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Interacting damage models mapped onto Ising and percolation models

Renaud Toussaiht
Department of Physics, University of Oslo, P. O. Box 1043 Blindern, 0316 Oslo, Norway

Steven R. Pride
Earth Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-1116, Berkeley, California 94720, USA
(Received 16 March 2004; revised manuscript received 1 February 2005; published 21 Apyil 2005

We introduce a class of damage models on regular lattices with isotropic interactions between the broken
cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the
sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The
system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated
qguenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith’s principle
which states that a cell breaks when the release in potdetadtio energy in the system exceeds the surface-
energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched
disorder, we obtain the probability distribution of each damage configuration at any level of the imposed
external deformation. We demonstrate an isomorphism between the distributions so obtained and standard
generalized Ising models, in which the coupling constants and effective temperature in the Ising model are
functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In par-
ticular, we show that damage models with global load sharing are isomorphic to standard percolation theory
and that damage models with a local load sharing rule are isomorphic to the standard Ising model, and draw
consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown
transitions corresponding to these models. We also treat damage models having more general power-law
interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, we
also show that the probability distribution over configurations is a maximum of Shannon’s entropy under some
specific constraints related to the energetic balance of the fracture process, which firmly relates this type of
guenched-disorder based damage model to standard statistical mechanics.
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[. INTRODUCTION load sharing ruléGLS) is assumed by which the load carried
) by a fiber is uniformly distributed to the surviving fibers
The physics of breakdown processes that lead, for exwhen it breaks. Analytical results for this model have been
ample, to stress-induced catastrophic failure of both mangbtained[7—-11] that concern the average load-deformation
made and geological structures, remains an ongoing subjeptoperties/7—-9], the distribution of avalanchg40], or the
of research. Stress-induced fracture of a homogeneous matelationship between such quenched-disorder based models
rial containing a geometrically simple single flaw has beenand standard statistical mechanjd4].
studied since the work of Griffithl] and is now well under- The original FBM model with global load sharing has
stood. However, the breakdown of heterogeneous structuresgen generalized to allow for nonuniform load sharing rules,
in which the local mechanical properties are randomly disconsidered either as purely local load sharifgearest-
tributed in space and/or time, continues to present challengé¥ighbor interactions in which case distribution of ava-
despite the many advances over the last 15 yE2lisThe ~ lanches and mechanical properties have been analytically
difficulty is in characterizing and quantifying the effects of Studied12-14, or as power laws of distance from the failed
interaction between the multitude of constituents. fiber, which have been studied numericdl§p,16. .
Most of the knowledge about these types of systems has Closely related to the_se models of fiber bundles in elastic
been obtained from lattice network simulations. One of th r1t7era2ct|on, marny kStU?'?S have daddresseq hque networks
most well-studied lattice network models is the 80 year ol haang'thoer r;?ic,]v:rofstr?e Ieslgtsrtocgfaticag?g:nv:‘lgnclﬁgggglons
e e n, The dassicaton of e brescoun processes o
L ; S . . critical-point phenomena is still subject to debf#e29-31.
ela_stlc f|bers_ of |dent|ca! e!a_stlc constant, brgak!ng whe ocal load sharing models are usually understood as break-
their elongation exceeds individual thresholds distributed ac

di . lated random distribution. A alob I|'ng through a process similar to a first-order transitiagl],
cording to a given uncorrelated random distribution. A global,ije models with long-range elastic interactions or GLS are

analyzed either as a critical-point transitig$29,30,3%, or
as a spinodal nucleation procd$d,3§. The issue depends
*Electronic address: Renaud.Toussaint@fys.uio.no; URL: http:/bn whether the accumulated damage has a correlation length
folk.uio.no/renaud/ that diverges as a power law of the average deformation in
"Electronic address: srpride@Ibl.gov the approach to macroscopic failure. Numerical evidence in
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the literature suggests that the nature of the correlation lengtmicrofractures present high aspect ratios, necessarily re-
in the approach to failure depends on the specific model beguires a tensorial elastic description as in our earlier work
ing analyzed, the damage interaction range, and the type ¢89-41].
gquenched-disorder diStI’ib_UtiOﬂ considered. A major difficulty The organization of the paper is as follows. In Sec. I, we
of such attempts to clasg,lfy the breakdown process |s.that Ndtroduce (and justify in the Appendixthe general type of
analytical form for the distribution of the damage configura-scalar damage models that are considered. In Sec. IlI, the
tions at a given external load is availalf least that has a nropability of each damage configuration is obtained by in-
firm basis. Numerical simulations of the scaling behavior of o rating over all paths that lead to it. In Sec. IV, we establish
?_valanchhes arekI|m|tgq ml size due To .cor(?faytaltmnal restriCihe relationship between these configurational distributions
lons which makes critical-point analysis difficult. nd standard statistical mechanics, which allows the standard
| It is proven here that quasistatic interacting damage mo 'qolbox of statistical mechanics to be applied to damage
E rsé:ﬂﬁg ?r? rg;(; oITEsM };tahnatbgorisaﬁiéagg%mg}é r%gﬁ;%hnedl Slionc odels entirely based on quenched disorder. These analytical
' ' evelopments will then be utilized in Sec. V to establish that

or generalized Ising models depending on the range of th . ; .
damage interaction. Our demonstration holds in the limit o racture processes in such damage models are isomorphic to

small damage; i.e., under the restriction that the stress pePercolation for GLS(Sec. V A, or to the Ising model for
turbation emanating from each broken cell is much smallef€arést-neighbor interactioriSec. V B. This allows us to
than the average stress in the system. More specifically, trigolate some transition p0|_nts in thesg models, and to predict
change in elastic energy in the system at fixed impose&€ nature of the correlation length in the approach to the
boundary deformation due to damage that arrives is the suff@nsition. We will also discuss in Sec. V C the case of dam-
of a mean-field softening term proportional to the number of2ge models with arbitrary power-law decay of the interac-
damaged cells, and an additive function over pairs of damtions, and show how they are related to generalized Ising
aged cells that is small compared to the mean-field softeninf0dels, which can themselves be mapped onto standard ones
terms. This corresponds to the general validity conditions o¥ia renormalization of the coupling constants. The results are
a Born approximation. In real solids accumulating damageSUmmarized and discussed in a concluding section.

the cracks represent only small local changes in the elastic

moduli, and so this weak perturbation limit has direct prac- Il. DEFINITION OF THE DAMAGE MODELS
tical importance. S . CONSIDERED
The stress-induced emergent-damage distribution is _ _ _
proven to be a Boltzmannian with a temperat(pebabilis- Our models reside on a regular lattice of dimension

