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Pattern formation during air injection into granular materials confined in a circular
Hele-Shaw cell

@. Johnsen!, R. Toussaint 2, K. J. Malgy', and E. G. Flekkgy!
L Department of Physics, University of Oslo, P.0.Box 1048 Blindern, 0316 Oslo, Norway.
2 IPGS University Louis Pasteur of Strasbourg, France
(Dated: April 12, 2006)

We investigate the dynamics of granular materials confined in a radial Hele-Shaw cell, during
central air injection. The behavior of this granular system, driven by its interstitial fluid, is studied
both experimentally and numerically. This allows us to explore the associated pattern formation

process, characterize its features and dynamics.

function of the injection pressure.

We classify different hydrodynamic regimes as

The numerical model takes into account the interactions between the granular material and the
interstitial fluid, as well as the solid-solid interactions between the grains and the confining plates.
Numerical and experimental results are comparable, both to reproduce the hydrodynamical regimes
experimentally observed, as well as the dynamical features associated to fingering and compacting.

PACS numbers: 81.05.Rm, 47.11.+j, 83.50.-v

I. INTRODUCTION

We have studied pattern formations during air injec-
tion in a granular material confined in a radial Hele-Shaw
cell [1] and characterized and quantified the features of
the granular pattern formations and the associated dy-
namic processes.

The dry porous matrix is loosely packed inside the cell,
and the particles are able to move together with the fluid
phase. The origin of the instability is similar to what
was described by Saffmann and Taylor [2]. The pressure
gradient in the fluid is the driving force of the granular
motion. The pressure is more or less constant within a
central grain less region and the driving pressure gradient
is largest at the tip of the longest finger of this structure.
According to Darcy’s law [3], the fluid flow and the fluid
drag is highest at the tips, so that the growth of the most
advanced finger is favored on expense of the rest of the
structure. The stabilizing mechanism on the other hand
is not surface tension as in the classical Saffmann-Taylor
system, but friction mobilized between the granular ma-
terial and the confining plates. The resulting patterns
observed are either uniform, almost circular shaped pat-
terns or branched finger patterns, depending on the in-
jection pressure.

We are dealing with a coupled fluid—grain flow where
the grains are small and gas-grain interactions are of cen-
tral importance. Such interactions play a key role in a
wide range of systems from fluidized beds [4-7] to flow
in tubes [8-13], and ticking hour glasses [14, 15].

A system similar to ours where a fluid invades a con-
fined granular material was studied experimentally by
van Damme et al [16] in 1993. In contrast to this study
ours involve quantitative measurements and compari-
son with simulations. In the situation where a fluid
is retracted from a confined non-consolidated porous
medium, several hydrodynamic regimes have also been
reported [17, 18].

Other systems with general similarities and important

geological aspects to it include those of multiphase flow in
porous media [19-39]. The pattern formations and insta-
bilities that we observe in our system bear resemblance
to those seen in Hele-Shaw cell experiments using both
Newtonian [2, 40-42] and Non-Newtonian fluids [43-46].
In the Non-Newtonian case a transition from a viscous
fingering (VF) regime to a viscoelastic fracturing regime
[47, 48] has been observed. The difference between these
studies and the present one is that our structures depend
entirely on the existence of static and sliding friction.

Like the viscoelastic fracture experiments our system
can provide insight into the underlying physics of geo-
logical hydro-fracture processes [49-53]. However, while
fracture in viscoelastic media involve separated fluids, the
experiment involve inter-penetrating phases, and there is
an effect of pressure diffusion of the air through the grain
packing which has no analog in the viscoelastic systems.
Unlike our system of non-consolidated grains viscoelastic
fracturing and hydraulic fracturing of solids have been
previously studied by numerical simulations [54-57].

This article is organized as follows: in section II, the
experimental model, setup and sample preparations is
described. In section III, we give a classification of the
observed pressure regimes and discuss the underlying
physics. In section IV we present our simulation model
and basic equations used in the algorithm. In section
V, the classification of the different regimes is recovered
in the simulations. Then we turn to quantitative mea-
sures on our system in section VI before concluding and
summarizing in section VII.

II. SYSTEM DESCRIPTION

The system consists of a horizontally fixed circular
Hele-Shaw cell [1] 0.45 m in diameter, separated with
1 mm ball bearing beads and then clamped together at
three points. The injection hole is 6 mm in diameter.
The granular material, consists of polydisperse spherical



glass beads, with diameters between 75-150 pum. Beads
of this size are sensitive to the humidity of the ambi-
ent air; excessive humidity creates capillary bridges be-
tween the particles making the material more cohesive,
while at a too low humidity the electrostatic forces make
them stick together. The relative humidity in the room
is therefore controlled at approximately 30% using a hu-
midifier /dehumidifier.

Filling the Hele-Shaw cell homogeneously with powder
is not an easy and straight forward task and might be re-
alized in many different ways. In order to have a loosely
packed granular layer as homogeneous as possible, and to
optimize the reproducibility of the initial state, we have
developed the following filling procedure: We keep the
cell in an upright position. close the bottom boundary
and let the particles rain down continuously over the sys-
tem width using a guide, instead of filling from a point
which gives texture of different density due to avalanches
around the angle of repose. The particles are packed un-
der gravity when held vertically and the Janssen effect
contributes to making the granular packing density ho-
mogeneous [58].

