
2LP

uy − xu
. sA15d

This form of the fiber energy is consistent with what was
defined in the text.

We now demonstrate that the energy recoverably stored in
the elastic solid makes no important modification toEF. The
strain energy in the solid is given by
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Es =
Ys

2s1 + ssd
E

x3.0
d3xo

yÞx
Seikeik +

ss

1 − 2ss
ell

2D ,

sA16d

where summation over the indices is assumed and where the
strain tensor is defined as

eiksx;yd =
1

2
S ]uisx;yd

]xk
+

]uksx;yd
]xi

D . sA17d

The displacements are given by Eqs.sA5d–sA7d.
From these equations, the strain at pointsx inside the

elastic solid takes the leading order in« form

eik = «lLPFcik + «o
yÞx

f iksx − yd
ux − yu2

wyG , sA18d

where the constant tensorcik has units of inverse-length
squared and the average strain tensor throughout the elastic
solid is«lLPcik. The perturbation term due to the broken fiber

volume integrates to zero. The tensorf ik has no dependence
on the normux−yu; however, this fact is immaterial sincef ik
plays no important role.

Upon forming the required products for the integrand in
Eq. sA16d, and using the fact that terms linear in the broken-
fiber perturbations integrate to zero, one obtains that the en-
ergy stored in the elastic solid is

Es =
1

2

AFYF

LF
l2«VLpScikcik +

ss

1 − 2ss
cll

2Df1 + Os«2dg,

sA19d

whereV is the volume integrated oversassumed finited. In
other words, any energy stored in the elastic solid that is due
to the interaction between fibers is«2 smaller than the lead-
ing order contribution which itself can be considered small.
The leading order contribution depends only on the average
number of broken fibers and thus does not alter the analytical
form of Eq. sA14d. Thus, the energy stored in the elastic
solid plays no essential role in the damage model.
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