tic energy scalgthat is an explicit analytical function of both (€.g., a square lattice i@ =2). Each cell of the lattice has a
the applied deformation and the quenched-disorder threshol@cationx within the set) of cells making up the lattice, and
probability distribution funtion(PDP. The damage-model has a state described by a local order paramefewhere
Hamiltonian is shown to have an Ising form with coupling ¢x=0 if the cell is intact andp,=1 if it is broken. There is a
constants that have explicit functional dependence on thiocal stress and strain associated with each cell. The cells
applied deformation, the quenched-disorder PDF, and the nglastically interact with each other; however, such interaction
ture of the damage interactiofnearest neighbor or long must be isotropic for the present analysis to apply. A configu-
range. The critical point of the Ising model is of course well ration of damage is described as a damage fieldorre-
known. So for a given numerical simulation or laboratory sponding to the set di local variablesp={¢,}x.q Where
experiment, one can use the expressions for the coupling=N({2) is the total number of cells in the system.
constants developed here to determine how the system is Our systems are initially uniform by hypothesis; i.e., they
evolving in coupling-parameter space as deformation inhave a homogeneous damage figld0 at zero strain and
creases and thus be able to predict the nature of any phasttess and each cell starts with the same elastic moduli.
transition that might arrive(first order, continuous, or no Strain is progressively applied through the application of a
transition. Knowing whether catastrophic failufee., dam-  uniform normal displacememtat the edges of the system. A
age correlation-length divergends an imminent possibility  cell breaks at constant appliédvhen the energy required to
has practical application. break it (which is a random quenched threshold sampled
We have recently proposed a statistical theory for the lofrom a probability distribution functionjust equals the re-
calization of oriented fractures that emerge and elasticallgluction in stored elastic energy in the lattice due to the break.
interact when the system has a shear stress applied to it A key requirement of the models treated here is that the
[39-41]. The distribution of the emergent crack states wasstress perturbation emanating from a broken cell must be
obtained using the postulate that the fracture arrival wouldveak enough that a first Born approximation holds; i.e.,
maximize Shannon’s entropy under constraints representingfress interaction between any two broken cells is allowed
the energetic balance of the process. In the present work, wier while simultaneous interaction between three or more
do not make this postulate but instead prove its validity bybroken cells is not. This approximation is valid whenever the
direct integration over the damage evolution. The presenstress perturbation due to a broken site is much smaller than
work also presents more general ranges of interaction. Howthe mean stress in the system.
ever, unlike our previous work, the present analysis is for a One specific realization of such a “weak damage” model
purely isotropic(scalaj description of damage interaction. is an appropriately defined fiber bundle model. In the model,
The interaction of real fractures in an anisotropic load, wherea set of N elastic fibers are stretched between a free rigid
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plate and an elastic half space. The rigid plate is displaced bgrea within a cell or to break a fibeis a random variable

a controlled amount that puts the fibers in tension. Once fixed ab initio, with no spatial correlations between the dif-
fibers begin to break, elastic interactions occur through théerent cells. The breaking energy is thus a quenched uncor-
elastic solid. As demonstrated in the Appendix, such interacrelated disorder, described by a probability distribution func-
tions will be weak if eithex1) the elastic solid is much stiffer tion p(e) for which p(e)de is the probability that a cell's
than the fiber material, d@) the fibers are much longer than surface energy is ifie,e+de], and having a cumulative dis-
wide and are sufficiently widely placed. In the limit that the tribution P(e)=/tp(22dz For a given realization of each
elastic half space becomes rigid, this model reduces to theelI's surface energg,, there is thus a certain total surface

classic global load sharing fiber bundle. energy

Another realization is a uniform isotropic solid divided
into N cells. Uniform displacementsare applied to the lim- Ede]= > e(l-¢y (5)
iting faces of the lattice in such a way that the material is in xe Q)

a state of uniform dilation. The damage that arrives is as- , , i
sumed to change the isotropic moduli without creating aniso@SSociated with each damage figle{¢.cq-

tropy in the process. For example, the damage might be _leeg thatBC () is a certain subsgt of Iocatlpns, the no-
modeled as a spherical cavity that opens at the center of tHgtion ¢~ refers to the state Whgre this subset is broken and
cell thus reducing the elastic moduli of that cell. The weakltS complementary Intact; 1.e,=1 for everyxe B, and
interaction is guaranteed if the change in the cell modulus i¢x=0 for everyxe =B~

small. We emphasize that the assumption of weak damage AS the external deformatiohis increased, damage evolu-
holds for any configuration of damage over the underlyingtion is ruled by Griffith's principle: Given the system in a
lattice, including damage states with large fractions of bro-certain configurations® and deformation, it can undergo a
ken cells. transition towards a more broken stat8“™ that differs

As demonstrated in the Appendix, the enefgyrevers- from the previous state by one additional broken celt,at
ibly stored in such systems when the system is in a damagtge release in potential energy is equal to the surface energy

stateg at the applied loading levélis cost of the new break; i.e., if
Eole.11=(Co+ Cy+CyI?, (1) AE[¢®x,1]=¢,, (6)
Co=N, ) where
AE B x 1= E[¢B1]- E[ BU{X},I]:(C+82J >|2.
Ci=-c2 o (3) pl? pL® pL® " xyPy
xe)
(7)
Co=— 2 Jyoxy, (4) If e,>AE][¢®,x,] for any surviving cellx e I, there is no
X,y

break and the deformation can be further increased while the
wherec is a positive constant in the range<@<1 that is  System remains in the same stafé If a break happens in
independent of the damage or deformation stais,a small ~ cell X, which leads to the new statg® where E=BU{x}
positive parameter in the range<@/c<1 that controls the while the external deformatiohis kept constant, there is a
strength of the stress perturbations, dpdareO(1) coupling possibility of avalanche at fixetl if there is somey e E©
constants that allow for the load redistribution between cellsuch that
at positionsx andy when a cell is broken. Various spatial E
ranges forJ,, are considered includin@l) global load shar- AE[¢nY.1]1=ey. (8

ing in which casel,,=0; (2) local load sharing in which case |t there is more than one possible location satisfying @4,

Jy=a=>0 is a constant of order unity for pairy of nearest g gne that breaks is determined by maximizing the energy
neighbors, 0 otherwisé3) elastic load sharing in which case release: i.e., its location corresponds to

Jey~ (£1|x=y|])P where ¢ is the lattice step size; anth)

fiber-bundle elastic sharing with fibers interacting through an AE[¢Fy, 11— =max ec(AE[¢F zl]-€).  (9)
elastic plate in which casB=2 andJ,,~¢/|x-y| (see the
Appendiy. The avalanche te$Eq. (8)] is then computed again until the

The local load sharing cag®) can in principle happen in system stabilizes in a given configuration.
a fiber bundle stretched between plates enduring both elastic Eventually, although we have chosen to base the evolution
and plastic deformations capable of screening the stress peyt our damage model on minimization of energy, we note
turbations caused by broken fibers to only nearest neighborat the formal integration of path probabilities presented in
which always can carry some load if damaging them onlythe following sections could similarly be obtained as well for
decreases their elastic constéind.,c<<1). We treat cas¢2)  the case of a rule based on force thresholds, with at any
for the sake of generality and do not specify the detailecpiven external deformation a force carried per intact fiber
constitutive relations required for it to be realized in practice.equal to an average one, plus perturbations due to the already