The cell is placed in a horizontal position after it is
filled, the side boundary is opened, and the air inlet
is connected to a gravitationally driven pressure control
device. Two Honeywell 26PCAFAG6G pressure sensors
records the pressure at the inlet and in the middle of
the cell. At the same time as the pressure recording is
started, images are taken every 1/250 s using a Redlake
MotionPro high-speed CCD camera with spatial resolu-
tion of 1280 x 1280. Central injection of air into the
model is triggered by switching a magnetic valve open,
one second after the image and the pressure recording is
initiated. Fig. 1 shows a simple sketch of the experimen-
tal setup.

III. CLASSIFICATION OF OBSERVED REGIMES
A. Phenomenology

The characteristics of the pattern formation changes
with the injection pressure. At threshold values for the
injection pressure there are sharp transitions from one
situation to the other. By tuning the injection pressure
in small steps, we find pressure thresholds that separate
four pressure regimes.

The first pressure regime:

AP<P1

When the injection pressure AP is smaller than P; no
pattern will form in the granular material. The pressure
is not high enough to displace particles, so the injected air
just permeates through the pores of the granular layer.
Below this threshold we define the first pressure regime.
Given the conditions for our experimental configuration,

Image High Speed
Processot High Resolution
Digital Camera

MATLAB

h Granmular material
A
GPB |+ Multimeter
Fa— Pressure Sensor: Magnetic
1 Supply Switch/Valve
12V, 1A)
Compressed Air

FIG. 1: Experimental setup: The horizontally fixed Hele-
Shaw cell is connected to a pressure source. A high-speed,
high-resolution CCD camera is used to follow the develop-
ment of the displacement pattern and the pressure is read at
the inlet and in the middle of the sample. Air is injected at
constant overpressure in the center of the cell when the mag-
netic valve is triggered to open, and a displacement pattern
appears.

P; = 0.20 kPa will be the lower threshold for pattern
formation.

Note that although the granular velocity is zero in this
situation, the fluid velocity is finite. As can be estab-
lished by flux measurements or by pressure measurements
and use of the Darcy law, the typical air velocity decays
radially from around 30 mm.s~! along the injection zone
to 0.4 mm.s~! close to the outer boundary, for AP ~ Py.

The second pressure regime: Py < AP < P»

For injection pressures P; < AP < P, defined as
the second pressure regime, the particles are pushed out-
wards, leaving a relatively small and quite circular pat-
tern with no grains, as shown in Fig. 2. Experimentally
we find the lower threshold for pattern formation to be
P, =~ 0.20 kPa and the upper threshold for this regime
P, 1.90 + 0.1 kPa. The emptied structure is typi-
cally stabilized after ~ 0.1 s. The size of the structure
increases with increasing pressure.

As the emptied structure grows the material ahead of
the structure compactifies over a depth dependent on the
size of the structure. With sufficiently high spatial reso-
lution this zone can be found using image analysis. By
subtracting, pixel by pixel, the image at a given time from
an image taken before gas injection, we can detect minute
motions of grains. By thresholding this subtraction im-
age there is a well defined densely speckled region, like
a halo, around the emptied zone. By performing noise
averaging on the difference image we can detect the front



FIG. 2: A picture of a fully developed structure within the
second pressure regime at injection pressure AP = 1.26kPa.
Ahead of the emptied region there is a zone where the material
is compacted shown by the white line.

of the compacted region. An example of this front is
inserted onto the image from the experiment in Fig. 2.

The more or less circular uniform structures which are
empty of grains in the second regime is observed up to
AP = 2.00 kPa, at which point the structure becomes
unstable.

This circular symmetry breaking is quantitatively iden-
tified as follows: the boundary of the final empty region
has radial coordinates bounded by 7, and 7p,4,. When
Tmaz/Tmin > 2, the pattern is classified as characteristic
of the third pressure regime.

The third pressure regime: Po» < AP < P3

Between P, and P5, an instability in the displacement
process becomes significant, and a finger pattern very
similar to those seen for invasion in non-Newtonian fluids
starts developing (cf Fig. 3). We find P, = 1.90+0.1 kPa
and P3 = 2.40 £ 0.1 kPa. The structure typically ceases
to grow and stabilizes by ~ 0.1 s after initiation. The in-
stability over the front appears as branched fingers. The
number of fingers at a given pressure is variable among
different experiments. This can be attributed to a strong
sensitivity to the details of the initial state. However,
a noticeable trend is that the structure develops more in
the direction along which the particles where poured into
the cell.

During filling the cell is held vertically and the particles
are packed under gravity, which results in the friction
between the granular layer and the confining plates being
polarized in the opposite direction of the gravity field
[58]. Correspondingly there will be an anisotropy in the
granular stress which may explain the direction of the
displacement pattern.

As the cell is filled the weight on the bottom parti-
cles also becomes slightly higher than the case is at the
top, resulting in a slightly higher density and higher nor-
mal stress acting on the confining plates. Particles in
the upper part of the cell may therefore be pushed and
compacted more easily. This might also contribute to a
preferred directionality opposite to gravity during filling,
though the Janssen effect [58] will restrict the influence
of this feature.

When increasing the pressure the empty and com-
pacted structures get bigger. We follow the development
of the compacted front in Fig. 3b). The radial velocity of
the front is large immediately after injection starts but
the growth rate of the emptied structure decreases due
to the increasing in-plane friction.

There is a crossover between regimes two and three
for pressures 1.80 kPa < AP < 2.00 kPa. In this pres-
sure interval one usually obtain a circular structure but
sometimes a branched structure. For pressures above
2.00kPa on the other hand, instable structures are al-
ways observed, and we therefore use this value to define
the crossover. We believe that this crossover has to do
with the sample preparations where the granular packing
can’t be duplicated from experiment to experiment.

Ahead of the longest finger the compacted region may
reach all the way up to the open boundary before it stops
evolving. When this is the case we are close to the border
between the third and the fourth pressure regime.

The fourth pressure regime:
AP > Ps

If we exceed P3, which in our case is P3 = 2.40 &
0.1 kPa, the empty finger formation breaks through the
granular packing, creating an eroded channel from the
inlet to the external boundary.

A finger structure similar to those seen for the higher
pressures in the third regime forms in the order of a tenth
of a second. The front slows down a little before the most
advanced finger accelerates toward breakthrough of the
external boundary. As it accelerates the air flow erodes
the interior of the advancing finger. When we have a fin-
ger leading from the injection point to the open bound-
ary, the pressure within the emptied region cannot be
maintained with this pressure source, and then the rest
of the structure will not be able to grow any further.
The breakthrough finger “chooses” the direction where
the particles were poured into the cell. At very high
pressures, typically ~ 4.00 kPa and higher, it is not un-
usual to have more than one finger breaking through the
granular material.

Between pressure regimes three and four, in the inter-
val 2.30 kPa < AP < 2.50 kPa, we occasionally have a
finger breaking through, but this is not systematic.
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FIG. 3: (a)Displacement pattern at AP = 2.34kPa, in the
third pressure regime. The front of the compacted region is
indicated with a white colored line.

The short black line at the bottom of the image shows the
direction of the particle motion during filling of the cell. (b)
The front of the compacted region at ¢t = 0.008 s, ¢t = 0.020 s,
t =0.080 s, t = 0.480 s and ¢ = 0.800 s after injection.

FIG. 4: Injection pressure AP = 2.58 kPa is within the
fourth pressure regime where the structure breaks through
the model. In this frame the finger has reached the outer
boundary. The front of the compacted region is indicated
with the white line.

B. Physical discussion

The origin of the instability is similar to what was de-
scribed by Saffmann and Taylor [2]. The pressure gradi-
ent, VP is the driving force of the granular motion and
the pressure field in the system is described by Darcy’s
law [3]. Within the fingers the permeability is huge com-
pared to the one in the pore space of the granular ma-
terial, which will favor air flow in the emptied region.
The pressure is more or less constant within the emptied
structure and the driving pressure gradient VP = AP/]
is largest at the tip of the longest finger since here the dis-
tance [ from the tip to the open boundary is the smallest.
Growth of the most advanced finger is therefore favored
on expense of the rest of the structure.

As the granular bulk is pushed upon, particles are
displaced and rearranged in such a way that the gran-
ular material is compacted in a zone around the emptied
structure as indicated in Fig. 2, 3 and 4. When granu-
lar motion is induced the in-plane forces on the grains
will cause a granular pressure to act in the transverse
directions as well, as is illustrated in Fig. 5. The “in-
duced” granular force acting perpendicular on the upper
plate will be denoted as PgJ-. On the bottom plate there
will also be a rather small contribution from gravity, pgd,
where g is gravity, d the plate spacing, and p is the mass
density of the porous medium, i.e. p = pspy with p, the
mass density of the particles themselves, and p; the local
solid fraction.

The mobilized friction force per unit surface is de-
scribed by a Coulomb friction model, i.e. it opposes the
granular motion, and it is bounded by a Coulomb friction
coefficient 7, times the normal pressure exerted by the
grains. The friction force exerted by the top and bottom
plate are respectively denoted F} and FZ2, and the total
friction force exerted by both plates over the local granu-
lar column is F, = Fy1 —|—F3. The normal pressure exerted
against the top plate is PgJ-, and the one exerted against
the bottom plate also accounts for the weight of the local
granular column, i.e. is (Pgl + pgd). The normal pressure
P;- itself arises from the compression of the granular ma-
trix. It is considered to be proportional to the in-plane
pressure acting on the grains from the surrounding grains
in contact, PgH7 with a proportionality constant A/2: this
amounts to assume locally a Janssen [58] hypothesis for
the grains between the confining plates — as illustrated
in Fig. 5 —. Thus, we assume that PgJ- = )\PJJ/Z and
that the friction exerted by the top and bottom plates
are respectively FA} < 'y)\PJ‘/Q and F3 < v[APLy/Q + pgd],
so that the total friction exerted by the confining plates
per unit area is

F <P =y(\P) + pgd) . (1)

In other words, we assume that much of the stress act-
ing upon the area of the displacement front is transmit-
ted to the glass plates through particle contacts, in a way
similar to Janssen’s silo experiments [58]. Friction is the



stabilizing phenomenon in our system.

a)

FIG. 5: a) A sketch of the principle of how a vertical force
is induced when applying a horizontal force on particles in
contact. In our case the granular layer is about ten particle
diameters. Figure b) shows the forces in action, where F, is
the friction force exerted by the plates on the material, pgd
the column weight, P; and P}‘ a normal and in-plane stress
respectively.

As the injected air flows through the granular material
the pressure gradient will smoothen out and be reduced
over the front. When the friction force is large enough to
balance the hydrodynamic drag on the particles, the emp-
tied structure will stop developing. How these processes
are cast in a mathematical description is the subject of
the next section.

IV. SIMULATION MODEL
A. Principles

Figure 6 illustrates conceptually the basis for the
model. The gas flow takes place between grains that
define a local permeability .