The cost in surface energy to break any of the dgilsich  broken fibers. However, this approach will not be pursued
represents either the energy required to create new surfatere.
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[ll. PROBABILITY DISTRIBUTION OF DAMAGE STATES with n broken cells can be obtained by adding this probabil-
. ' ity P[e,l] for every statep containingn broken cells out of
The probability of occurrence of any damage configura N, so thatP[n, 1]=N!/[(N=n)!ntPo(H)T 1 -Po(h N,

tion ¢ is now determined when the system is at a given N .
external deformatio that was reached monotonicallyas The consequences of this distribution function for the me-
defined here does not include any elastic unloading chanical behavior and correlation length at the transition
More specifically, in the previous section, we have de-pOint of mfacroscopic fupture V\.’i” be developed in Sec. \./A
' ' As a consistency check, we will then show that the derived

fined a deterministic rule for the evolution of our studied bl d hanical f th N h
systems. Given a particular realization of the quenched gisgnsembie-averaged mechanical response of the system has

order(QD) over each lattice cell, and an initially intact state, exac_tly the tl;no?/_vn_tforfnlﬂ] for gg;)er bundle in global load
the system experiences a progressive damage that builds aBa,:lrlr][g, ,:E te Imkl' 0 atrge SIZES. d def tion level
as the external deformation is increased. Given a specific ote that working at an imposed deformation leve

emergent damage configuration over the lattice, and a finzifather than an |mpo§ed total foreeover the pundle, results
elongationl, we determine here what fraction of all possible In the Iocalldeformatlon Ieve! of gach cell being t.hat imposed
realizations of the QD lead to the given damage state at thg" the entire system. Considering instead an imposed total
given deformation. By definition, this probability of occur- |2 <€ ” carried by the bundle would require global informa-

- ; tion on the total number of broken celtsin order to know
rence integrates over all possible wagsid ordersthrough . X
which this configuration arises at final Consequently, the the elongation of each cefind hence the force carried by

probability distribution over configurations that we obtain each surviving cell In the present notation, the force carried

contains no information about the order at which the cellé)y an intapt cell idE/d=2l, the one carried by a'damaged
broke. cell is similarly 21 -c)l, so that the total force carried by the

The PDF we obtain thus corresponds to the classicaPtndle is7=(N-nc)2l. If we impose the total force on the
quantity estimated in numerical simulations of deterministic?undle as an external control parameter, the probability for
systems with QD in the damage thresholds; namely, given 21 Cell to break would depend both erand on the past
realizations of the QD, a specific damage configuration id!iStory of the bundle, through the dependence of the indi-
realizedn, times, and the probability of occurrence of this Vidual elongationsior forces on the numbem of already
configuration is estimated as the fractiofN, at largeN,. broken cells, since=17/[2(N-nc)]. Considering the imposed

We will first summarize the results for the simplest case[otal forcer as a control parameter allows us to compute the
global load sharing, which was performed id], and which ~ Statistics of avalanchgd4.0,12,13, but involves more com-

will serve as a basis for a perturbative treatment to includélicated expressions to obtain the probability of states at a
the effect of interactions. fixed global force leve[7]. This led us to choose here to

work instead at imposed global deformatigrwhich imme-
diately makes the states of the cells at given elongation in-
dependent random variables from each other in the GLS
In this case, the interaction term of E@) is C,=0 for  case. The advantage of this choice in the case of interactions
any configuration, and from Eg7), AEp[c,o,x,I]:cI2 regard-  of variable ranges, where these events are no longer statisti-
less of the state and new break locatior considered. cally independent, is that we will be able to analytically ex-
Each of the cells then shares the same level of deformgslore the effect of these interactions by a perturbative treate-
tion |, and the probability for any one of them to be broken isment from the simple Eq11) above.
simply (from the cumulative surface energy distribution

A. Global load sharing

cl? .
Po=P(e<cP? :J p(2)dz, (10) B. Local load sharing
0 1. Damage-state probability distribution
independently of the state of the other cells since there are no \We now consider the case where each broken cell in-

interactions between them, and each fiber simply sustains thgeases the local deformation by an amoast on each of
mean-field deformatioh, which was reached monotonically its nearest neighbors; i-e'-]xy:a' for each nearest-neighbor

from zero. o _ _ o pair, orJ,,=0 for more distant cells.
The probability of being in a given configuratignwith n Note that for a given celk, the potential energy release
cells broken out oN is then defined in Eq(7), AE,[¢,x,!], is a growing function of both
Plo.1]= Po()[1 - Py() V™. (11) the deformatiorl and the subset of cracked celisconsid-

ered; i.e., if we consider two subs&< D andx e DS, then

This corresponds to the behavior of a so-called "tWO-StatelEp[goD,X,l]ZAEP[(pB,XJ]. Physically, this inequality
system” in which each of thN independent sites has a prob- means that the local load over each cell increases with the
ability Py(l) of being broken and 1Pq(l) of being intact. external load imposed, and that any cell breaking anywhere

To avoid confusion, note that the above probability is theelse induces an additional increase in local load. This in-
probability of reaching apecific configuratiorp atl, which  equality will play a key role in obtaining the damage-state
specifies the state of every cell, and depends only on thprobability distribution.
number of broken cells in the statee in this GLS case. To aid the pedagogic development, we first derive the
Accordingly, the probabilityP[n,|] of reachingany state  probability of occurrence of a configuratiasf with n iso-
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lated broken cells forming a subsBt which do not share
any common nearest neighbors. There zm@mearest neigh-
bors to thesen cells (in a subsetF corresponding to the

boundary of broken cellsvherez is the coordination num- i L4 *
ber of the lattice considered. There are tien(z+1)n cells
completely isolated from the broken ones in the subset ¢ °

(BUF)C. For a cellx having broken from an intermediate
stage ¢* with ACB, at an intermediate external loaul
e€[0,I]], the change in the stored energy satisfies
AE[¢*,x,h]=ch?<cl?. For every cell having survived, we
have eitherAE,[¢®,x,1]=(c+ae)l? if xeF (x is on the
boundary of the broken cell setor AE,[¢®,x,l]=cl? if x - ®
e (BUF)® (x is completely disconnected from the broken
cell se). Applying Griffith’s principle [Eq. (6)] to every cell
and intermediate deformatiome [0,l], and using the mo- © ©

notony of AE,[ ¢,X,1] in both| and ¢, we obtain that a nec- 5 | g | numberof Configuration
. .. = i<} broken . .
essary and sufficient condition for all cellsBto be broken S | B | pelstibms displayed:
is that their surface-energy thresholds were bedttywhile 0 K52 )
those of their neighbors ik were above(c+as)l?, and the + |+ =aR=
remaining ones B U F)C abovecl®. Defining &l s i u=16 u; =11 u,=2

u;=1 u,=0

(ctae)l?
Pl(l):P(e<(c+as)I2):f p(2dz, (12 s | o 2 n,=1 n=4 n,=1
0

n,=0 n,=0

this then implies that o 3

Ple,x] = P3(L = Py)*(1 = P21 (13)
FIG. 1. Typical configuration and associated connectivity
is the probability of occurrence of such a configuration. measures.
We now pass to the more general case. In the argument,

we obtain upper and lower bounds for the probability of xcept a particular onee B which hask, broken neighbors
some arbitrary damage state, and then demonstrate that in tﬁ?the considered configuratiasf and hr;s a breaking energy
Iim_iF 8/(_:<_1, the two bounds converge to the unique pmb'betweemlz and(c+k ae)I?, thek, neighbors of this consid-
ability d|str|but|qn of Interest. . ered cellx will have broken with certainty at the ultimate

_ Forany cqnﬂgurauorw, Uk 1S defmgd as the number of loadl, so thatx will also break with certainty under the effect
intact cells withk broken nearest neighbors and as the of the overload due to its broken neighbors. The probability