The details of the model are presented in Ref. [7]. In
the following we sketch its main features and the par-
ticular adaptation to the present application. The main
assumption of the model is that the fluid dynamics may
be described on a spatial scale above the grain scale,
and that the fluid may then be described adequately in
terms of the local pressure only. The solid phase, which

Pressure force
—
_ 00000 -
— -
-
Friction force

P(x,1)
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FIG. 6: A conceptual picture of the model. (A) The top
view shows the particles and the grid onto which the pressure
equation is discretized. (B) The side view shows how the
granular layer in the experiment is represented by a single
layer in the simulations, and it shows the action of the friction
forces and the pressure forces.

is simulated in terms of individual particles, defines a
deformable porous medium through which the gas flows.
The fluid pressure satisfies the equation

opr K
¢(E+u.vp) —v. (P;VP) ~PV-u, (2)

where ¢ is the local porosity, u the local granular velocity,
1 the viscosity of air and & the permeability.

In all the experiments the flow velocity of the air is
below 5cm/s, so that the Reynolds number based on
particle diameter is less than 0.2. In this flow regime,
we are justified in using the Carman-Kozeny relation for
the permeability as long as the porosity is smaller than
roughly 0.7. See Ref. [59] for a more elaborate discussion
of continuum equations like Eq. (2).

Writing the permeability in terms of the local solid
volume fraction ps = 1 — ¢ the Carman-Kozeny relation
[60] takes the form

a? (1— /08)3

45  p? 3)

H(ps) =

where a is the particle radius.
The particles evolve according to Newton’s second law:

dv VP
may =mg+F; o +F, (4)
where g is the gravity, m the particle mass, F; the inter-
particle force, F, is the friction force of Eq. (1), and
Pn = pspg/m is the number density, with p, the mass
density of the material composing the particles.

The repulsive interaction force F; between two parti-
cles in contacts is modeled as a frictionless linear elastic
contact, i.e. its direction lies along the separation vec-
tor between the particle centers, and its magnitude is
proportional to the overlap distance between the parti-
cles. The linear repulsion model used here is meant to
be a numerical approximation of a hard sphere model.
The proportionality factor between force and overlap, or
repulsive spring constant, is set such as the characteris-
tic overlap between the particles is a negligible fraction
of their distance in the simulations. In other terms, the
characteristic time associated with a particle-particle col-
lision is much smaller than any other elementary charac-
teristic time in this model (which are a particle advection
time due to the applied overpressure, another one due to
gravity, and a characteristic time of diffusion of the pres-
sure field at particle scale). We have checked numerically
that changing this proportionality constant by a factor 5
did not affect the simulation results, i.e. that we indeed
effectively model a hard sphere situation.

In order to model systems of size comparable to the
experimental ones, we need to use grains of effective size
larger than the experimental ones, i.e. numerical grains
representing clusters of real grains. Indeed, the exper-
iments performed involve flows of roughly 10® grains,
which is beyond numerical capacities for the model de-
scribed here. Thus, we chose to model numerical particles



of diameter equal to the plate separation. The simula-
tions are thus performed using a quasi two dimensional
granular code, in order to model a situation where typi-
cally 10-15 grains lie in the thickness of the system. This
is justified a priori by the fact that when motion happens
in the experiments, the full granular layer is displaced.
Note however that in order to evaluate the granular /fluid
interactions, the permeability evaluation is based on the
real size of the pores, i.e. on the diameter of the real
grains. Also, an important three-dimensional feature of
the granular population is incorporated in the numerical
model, by evaluating a three dimensional Cauchy stress
tensor in order to incorporate friction with the confining
plates, as we will detail hereafter.

To compute the friction force F, exerted by the plates
via a Janssen hypothesis from Eq. (1), the average in-
plane stress exerted over a particle of index a, in contact
with a set of particles b € C, is obtained after [61-63],
as

5l = (1/va) / oiydV (5)
AR (6)

beC,

where z° is the position of the contact with the grain b,
f? the contact force exerted by the grain b over the grain
of index a, V, is the grain volume, and the magnitude of
the in-plane stress is pl = —(G11 + 722)/2.

In this application, we carry out the simulations in 2D
and use molecular dynamics integrated with the velocity
Verlet scheme to solve Eq. (4) [64]. Soft sphere molecular
dynamics [65] and contact dynamics [66] could be used
instead.

For the model to work in practice it is necessary to in-
troduce a cutoff pyi, on the density. This has to do with
limitations both of the Carman-Kozeny relation and the
present numerics (see [7] for a more detailed discussion
of this point). This cutoff is implemented as follows:
whenever the measured solid fraction p, is lower than
Pmin = 0.25, it is replaced by the cutoff ps = puyiy in the
evaluation of the permeability by Carman-Kozeny, Eq. 3.

Although the practical implementation of the present
model in three dimensions is not significantly harder than
in two dimensions we wish to simulate a two-dimensional
system because it is numerically less expensive. How-
ever, the Carman-Kozeny equation (3) is a three dimen-
sional relation as it gives the permeability in terms of
the volume fraction of spheres ps, and we wish in the
end to compare our results to real three dimensional ex-

periments. Consequently we need to transform the area

fraction of grains in the simulations pgD), to the volume

fraction ps in such a way that the closed packed value

of pr) corresponds to the closed packed value of ps.

Such linear transform of p;, mapping 0 onto 0, and the

closed packed value of pgD) onto its counterpart for the

three dimensional problem, is approximately achieved by
(2D)

the transformation ps = (2/3)ps ', which we use in the

following [7, 67, 68].

B. Preparation of the initial stage

Since the behavior of a granular material is strongly
dependent on its history of deformation [69], and since
the dynamical behavior of our system, and the initial
stress state over the system, is sensitive on the initial
preparation procedure [70], special attention is devoted
to this initial state in order to match as closely as pos-
sible the experimental situation. As in the experiments,
particles are initially stacked under gravity in a vertical
cell. Particles are launched one by one from random po-
sitions over a flat bottom surface, they fall vertically and
topple off already formed piles until they reach a geo-
metrically stable position — cf Fig. 7 a —. Particles are
considered as hard spheres without friction in the contact
in this stage, and the collisions are totally inelastic, i.e.
the particle velocity is set to zero after each contact. This
entirely determines the geometrical stacking rule. Since
friction is neglected in this preparation stage, this pro-
cedure builds a classical isostatic packing of polydisperse
hard spheres. This defines a geometrical rule to stack the
particles. In order to avoid the formation of hexagonally
ordered crystallites of large extent arising from an arti-
ficially mono-disperse particle size distribution in a two
dimensional packing, we use polydisperse particles. The
granulometry used corresponds to a flat distribution of
diameters, chosen such as the relative dispersion of the
diameters of the numerical particles matches the one of
the experiments, i.e. with a factor two between the upper
and lower cutoff of the granulometry.

In a second stage, once a pile is built, we remove the
particles which are not entirely in the radial cell, which
has a crown shape limited by a central hole and an ex-
ternal circular boundary — cf Fig. 7 b —. This mimics the
second step of the experimental preparation procedure:
in experiments, particles were first stacked under gravity
with the help of a guiding channel leading to the verti-
cally placed cell, closed at the bottom, up to complete
filling of the system. Next, the cell was placed horizon-
tally, and the guides and plug of the central hole were
removed, leading to the removal of the particles outside
the outer radius.

Eventually, a third numerical preparation stage is
added to fine tune the initial porosity so that the de-
viation in solid fraction from the random closed packed
value is the same in simulations and experiments. More
precisely, if pg** and pS*P are the initial and closed packed
densities in the experiments and p(()QD) and p&QD) are the
initial and closed packed densities in the simulations we
impose the equality

pEQD) - p(()2D) _ P — pgxp (7)

D) P
This is achieved by slightly reducing the particle radii in
the simulations prior to air injection, see Fig. 7 ¢. Ini-
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FIG. 7: The preparation stage. (a) The grains are stacked
one by one over a basic plane, as hard spheres piling up under
gravity, with purely inelastic collisions and no friction between
them. (b) Grains outside a circular cell with a central hole are
removed from the ensemble. (c¢) The diameter of the grains
is reduced by an overall factor to produce a prescribed initial
average density. (d) Initial state for the injection stage.

tially, the 2D packing fraction is ~ 0.75, which is slightly
below the known 2D random close packing fraction value,
0.84 [67]. The measured deviation is (p&P — pgP)/pS*P ~
0.032 , as will be detailed in section VI.

Alternatively, simulations can be performed without
the last shrinking stage in the packing preparation. Such
packing preparation only utilizes gravity, as in the ex-
periments. However, since the model is two dimensional,
the resulting packing fraction is different from the experi-
mental one. Notably, the two dimensional state resulting
from the sole gravitational stacking is closer to a limiting
close packing fraction than the three dimensional experi-
mental one. As a result, simulations carried from such al-
ternative initial state leads to smaller ratio of the central

empty zone size over the compact zone size, i.e. without
this fine-tuning stage, the simulated central empty zones
are smaller, all other things kept equal. The other struc-
tural features described in section VI and hydrodynamic
regimes as function of pressure, are otherwise unaffected
by this last preparation stage. The only reason to include
this optional third shrinking stage is to fine tune the size
of the central empty fingers in order to better match the
experiments.

There are eventually two remaining free parameters in
such models, corresponding in Eq. (1) to A, the Janssen
proportionality parameter between in plane and normal
stress, and v, the Coulomb friction coefficient between
the particles and the confining plates. These have been
chosen to match as closely as possible:

1. the classification of regimes as function of the ap-
plied overpressure, i.e. the fact that four pressure regimes
are observed, with transition pressures Py, P, and P3 cor-
responding to the experimental ones, up to roughly 30 %.

2. the time to breakthrough, where a given internal
finger reaches the outer boundary, which was required to
lie within 30 % of the experimental one in the simulations
carried.

Exploring the parameter space of these two remaining
parameters, to satisfy such constraints, led to use param-
eters A = 1 and v = 0.25 in the simulations.

V. Numerical aspects: observed regimes as function
of the pressure

We will here show how the numerical simulations ren-
der for the observed phenomenology in the experiments.

A. Low injection pressure

As in the experiments, there is a lower threshold for
the imposed central pressure below which no granular
motion takes place, and for which there is only air per-
meation through the material, held in place by friction
exerted by the confining plates. For imposed pressures
sufficient to exit this trivial regime, the same mechanism
is observed for moderate imposed central pressures: In
Fig. 8, we display the pressure field and the grain posi-
tions for a simulation carried out with an overpressure of
2 kPa. The color code ranges from green for atmospheric
pressure, to red for over-pressures exceeding 1 kPa (half
of the imposed central one). First, the pressure field dif-
fuses through the granular material, and quickly adapts
to the initial configuration of the granular packing (cf
Fig. 8 b), 15 ms after initial time). The drag created by
the pressure gradient is sufficient to overcome friction,
and the fluid flow evacuates the granular material from
the center, forming an empty central zone. This cen-
tral motion compacts the material over a growing depth
ahead of the central decompacted zone: cf Fig. 9. In
this figure, the color code represents the local permeabil-
ity of the granular packing, which is evaluated from the



Carman Kozeny expression, Eq. (3). The permeability
gives the diffusion constant D = Pk/p in the fluid flow
equations.