?hurr’llber”of brolgenkcells W'Lk broke_n nelggborf.Nlﬁ Ou_f_r?f that this individual threshold broke under the sole effect of
eN cells are broken, we hawgn=n andX=N-n.The 4,0 o erad due to its neighbors can be expressed
way the above quantities are associated with any particular

configuration is illustrated in Fig. 1. APkX: ka(l) - Py(). (16)
For a cellx that broke from an intermediate state_ ¢

with k already broken neighbors i, at an external load, Thus, a lower bound for the probability of occurrence of the
we have configurationg® can be expressed as

AESLgxh] = (c + Kas)h?. (14) P68 1] > [P8+<E Ps‘lAkaﬂ T @-py% (17

xeB keN

Using again the monotony &E,, a necessary and sufficient ) _ a
condition for any intact cely e BC to have survived is that Where the index runs formally toN; however,u=0 when
its threshold exceedef\E[¢,y,|]. The probability for each k>z (the coordination number of the lattice

of these independent statistical events to occur is expressed FO7 @nY Cellx < B that broke, its aséio}ciated energy thresh-
as 1-P(l), where old was necessarily lower thakE[ ¢~ ,x,I] whereB\{x}

denotes the seB with cell {x} excluded from it. Thus, an
P (1) =P(e < (c+ kae)l?). (15) upper bound for the probability of occurrence of the configu-

ration under study is
For any cell that broke € B, we note that they have broken y

with certainty at the ultimate deformatidnif the external PleB 1< |11 Py, IT@-pyx

load was sufficient to trigger their break without the help of xeB k

overload due to breaks of the other ones; i.e., they have y

broken with certainty if their energy threshold was below = [HB(P0+APKX)]];[ (1 =Py (18
Xe

AEp(go‘z’,x,I):cI2 where Odenotes the empty séto broken
cells.. Furthermore, if every threshold iB was belowcl?, For a continuous PDF over threshol@shich guarantees no
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jumps in the cumulative distributioR and is the only restric- 4 ¥s )

tion placed on the PDFAP, is a quantity of ordet, andP, 1-p. 1 (surface tension (28)

is of order 1. In the limit of a Born modelweak stress 0

perturbations for whicle/c< 1), the upper and lower bounds where ¢ is the lattice step size. The first term in E@5)

for the probability of occurrence are identical to ordeiVe  accounts for the average energy required to break a cell, the

have thus established in this framework that second term for an increase in the probability of finding

some clusters of connected cracks due to positive interac-

tions between them, and the third term for a decrease in the

probability of finding clusters with a long interface between

cracked and noncracked regions due to the fact that intact

cells along the boundary are more likely to have broken from

overloading from cracked neighbors, thus leading to even
The above can be reexpressed for small interactions more fractured states.

<1 by a Taylor expansion of the cumulative QD distribution  |n the beginning of the process, the two first terms domi-

as nate, and to leading order

AP() = y()k, wherey=p(cl?)acl?. (20)
Then, Eqg.(19) becomes

Pl =TI P[] (1-Pyu. (19
m=0 k=0

2. ldentification of a surface tension and cohesion energy

~H[,1]=(n Pyn+2-Ln,. (29)
Po

In Plg,I]=1In 1__10(Po+ ym)™[ ] (1 - Py — k)%

k=0 C. Arbitrary-range interactions
(21 As long as screening effects are absent or negle@sd
they are in the present model of weak interact)pritbe
=nInPy+ (N-n)In(1-Py) above arguments based on Giriffith’s principle and the mo-
" " notony of AE, in ¢ and| extend directly to the case of
R 7 arbitrary ranges of interactions.
* Pozlmr}“ 1 —Poglkuk At external deformatior, a cell x (1) has broken with
certainty if the external load alone could break it, i.e., if its
=nIn Py + (N-n)in(1-Py) associated surface energy is lower tfudth and (2) is intact
y y with certainty if the external load plus the load perturbation
+ ZFn, - ﬁns, (22 due to the broken cells in the final configuration could not
0 0

break it at final deformation, i.e., if its surface energy is
where in the state consideredn is the number of broken higher than(c+z3,J,,¢%)12. Denoting
sites, andh, and ng refer, respectively, to the number of in- _ 5
ternal bonds between pairs of broken cells and the number of Po=P(e<cl, (30
boundary bonds between broken and intact cells.
These probabilities are thus of the form AP, = P(e < (c +e> nyg05>|2) -Pe<chP)
y

Plo,1] = P[o?]e" MPIA-Pol+2nPensi(1-Py)  (23)

. . _ = p(cP)el?Y] I, 31
with the probability of the intact state pche % xPy (3Y)
Ple?]=(1-P". (24 a necessary condition to end up at a certain configuratfon
y Lo e o
The probabilities are thus classic Boltzmann distributiongt deformatiort is that all surviving cells e B n ghat con-
P[¢]e™ where figuration have their threshold abotet ey J,,¢,)I%, and all

cells that brokexeB have their threshold below(c
P B\12
—H[<p,|]:ln[ ° ]n+z—7 n +eZydyey)I? Thus,

__7
(1-Py) P 1-P
R T, i Plo®1] < IT (Po+aPY [T (1-Po-4P) (32
For no interactionsy=0 and the above reduces to the global xeB 2¢BC

load model of Eq(11). Sincen andn, can be formally in- ) o
terpreted as volume integrals over the interior of clusters oProvides an upper bound for the probabilities in the case of
broken cells, andhs as a surface integral along the boundaryarbitrary ranges of interaction.

of these clusters, we can make the following analogies to the Conversely, a sufficient condition to end up in this con-
quantities of classical statistical physics: f|gurat|0n is that all surviving cells have their threshold

) ] above(c+sEnyy<p§‘)I2, and that the broken cells eithét)
In[Po/(1 = Pg)] — —w/T (chemical potential (26)  haye all their thresholds beloat?; or (2) all but one located
at x have such thresholds, the last one breaking only due to
Y —€ the overload from the others; i.e., the last one has its thresh-
2P0 T (bulk energy, @7 old bounded byl?<e<(c+ eEnyygof,‘)Iz. This gives a lower

ns. (25
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bound for the probability of the configuratiasf, alizations of the gqd, when the system has been brought to
5 average deformatiohstarting from an initially intact state.
PleB1]> 2> (Po+APy) II Po Il (1-Po-AP). The termn; now refers to the total number of cracks in the
x<B yeB\X  zepgC configurationj, while n is the statistical average of. A few
(33 classical results can directly be derived from these assump-
tions:
As earlier, both lower and upper bounds coincide to okder
so that upon Taylor expanding Fj¢,l] to this order, we B g AE=um)
again obtain the Boltzmannid®{ ¢,1]=P[¢?]e Hl*!] with an Pi=—">" (39
intact probability given again b[¢?]=(1-Py)N and
p(cl?)el? Z=> e PEu)
—H[g,1]=In[Py/(1 - Pg)In+ E ‘]xy(Px(Py ;
0 Xy
(el where B=4S/dU|,, and Bu=-34S/dn| . From these one
- p 2 yel-ey. (34)  further has
—Fo
In the beginning of the process, the two first terms once G=-In(2)/B,
again dominate and
G=U-9B-un,
e P(cP)el* X, Joeupy
—Hle,l]=In[Pyln+ . 35
[¢,11=In[P] P, (35) dG=rdl - SA1/8) - n du,