As the material is compacted ahead of the emptied
zone, the friction against the plates is mobilized increas-
ingly, and this leads to the stabilization of the granular
motion. In this simulation, the granular motion is stabi-
lized in Figs 8 and 9 d), after 60 ms. In this stationary
state, the mobilized friction forces exerted by the side
plates, balances exactly the fluid drag exerted by the air
which flows permanently between the grains, driven by
the pressure gradient shown in Fig. 8 d).

FIG. 8: (Color) Low injection pressure regime. The grains are
represented in black, the color code of the background rep-
resents the overpressure: from green at zero overpressure, to
red for overpressures reaching or exceeding half of the central
one. a), b), ¢) and d) correspond respectively to times 0, 15,
45 and 60 ms after the central overpressure is imposed. The
decompaction of a central zone is observed, similarly to the ex-
periments. The system stabilizes in state d. Note that air still
flows in this stable stationary state, as shows the non homo-
geneous pressure field displayed through transparent grains in

d).

To make a quantitative comparison with the experi-
ments, we have adopted in these simulations, measures
of a central emptied area A;, and of the compacted area
A., that were inspired by the experimental image anal-
ysis techniques: A; is the area that is left in the center
after the grains have moved, which is connected to the
central hole, after subtraction of the area of the initial
central hole. A, is the area of the zones where the solid
fraction has increased by more than 2% relatively to the
initial solid fraction. Both definitions are illustrated on
Fig. 10, 15 ms after the start of the injection. These ar-
eas will be used in section VI to compare the dynamics
of the simulations and experiments.

B. Higher injection pressure - breakthrough regime

As in the experiments, the increase of the injection
pressure leads to other type of flow behaviors. As the
pressure is increased, two characteristic features are ob-

FIG. 9: (Color) Permeability representation of Fig. 8: The
color code represents the local permeability, and thereby the
solid fraction. Blue corresponds to k = 0, red to a two-
dimensional solid fraction of 0.5. Larger local permeabilities
are represented with black grains. The color bar represents
p2/(1—ps)?, which is proportional to the permeability ». This
quantity goes from 0 (blue) to 2.5 (red). In figure d, the limit
of the compacted region in the ultimate stationary state is
displayed by a white line.

FIG. 10: (Color) a) Central emptied area A;, in blue, versus
b) compacted area A., after 15 ms of injection in the same
low-pressure simulation

served: the roughly circular symmetry of the patterns ob-
served at lower pressures breaks down, and the finger for-
mation is observed. The next characteristic feature is the
formation of a large empty finger breaking through the
compacted granular material. These features are illus-
trated in Figs. 11 and 12, which correspond to snapshots
of the pressure field and permeability field in a simulation
carried at an imposed central overpressure of 3 kPa.

The preparation procedure, Coulomb friction parame-
ter v and Janssen proportionality parameter A\ are iden-
tical to those of the previous simulations.

Figure 11 illustrates that the pressure field mainly
adapts to the shape of the granular material, in a sys-
tem of such dimensions: As shows already Fig. 11 b), the
characteristic response time of the pressure field to the
shape of the overall granular material is initially much
shorter than the response time of the granular material
itself to the imposed global pressure difference across the
system. However, both times become comparable in the
latest stages of the simulation, where a large empty finger
breaks through.

Another interesting feature of these simulations is that
in addition to the central empty zones, the compacted



area ahead, and the finger formation, another type of
structure arises: Close to the external boundary in Fig.12
¢) and d), bubbles start to form. The formation of these
isolated empty zones is reminiscent of the granular bub-
ble formation in some fluidized beds [11, 13|, and it is
fundamentally linked to the granular nature of our sys-
tem, i.e. similar patterns are never formed by immiscible
fluids that do not inter-penetrate. The bubbles progress
outwards towards the external open boundary of the sys-
tem. The nucleation zone where such bubbles appear,
grows during time, and its internal boundary progresses
inwards, as is indicated in Figs. 12 b) to e). This illus-
trates a decompaction mechanism starting from the outer
boundary, and allows the system to unjam. Note that
contrarily to the compaction mechanism starting from
the center, which is mediated by solid contacts between
grains, this decompaction mechanism is mediated essen-
tially by the fluid-solid coupling.

To establish a quantitative comparison with the ex-
periments in Section VI (cf Fig. 14), we define mea-
sures of the radii of three types of structures, inspired
by the experimental techniques: r;, shown in Fig. 11 c),
is the maximum radial coordinate of the geometrically
connected central zone empty of grains. The radius r,
shown in Fig. 12 ¢) and d), is the maximum radial coor-
dinate of the zone geometrically connected to the center,
by regions where the locally averaged two-dimensional
porosity exceeds 0.49, i.e. the zone that includes grains
represented in black in Figs. 12 and 11. Eventually, rq,
shown in Fig. 12 ¢) and d), represents the minimum ra-
dial coordinate of the bubble zone, or, to be more precise,
the decompaction area, where the solid fraction is lower
than 0.5 (black color code) and still unconnected to the
central zone. Note in Figs 11 ¢) and d) that while r; and
r. are growing functions of time, ry decreases.