This expresses the equivalence between this most general
weakly interacting damage model and an Ising model with dU=r7dl+dSg+pdn, (39

generalized interaction rules.
where

IV. EQUIVALENCE WITH A MAXIMUM ENTROPY dE
POSTULATE =X p7 and 7= al_ (40)
We now obtain these same probability distributions using )

the standard entropy maximization argument. The reason fofhe thermodynamic parametegsand u are obtained here
doing this is to make explicit connection to usual thermostayy comparing Eq(38) to the earlier probabilities obtained by
tistics and to define a partition function from which all ther- gjrect integration over the microstate space.

modynamic properties of interest may be obtained through The PDF over configurations is a maximum of Shannon’s

differentiation. _ o entropy under the above constraints, if and only if there are
It is convenient to introduce the indgxto denote each o constantd, 1) such that

possible damage configuratign We postulate that the prob-
ability distribution function over configuratiorjsmaximizes H; - B(E,- - Mnj) =const [ j (41

Shannon'’s disordgi4?2]
with H; given by Eq.(34). From Egs.(1)—(4) and Eq.(34),

S=-2p;Inp (36)  we have
i
2\ 12
subject to the constraints —-H;= In< Po )nj + pehel > Jy®xpy
) 1 - PO PO Xy
Eijj:Ul Epjnj:n, Epjzl, O ], Ijzl, p(C|2)8|2
! ! - ?E Juyex(1—¢y),
(37) 0 xy

whereU is the total average energy that has been put into the
system ancd is again the average number of broken cells. Ej= (N-an -2 ny¢x¢y>|2,
The validity of this maximization postulate will be directly xy
demonstrated in what follows. However, independent of the
formal demonstration, one can anticipate that Shannon en- J 1-0)==37 +ndJ 42
tropy should be maximized since the initial quenched disor- Xzy L=y % XXy '2 " (42

der in the breaking energies allows each possible damage
configuration to be accessible. The constraints allow for thavhere translational invariance df,=J.-,-, has been as-
content of the Griffith principle and are what make certainsumed. Equatioif41) then requires
emergent damage states more probable than others. )

Throughout the remainder of the papey, denotes the B= p(cl) (43)
probability of finding a configuratio over all possible re- Po(1-Pp)’
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.= —_ ]2
/Flln[ Po }—I2<C+SPOE\L>. (44) Bj=(N=-cmyl®, (46)
B L(1-Poy p ,

Po p(cl)

Thus, the PDF over configurations indeed maximizes en- B(Ej~un) =- |”{ 1- PJ”J + Py(1- PO)[(N -cny)l?
tropy [Eqg. (36)] under the constraints of E437), with no

unknowns. The inverse temperature and chemical potential +an|2]

depend on the deformation level through E@) and(44). P,

They are well defined analytical functionslodind the model =In 1-p n; +f(1). (47)
~Fo

parameters considered, the qd distribution P@ and the
interaction couplingJ,. So the usual machinery of equilib- |ndependently, we also have the direct result from @d)
rium statistical mechanicEgs. (38) and (39)] is valid and o N . IN[Py/(1-Py]

can be used for any of our damage models. P = Pgl(1 = Pg)™ " = Poe™ oL (48

_The autocorrelation functiofip,e,) can therefore be ob- pyg the Boltzmann distribution E¢38) with temperature
tained in the standard way It§) defining a new Hamiltonian  and chemical potential given by Eq4.3) and(44) is indeed

Ej =E;+3,Qupy that incorporates a coupling with a formal jdentical to the known solution E48), which confirms the
external fieldQ,; (2) evaluating the associated generalizedyalidity of the expressions fof and .

partition functionZ’; and (3) performing second-order de- |t s also instructive to look at all terms in the first law Eq.
rivatives with respect to the external field, (39) to see exactly what they represent. The values of the
1 #7' average guantities in this simplest model can be obtained
(exy) = >, (45)  using the lemma

ﬁzz, &QXaQy Q=0 .

Second-order derivatives of the free ene@with respect to
B andu can also be directly related to variances of the num- _
ber of broken cracks; and the potential enerdg;, but these ~ Which is demonstrated by applying the operatakix to the

>, PGi(1 = Po)NMin; = NPy,
j

standard derivations are left to the reader. binomial theorem,

Note that the coupling constanisabove are nonrandom N
functions ofr. All randomness has been integrated over, giv- (x+y)N=>, ——xyN = nxyN,
ing rise to the Boltzmann distribution and the two statistical n=o (N=n)!n! i

parameters3 and u. An alternative approach used by other
authors on similar systems, namely, random fuse network
would be to not integrate over the underlying quenched dis-

nd then takingk=P, andy=1-P,. Using Eqgs.(36), (37),
40), (46), and(48), one obtains

order, but to instead map the quasistatic evolving system n=PyN, (49
onto a random field Ising mod@#3] with zero temperature.
In this case, the underlying quenched disorder would mani- u=> PI(1 - PN (N - an)|2 =N(1-cPy)l?, (50)

fest as randomness in the coupling parameters of some j

Hamiltonian function that must be minimized to obtain the

realized configurations. This is an alternative approach quite S=-N[PgyIn Py+ (1 -PgyIn(1-Py)], (51)
distinct from the one used here. Our approach is the usual

one of equilibrium statistical mechanics, in which the cou-

pling constants are nonrandom functions, but there are many T = El =(N-cm)2l, (52
configurations in the neighborhood of the minimum of the
HamiltonianH that are of statistical importance in determin- 7=N(1-cPp)2l. (53)

ing the average properties of the system.

The energy yardstick Jd (temperaturg that decides Taking the derivatives of these quantities yields
whether a given configuration is statistically significant be- dn=N dP (54)
haves regularly throughout the damage prodesdeast for o
continuous QD distributions In the case of a uniform QD =
on [0,1], it will take the particularly simple form 13 ds= In[ 2 ]dPO,
=Py(1-Py), starting from zero and going back to it, with a —ro
maximum whenPy,=1/2. Thechemical potentiak behaves

regularly as well. Ldn= ( Po(1 -Py) In{ Po ] _ cI2>N dp,,
p(cl?) 1-P,
V. APPLICATIONS
dS_ P1-P P
G ds_ _ Py o)l N dp,
. Global load model B p(cl?) 1-P,

A consistency check of the results in Sec. IV is now per-
formed for the case of the simple global load sharing model. dn+ d_S: —clPNdP
From Egs.(43) and(44) with J,=0, we have ® B o
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7dl=N(1 -cPy)2ldl, B. Local load model

In this caseJ,,=a whenx,y are nearest neighbors, and
zero otherwise. To make explicit connection to the Ising
model in its usual form, we map the order parameter onto
{-1,1} by defining c=2¢-1. The probability distribution
over configurations is then

which is a consistency check for the validity of the first law _
[Eq. (39)]. The average mechanical behavior of this model, Plo.l]= eXF{'B<E§ ‘TX+J<XEy> Ux“y)]/Z' (59)

as well as the evolution of entropy and formal temperature,
are illustrated in Fig. 2 for flat QD distributions between 0 where(xy) denotes a sum on nearest neighbors only. This is
andl . and for various values af (the parameter that con- exactly the classical Ising model, with coupling constant and
trols the relative change in stiffness due to a cell bregking external field given by

Most importantly for our present purposes, since the o 12
probabity P, of having a site broken in this model is inde- BI= ap(cl)el (60)

ds
pn+ =4 mdl =N(L - Py ol - CI’N dP,,

=d[N(1 - cPy)l?]=dU,

pendent of the configuration and site location, the global load 4Py(1-Py)’
sharing damage model is exactly equivalent to the percola-
tion model with occupation probabilityPy(l). There is a 1 Po 2ap(cld)el?
critical-point phase transition in this model, whéh(l.) BE=3 | N : (62)
=1/2, forwhich S goes through a maximur@=N In 2. The 0 0
correlation length diverges then as The critical point of this model is d#45]

&~ [Po(l) - 1/2™ (55 (BIe, BE) = (A, 0)

with »=4/3 in dimensionD=2 [44]. We have in general with A.=In(1+42)/2. The external field3E starts at infi-
nitely negative values, and ends up at infinitely positive ones.