Although such definitions and choice of threshold for
the solid fraction are necessarily subjective they have the
advantage of allowing a quantitative comparison. How-
ever, some unavoidable discrepancies are naturally ex-
pected between numerical and experimental measures of
the areas of these three types of zones (central finger,
compacted zone, decompacted zone).

VI. DYNAMICAL ASPECTS

In Fig. 13 r; is followed in time for three experiments.
We see that for the case of injection pressures within pres-
sure regime two, and three, in this case AP = 1.78 kPa
and AP = 2.20 kPa, the pattern grows rapidly in the
beginning up to ~ 0.1 s. From ~ 0.1 s the growth rate is
reduced due to mobilization of friction. The structures
fully saturates after ~ 0.4 s. In this particular example
the pattern formations reaches final radial size ~ 1.7 cm
after 0.44 s for the system in pressure regime two, and
~ 4.9cm after 0.43 s for the system in pressure regime
three.

The growth characteristics is similar for the compacted
region in Fig. 13b). After an initial stage where the zone

FIG. 11: (Color) Simulation snapshots at an imposed over-
pressure of 3 kPa. The color code in the background of the
grains represents the pressure field and is the same as in Fig. 8.
Times are a) 0 s, b) 40 ms, ¢) 80 ms, d) 120 ms, e) 200 ms
and f) 280 ms.

FIG. 12: (Color) Permeability map associated with the same
snapshots as in Fig. 11. The radii r;, . and rq refer to the
radii of the central empty zone, the zone ahead with a large
enough motion so that ¢ > 0.5, and the decompactification
zone progressing inwards from the external boundary.

is established it grows to a plateau within ~ 0.1s. There
is some small expansion of the compacted region within
this plateau matching the motion of the emptied struc-
ture.

At higher pressures, AP = 2.58 kPa, belonging to the
fourth pressure regime the mobilized friction slows down
the development and speed of the growing structure. As
the emptied structure continues to develop, the material
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FIG. 13: (Color online) Experimental measurements of r; (a)
and the maximum radial extent of the compacted region (b)
for three different values of the injection pressures. The ver-
tical line indicates the time when the compacted zone reaches
the open boundary.
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FIG. 15: Empty(1), compacted(2) and unperturbed regions
(3) after air injection.

ahead of this structure compacts over a larger area. This
is a manifestation of an upper limit to the possible com-
paction in the already compacted zone (solid fractions
are always below unity).

When the region where the packing can be compacted
no further has reached the open boundary, the particles
will be pushed out of the system. The (in-plane) friction
is then reduced due to the smaller contact area with the
confining walls. This situation is unstable and the prop-
agating finger(s) accelerate. This is seen in Fig. 13a)
and b): When the compacted zone reaches the outer
boundary the most advanced finger, which is measured
by r;, accelerates. This is evident by the fact that the
figure shows d?r;(t)/dt?> > 0. Figure 14, which displays
a comparison between an experiment and simulation at
AP = 3.00 kPa, shows the same effect. At the time
~ 0.15 s, indicated with a vertical blue line, the com-
pacted zone reaches the boundary. From this moment
the advancing finger starts to accelerate and the finger
finally breaks through the model at the end of the mea-
surement.

Another interesting feature is the decompaction zone,
measured by rg, near the boundary in the preferred
growth direction. As the particles near the boundary
start to feel the pressure gradient they are displaced and
some of the outermost particles are pushed out of the
cell. As can be seen from Fig. 14, the decompacted zone
grows deeper into the material towards the center, in the
opposite direction of air flow. While the decompacted
zone saturates, the compacted region still grows along
with the developing emptied structure. The compacted
region eventually catches up with the decompacted zone,
and starts to compact this region as well. Bubbles are ob-
served near the external boundary in some experiments
and appear to be coupled to this decompaction zone. The
reduction of the granular density there will allow bubbles
to form, as was observed in the simulations. In Fig. 14)
there is good agreement between experiments and sim-
ulations for r; measurements, and qualitative agreement
for the extension of the compacted regions and ry



Figure 15 shows a compacted structure after injection:
The compacted (region 2) solid fraction is p. while the
unperturbed zone (region 3) has kept the initial solid
fraction pg. By conservation of grain mass we may write

po(A1 + Az) = pcAs, (8)

where the areas A; and A, are shown in Fig. 15, and
define

Av_ B

k=
Az o

9)

where Aps = p. — po. For a number of experiments per-
formed at different injection pressures we have measured
A; and Ay by image analysis. The area of the injec-
tion hole is not included in the measured A; and As.
In the insert of Fig. 16, k = A;/As is plotted as func-
tion of the pressure. The mean value of these fractions is
found to be k& = 0.032 + 0.015. An upper bound to this
compaction parameter k£ can in principle be estimated
as follows: studying the random loose packing (RLP)
and random close packing (RCP) of spheres, Scott found
prep = 0.635 £ 0.005 and prrp = 0.601 & 0.005 [68].
This is the lowest and highest densities for random pack-
ings of spheres - called respectively loose packed and close
packed fraction. A transition between these two extreme
random packing fractions would lead to the compaction
parameter kmqr = Aps/po = (0.635 — 0.601)/0.601 =~
0.056. This value should correspond to the maximum
k obtained for a variation from the loosest to the most
compact random packing. This upper bound is shown in
the insert of Fig. 16.

By weighing the granular material, and measuring
the area it covers in the cell, knowing the glass den-
sity, 2.6 g.cm™3, we obtain the solid fraction 0.44 be-
fore air injection. Using Eq. (9) and the mean fraction
A;/As = 0.032 found from experiments, the solid frac-
tion is calculated to be p. = 0.46, which is 27% lower than
the random close packed fraction prcp = 0.635 + 0.005.
The solid fraction of the initial state is 26% lower than
the random loose packed fraction prrp = 0.601 &+ 0.005.
These low solid fractions are consistent with the presence
of the walls. The particles within the packing, which is
only 10 particle diameters thick, will feel the walls which
cause a frustrated system with higher porosity for both
the initial and the compacted state [71].

Given the average value of k we can work backwards
and calculate the area A; of the empty region from the
area of the compacted region using as A; = kA,. Com-
paring this estimate of A; with measurements gives an-
other way of viewing the fluctuations in k. Figure 16
shows this comparison using k = Apg/po = 0.032, which
gives a good fit to the experimental results.

Figure 17 shows the measured area A; from three ex-
periments (one for each of pressure regime two, three and
four) and one simulation (regime two) as function of time.
In this figure we have also plotted kAs where the As’s
are measured in the same experiments.
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FIG. 16: (Color online) The estimated and experimentally
measured area of the empty region as a function of pressure.
The insert shows the compaction parameter k for our data
set. The blue line shows an upper bound for k.

The first pressure regime structure is typically estab-
lished after ~ 0.1 s and can either stop evolving com-
pletely or grow slightly more in a slow fashion for a cou-
ple of tenths of seconds. In the second pressure regime
A; saturates after 0.45 s. In the third regime we have
the onset of instability. The measured area of both
the branched empty region and the compacted region
is larger. The outer perimeter of the compacted re-
gion stays uniform but asymmetric around the center,
in accordance with the asymmetric shape of the emptied
structure. The time for which the patterns are estab-
lished and the final size and shape obtained is more or
less the same as in the second regime, ~ 1s. There might
also here be some relatively slow “creeping” motion a
couple of tenths of seconds after the structure is estab-
lished. The compacted zone can reach all the way up
to the open boundary, but with only a tiny amount of
particles being pushed out of the cell and without the
breakthrough instability setting in.

From the moment where the flux of particles leaving
the cell becomes continuous, the empty region expands
rapidly. We see that the breakpoint where the struc-
ture growth slows down or reaches a plateau coincides
for all three experimental cases and the simulation at
about ¢t &= 0.1 s. The ripples in the experimental plots in
Fig. 17 reflects the uncertainty related to the method of
identifying and finding the areas.

Simulations and experiments reflect the same physi-
cal behavior in the sense that the different regimes as
function of pressure are observed and that their evolu-
tion happens over the same times. The linear extent
of the compacted or decompacted zones coincide reason-
ably well, as well as the area of the emptied and com-
pacted zone. Some discrepancies for the magnitude of
the area are present between numerics and experiments.
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FIG. 17: (Color online) Area of the central emptied region
and scaled compacted region for different injection pressures,
in three experiments and one simulation.

These discrepancies are believed to arise from the subjec-
tive choice of threshold values used to define compaction:
In the experimental measures, this threshold is hardly
quantifiable, being related to the sensitivity of the cam-
era used - since the compaction area is extracted by im-
age treatment from subtraction images, as is illustrated
in Fig. 3. In the numerical case the value of the com-
pacted area is rather sensitive to the adopted value for
the threshold.

There are also discrepancies between the experimental
emptied area and the calculated rescaled compacted area,
which might be associated with the fact that an average
k-value is used when estimating the area. From the insert
in Fig. 16 we see that the k-values are a quite wide spread
around the average, and therefore might not always fit a
specific set of data perfectly.

VII. SUMMARY AND CONCLUSIONS

Studying the system experimentally and numerically,
we have described the displacement behavior and pat-
terns in granular materials confined in circular Hele-Shaw
cells - qualitatively as well as quantitatively. Simulations
have been a central tool to understand the system.

The driving force of this system is the pressure gradient
over the material between the front of the pattern and
the open boundary. The friction between the granular
material and the confining plates act as the stabilizing
mechanism. These two competing mechanisms may be
controlled to produce a range of patterns resulting from
air injection. Four well defined pressure regimes giving
different patterns have been found. In the first regime
no displacement of grains are recorded, so that the in-
jected air just permeates through the pores of the granu-
lar material. In the second regime, particles are displaced
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and roughly circular pattern appears. The structures be-
come larger as the injection pressure is increased. The
third regime is entered with the onset of instability as the
shape of the displacement front loses its circular symme-
try. This happens as the front starts to bulge and form
branches. The length of the branches increases with in-
creasing injection pressure. Like in the Saffmann-Taylor
instability the driving pressure gradient is larger ahead
of the most developed finger. Hence, the most developed
finger grows on expense of the others.

For both the second and third pressure regime, im-
age analysis reveals a zone ahead of the emptied forma-
tion where the granular material becomes more dense.
By grain conservation we relate the area of the struc-
ture empty of grains (A;) and the area of the compacted
region (Az). At pressures where the compacted region
reaches the boundary and particles are expelled, the in-
plane friction will decrease. When a sufficient amount of
particles are pushed out, such that the friction no longer
can balance the hydrodynamic drag, the material will
fluidize locally ahead of the most advanced finger, which
eventually leads to breakthrough. At this point we find
ourselves in the fourth pressure regime.

As an extension, system size and boundary condition
dependences should be subject to both experimental and
numerical investigations. It would also be interesting to
examine the displacement field of the bulk zone using
CIV (Correlation Imaging Velocimetry) technique.
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