2
Po(l) = Po(le) ~ p(cle)( = 1o) (56) It evolves continuously and thus necessarily crodses at
and thus thel, satisfying, from Eq(61),
E~|l=145. (57) Po(l{In[1 = Po(19)] = IN[Po(1) 1} = 4ap(clel?. (62)

In pathological cases, special QD distributions satisfyThe mean-field percolation result &%(Ic)=1/2 is thus re-
p(cl2)=0 so thatPy(l) = Py(l) ~ (I=1)* with a# 1. This re- covered when the coupling vanishes=0), which is a con-
sults in sistency check.
More generally, for nonzero nearest coupling constants
£~ |l =17, (58)  the system will undergo a first-order transition iflatsatis-

Note that in Ref[11], we have treated this model wiih fying Eq. (62) the formal inverse temperature satisfies

=1, which did not change anything in the nature of the tran- ap(cldel?

sition, but only changed the minimum stiffness associated Bl)I= P11 - Po(0)]

with the most damaged configuration wherg,;,=2N(1 ote ote

-0)l, and, consequently, the position or existence of a peak _In[1-Py(l)] - In[Py(l)] 63
stress in the average mechanical respafigeThis is seen in - 161 - Py(lo)] Ac- (63)

Fig. 2b): the existence, and the position of a possible peak- . .
stress position relative to the percolation transitiolack dot ~Depending on the value g8(lc)J, the system can display
1/1ma=1/72), depends on the particular model consideredfour types of behavior, which are schematically depicted in
However, the divergence of the correlation length and thé19: 3- o i .
associated critical-point nature of the percolation transition () For many QD distributions, the first value bf satis-
are insensitive te. fying Eq. (62) occurs for very small values d¥(l.), which

The present approach does not allow a direct exploratiogorrespond to small values ofeP(cl2)zlZ, since x In[(1
of the avalanche distributions as the critical point is ap-—X)/x]—0" when x—0. In this case, Kl
proached. This is because the probability distribution over-Po(lo)1/Po(lo)}/[1=Po(le)]==In[Py(l)]=1, and the condi-
configurations was obtained at each elongatitny averag- tion of Eq.(63) is satisfied. The system thus goes through a
ing over all realizations of the quenched disorder. To obtairfirst-order phase transition at thisand there is a discontinu-
directly a result on avalanches, on the contrary, correlationsus jump in the average number of broken cells and the
between successive elongations should be considered fawerage streséwvhich are related to first derivatives of the
each realization of the QD, and the average over the QDree energy with respect tbor u, and are similar to the
should only be considered afterward. Our damage modelverage number of spins up in an Ising moddi6]. The
nonetheless behaves as a fiber bundle with GLS for whicleorrelation length increases up to the transition but remains
results about the avalanche distribution have been detefinite. All of this behavior for such local load models has
mined[10,12,13. been documented in the literatyre2,13,19.
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FIG. 3. Possible paths in the space of coupling constants of
Ising models, under increasing imposed elongation associated with
different local load sharing damage models.

QD distribution and the value of the coupling constant
Wheng(l.)J<A., no first-order transition is encountered and
one can further classify the transition into three subcatego-
ries.

(i) If B(I.) has a finite value of order unity, significantly
below A., the system simply goes continuously throdgh
without discontinuity in sustained load or average number of
cracks. The correlation length remains finite.

(i) If B(I;)J<1 (which should happen for vanishing),
the distribution over configurations is dominated by the ex-
ternal field, and the system essentially behaves as a percola-
tion model going through the percolation transition. Al-
though there should be corrections due to the nonzero
character of3(l;)J, these might be smaller than the finite size
corrections in numerical realizations, and the correlation
length would then be found to diverge up to the system size
asé~|[I-I ™"

(iv) Finally, if B(1c)J~A_, the system comes close to the
critical point of the Ising model at., and the correlation
length should diverge correspondingly as in an Ising system
whose temperature comes close toAJ#T. from above,
while the external field changes sign. The slope of the aver-
age mechanical curvel) should also locally diverge around
I.. The exponents associated with the divergenceg af a
function of (I-1,) depend on the way the critical point is

FIG. 2. Thermodynamic and mechanical response as a functiogpproached as a function of For values ofl such that

of imposed deformation for the global load sharing moda):the
difference between the average Young's modullisand the mini-
mum Young's modulug,,/| (which holds in the entirely damaged
configuration; (b) average stress for a few particular modétee
black dot is the percolation critical-point transitjpric) Shannon

entropy; andd) temperature.

However, three other behaviors are also possible if
B(1)I< A at the point. at which the external field vanishes

BE()<1, we write 1/8(1)J~T+f(l), and &~ [T(1)-T™
=|f(l)|™ where v=1 for the two dimensional2D) Ising
model. The correlation length therefore divergeslas,| ™,
unless the temperature has a quadratic minimuhtlose to
I in which case it diverges db-12".

C. Power-law decay
We last consider the general case of stress perturbations

[Eq. (62)]. Whether this occurs is controlled by the type of decaying as power laws of the distance to broken cells,
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J(X) ~ a(x/d)"?/®(y), where « is of order unity,d is the For the Curie-Weiss model, the PDF over state
lattice constant, an®(y) =3, .(ly-X//d)~ is a normalizing ~ configurations is  Plo]xexd BEZ oyt 2yoxay/N)]
factor (which depends on the lattice sizejit>D, whereD is % eXp{B[EZ 0+ (E40,)?/ 2N]}.

the system dimensionTo be consistent, the models consid-  All this suggests the following classifications of our dam-
ered here are biperiodic of linear sizeand the interactions age models. _ .

are put to 0 for distances abole This type of model, con- (1) If the coupling constant is smalkk<1), the damage
sidered for example by Hidalget al. [15,16], allows us to model is close to the percolation model so that in the ap-
span ranges between purely global sharintpen y=0) to ~ proach to the transition at elongatidg, the correlation
the local sharing limit(y— o). Equations(42)—(44) show length behaves a&~ |I-I¢[™*, with v=4/3.

that this model leads to probability distributions over con- (2) For non-negligible coupling constants, in the

figurations of the form shorter-range casg>D, we recover the same three possible
behaviors as described above for the local load sharing rule.
P[o,l]zex;{ﬂ(EE ot > J(|x—y|)crxcry)]/2, (3) In the longer-range case whege<D, we again re-
x x*y cover the same four types of scenarios depending on the ratio

(64) B()/A. (as discussed in the local load sharing ¢a3ée
I . . ) . _model behaves as percolation wher<1. Otherwise, the
which is a generalized Io_ng—ra.nge Ising model with Coum'ngbehavior is determined by the rati(l)/A.. Note thatA, is
constants and external field given by of order unity, but depends on the particular expongand
ap(cl?)el? (r/d)™ on the system size. |8(I)/A.<1, the system behaves con-

BIr) = 4Py(1-Py) () (65 tinuously and no transition is observed Afl;)/A.>1, there
is a discrete jump in both the average number of broken cells
1 Po ap(cl?el? and the sustained load. The correlation length remains finite
BE= > In( 1= Po> 2P, (66) in both of these two cases. Only the limiting case of

B(l)/A.~1 corresponds to a second-order phase transition.
Note that although the cage— « is isomorphic to the local In any of these cases, for large enough systems, the Curie-
load sharing model introduced in the previous section, th&\Veiss description holds according to Rg#6—-48. Accord-
global load sharing model of Sec. V A correspondsxte0,  ingly, if there is any divergence of correlation length due to
but not to the exponeng=0. The presence of the quadratic the system coming close #(I.)/A.~1 atE=0, the associ-
coupling makes this latter case isomorphic to a Curie-Weisated exponents should be those of the Curie-Weiss mean-
model, which is the mean-field theory of Ising models. field critical point(ry=1/2), and not the Ising one.

Such long-range Ising models are still an open area of These results can be compared to numerical-simulation
research, with the precise value of the critical point for anyresults in the literature for related models. In fiber-bundle
power-law interaction not precisely known. Nonetheless, itmodels with power-law interactiongl5], a transition has
has been proposdd6-4§ that one can classify the critical- been found as a function of the interaction expongtitat is
ity into two categories depending on whethgr-D or vy consistent with the above analysis, predicting mean-field be-
<D. In the shorter-range casg>D, this model admits a havior for the long-range cage<D, and Ising-like behavior
traditional thermodynamic limit wheh— . Although®(y) in the short-range casg>D. Typical configurations prior to
diverges wherlL —«, the thermodynamic limit is well de- breakdown for this type of system are displayed in Fig. 5 of
fined onced(y) is introduced into the coupling constants Ref.[15], and look very similar to percolation configurations
J(r)=(r/d)~"/®(y). Thus, the free or internal energy per lat- close to the transition in the cage=0, displaying smaller
tice site, entropy, and magnetization all admit a finite limitand smaller cluster sizésharacteristic of the autocorrelation
whenL — oo, and are functions gB and the external fielé. length and compact configurations gsincreases abovB.

As y— = in the thermodynamic limit, Eq65) reduces to the This is coherent with a mean-field behavior close to perco-
result of the standard Ising modétg. (60)] and so lation transition in the first case, as opposed to a first-order

. = transition(analogous to Ising model crossiig0 belowT,)

L”l Be=In(1+V2)/2. when y<D. This analogy is even more apparent in Fig. 7,
bottom, of Ref[16], where an extension of this model was
It has also been show#8] that asy— D", B.~1. Thus, for  considered, with time-delayed fiber breaking process in ad-
y/D in the range[1*,x], B; is bound between 1 and(lh  dition to power-law decaying interactio&6].

+v‘§)/2. However, more precise details of hog varies Burned fuse models, in which the interactions between
with +y in this range are not presently available. burned fuses decay asrP/ exhibit diverging autocorrelation
In the other category of longer-range interactions wherdengths at breakdown, witl§~ |I-1¢~, wherel is the im-

vID lies in[0,17], the only thing certain is that whew/D posed voltage, and is equal to the percolation exponent
=0, the Curie-Weiss model is obtained for whighis also  [44], v=4/3 in 2D[22,50 or 0.88 in 3D[51]. Rouxet al.

of order unity. It has thus been conjectured that all power-lawy50] showed that in the limit of “infinitely large” disorder,
interactions for whichy/D <1 should be in the Curie-Weiss such models are isomorphic to percolation models. When the
universality clasg§49]. The Curie-Weiss model corresponds disorder is less pronounced, stress concentration leads to re-
to the mean-field couplingl,,=1/N, independently of gimes of localizing damage. At low disorders, stress concen-
x andy, whereN is the total number of cells in the system. tration entirely dominates, and fuses burn in clusters of size
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scaling as the lattice step, leading to a so-called “total localpicture, since the overload created by broken cells induces
ization regime.” At intermediate disorders, fuses burn essersome degree of spatial ordering that competes with the weak-
tially in regions that scale as the lateral size of the systenest cell mechanism. By limiting ourselves to small overloads
(size in the direction perpendicular to the main current flow compared to the average load of the system, it was possible
a priori much larger than the lattice step, which constitutesto obtain the probability of damage configurations as inte-
the “soft localization regime22,52. It has been shown grated over all realizations of the quenched disorder.
[22,51 that such a process is still in the percolation univer- In this weak interaction limit, the resulting probability

sality class, in the sense that there is still a growing autocordistributions were shown to be Boltzmannians in the number

relation length with an exponent identical to the percolation® Proken cells and in the stored elastic energy. This type of

one. Based on the fact that these soft localizing regimes aiglistribution maximizes Shannon’s entropy under constraints

in the percolation universality class, coupled with the Iarge-related to the energetic balance of the fractu_re process, and
. . we have demonstrated the formal relationship between our
scale profile of damage in the system, Hanseral. [22]

related the roughness of the final fracture spanning througﬁuenched-msorder damage models and the standard distribu-

h h lation lenath t based ons arising in equilibrium statistical mechanics. This then
the system to the autocorrelation length exponent, base Ullows the standard toolbox of statistical mechanics to be

arguments of percolation in a gradient, and this properly Preapplied to our damage models.
dicts the Hurst exponent of the final damage fronts, in both ™ o, systems map onto three types of possible behaviors:
2D and 3D. The morphology of the connected *fracture” at(1) percolation models in the case of interactions so weak
breakdown is oriented, and different from percolating clus-they may be neglected?) Ising models for non-negligible
ters in the percolation model. This is related to the anisoshort-range interactions; an¢B) Curie-Weiss mean-field
tropic character of interactions in the burned fuse model; i-e-theory for non-negligible long-range interactions. The tem-
the current perturbation from a burned fuse varies as a dipgserature and external field in the partition function of our
lar field decaying as ¥P, but also having an orientational models are analytical functions that depend on the particular
aspect not included in the models under study in this Pape€sharing rule, on the type of quenched disorder considered,
This anisotropic aspect is absent from the models discusseghg on the average elongatidar deformation externally
here, but the fact that the autocorrelation length exponent ig)aded onto the system. The path followed in the Ising con-
similar to the ones of percolation is coherent with the facty,q parameter space when the load is increased from 0 de-
that long-range systems are in the percolation universalithends on the qd distribution and the load sharing rule. When
class. Burned fuse systems are at the overlap between shofie formal external field changes sign, a phase transition is
and long-range interactions, in the sense that they correspofgssiple. This can correspond to a first-order phase transi-
to y=D. ] ] tion, a percolationlike transition, or an Ising critical-point
Last, fiber bundles connected to elastic plates, where transition, depending on the value of the formal temperature
=1 andD=2, have been numerically studied in Rgf8] and during the transition.
an autocorrelation length exponent o= 1.54 numerically The systems studied here are limited to isotropic load per-
determined. The discrepancy between this result and the pefgrpations. We have earlier studied oriented crack models in
colation or Curie-Weiss critical-point result might presum-39_41), which correspond to anisotropic load perturbations
ably result from finite-size effects making this modet  that depend on the orientation of the crack opened in the
=1) still significantly different from the Curie-Weiss one |attice. Those earlier studies were based on an entropy-
(y=0), or from the fact that the stress perturbation in thismaximum assumption. The hypotheses of the present work
numerical model might have been too large for the interacextend directly to oriented systems, and so the present paper
tions to be considered we&k requirement for the validity of  justifies the entropy-maximum assumption postulated in our

the present analysis earlier work. The precise value of the temperature, and the
physical interpretation of the functional forms given in
VI. CONCLUSIONS [39—41], should be modified according to the results of this

paper. Such modifications will, however, result in identical

We have treated a class of damage models having wedkinctional forms relating the configuration space and the
isotropic interactions between cells that become damaged IRDF over configurations, and thus the present work confirms
the lattice. A quenched disorder is present in the rupture erthe existence of a phase transition in such an oriented crack
ergies for each lattice cell, and the evolution of damage isnodel, with an associated divergence exponent of the auto-
ruled by the Griffith principle. Averaging over all possible correlation lengthv=2.
realizations of the underlying quenched disorder, the prob- Experimentally, the emergence of correlated damage at
ability distribution of each possible damage configurationlarge scale has an important influence on the macroscopic
was obtained as a function of the deformation externally aprupture of a heterogeneous object. For example, the rough-
plied to the system. ness of natural fracture surfaces, whose universality has long

The exact calculation is analytically tractable in the casebeen observed experimental§3], has recently been related
of a global load sharing model, and it has been shown to b the behavior of the divergence of the damage correlation
isomorphic to a percolation model. This corresponds to théength at the approach to breakdo{@®]. Damage correlated
behavior of a system totally dominated by the underlyingat large scale should also leave a signature on elastic wave
disorder, where the next cell to break is always the weakestcattering through the damaged material. The knowledge of
one. Spatial interactions added to the system modify thishe behavior of a damage autocorrelation function, as frac-
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turing progresses, is thus experimentally relevant in monitor- r=[(x,—y)?+ (% — yp)? + Xg]l/Z_ (A8)
ing the approach to macroscopic failure or shear banding _ .
through the use of elastic-scattering experiments. Putting x;=0 in the expression fous(x;y) and then sum-
ming over ally yields the expression for the displacemapt
APPENDIX: RECOVERABLE ENERGY AS A FUNCTION of the surface.
OF THE DAMAGE STATE We now define the dimensionless number

The argument here will be specific to a fiber bundle 1-0dYe A
model. However, as noted in the text, other weak damage &= ﬂ_F_F (A9)
models will also be controlled by the same type of stored- 7 YslLelp
energy function obtained here. )

Define a fiber bundle a@nitially) N fibers stretched be- where a lengti.p has been defined as
tween a free rigid plate and an elastic half space. The rigid 1 1
plate has a controlled displacemehtapplied to it that —=> —— (A10)

stretches the fibers and the elastic half space. As a fiber Le yax ly = x|
breaks at fixed, the force it held will be transmitted to the i.e., this sum is independent of which poinis considered.

other fibers through the elastic half space. . . . >
, . . ; Assuming either that the elastic half space is stiffer than the
A fiber at pointx is stretched a distancé,. Where that fibers, or that each fiber has a length much greater than its

fiber is attac_hed_ to the elastic half space, the surface of th\?/idth, or that fibers are spaced far enough apart thais
hﬁlf spacc—;-] IS (]:(Illts)placed_ by anh amount Thus, at those large, allowse to be considered a small number. SI{Elce the
placesx where fibers exist, we have fiber bundle is assumed to be made of a finite nunttber
| =€, +u,. (A1) fibers, there is no divergence Lg.
Using these definitions along with,=I-¢, and iterating

The fiber at pointx exerts a force on the elastic half space Eq. (A4) once to get the leading order incontribution gives

that is
L
fM%J+O@%. (A11)

fx tx gy (— 1+
= =Ye(1l-¢)—, A2 -LTe

A F(l-¢0) Le (A2) | yx 1Y
whereA; is the cross-sectional area of the fijassumed to The elastic strain energy reversibly stored in each surviving
be independent of the extensjoibg is the inital length of fiber is then

each fiber, and/r is the Young’s modulus of each fiber. The

2
local order parametep, is O if the fiber is intact and 1 if £ = lf ¢ :}AFYFIZ 1- (ﬁ) ALD
broken. X272 L (1= I (A12)
The Green function for point forces acting on the surface
of an elastic half spackb4] yields _}AFYF|2 N
1 _0_,2 f _2 L Px € (2%
U= Ug(X) = — =2 2 —— (A3) i
Y5 y#X |y - X| Lp
P +2> Yo Lmed (. (A1)
1-0SYEA 1- y#x
Lo Yeles Uoe),
T YsLlpyax Iy =X where terms 0f(e?) have been dropped. Thus, upon sum-

(A4) ming over all the fibers we obtain the total enekgystored
in the fibers as a function of the damage state
whereY; is the Young’s modulus and, the Poisson’s ratio .
of the elastic solid. In general, the displacement at a point EF=E E,== F Flz[(l —2e)N-(1-46) o
X

X=(Xq,Xo,X3) Within the elastic solidwherex;=0 defines the ™ 2 Lg
surface due to a point force acting at a poiyt (y;,Y,,0) on
the surfacdi.e., f(x)=f,8(x—y)3] is given by B SX%X ny@x@y]’ (A14)
Uy = 1 +0—S{ %y Zl)x3 _2-20904 yl)]fy, (A5)  where the coupling constant is defined as
27Yy r r(r+xs)
2Lp
1+og] (=Yg (1=209(%-¥)) R—E (A15)
Uz = 3 fy, (A6) ly = x|
27Yy r r(r+xs)
This form of the fiber energy is consistent with what was
1+ 0, x% 2(1-0y) defined in the text.
Uz = Y. | 13 + ] fy, (A7) We now demonstrate that the energy recoverably stored in
s the elastic solid makes no important modificatiorete The
where strain energy in the solid is given by
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Ys

oy
Es= o o
S 2(1+0's) x>0 ( €k |k 1-

d*x >,

y#X
(A16)

where summation over the indices is assumed and where trf

strain tensor is defined as

ei(X; )—2(

The displacements are given by E¢a5)—(A7).
From these equations, the strain at poirténside the
elastic solid takes the leading orderdrform

u(X;y)
Xy

19Uk(X;y)). (A17)

X

|k(X y)

elk:8“-P|:Cik+8 = Ik —y[2 @y], (A18)
Y#X

PHYSICAL REVIEW E1, 046127(2009

volume integrates to zero. The tendgrhas no dependence
on the normx-y|; however, this fact is immaterial sindg
plays no important role.

Upon forming the required products for the integrand in
Eg. (A16), and using the fact that terms linear in the broken-
ber perturbations integrate to zero, one obtains that the en-
ergy stored in the elastic solid is

1ACYE

E.=
s2L

——1%VL (Cikcik + %ﬁ)[l +0(&?)],
~ 20,

(A19)

whereV is the volume integrated ovéassumed finite In
other words, any energy stored in the elastic solid that is due
to the interaction between fibers ¢§ smaller than the lead-

ing order contribution which itself can be considered small.

The leading order contribution depends only on the average
where the constant tensay, has units of inverse-length number of broken fibers and thus does not alter the analytical
squared and the average strain tensor throughout the elasfarm of Eq. (A14). Thus, the energy stored in the elastic

solid iselL pci. The perturbation term due to the broken fiber solid plays no essential role in the damage model.
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