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OPTIMIZED SCHWARZ METHODS FOR MAXWELL’S EQUATIONS

V. DOLEAN∗, M.J. GANDER† AND L. GERARDO-GIORDA‡

Abstract. Over the last two decades, classical Schwarz methods have been extended to systems
of hyperbolic partial differential equations, and it was observed that the classical Schwarz method
can be convergent even without overlap in certain cases. This is in strong contrast to the behavior
of classical Schwarz methods applied to elliptic problems, for which overlap is essential for conver-
gence. More recently, optimized Schwarz methods have been developed for elliptic partial differential
equations. These methods use more effective transmission conditions between subdomains, and are
also convergent without overlap for elliptic problems. Using a relation between Maxwell’s equations
and two scalar elliptic ones, we can explain why the classical Schwarz method applied to both the
time harmonic and time discretized Maxwell’s equations converges without overlap: the method
is equivalent to a simple optimized Schwarz method for the corresponding scalar elliptic equation.
Based on this insight, we show how to develop an entire hierarchy of optimized Schwarz methods for
Maxwell’s equations with greatly enhanced performance compared to the classical Schwarz method.
We illustrate our findings with numerical results.
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1. Introduction. Schwarz algorithms experienced a second youth over the last
decades, when distributed computers became more and more performant and avail-
able. Fundamental convergence results for the classical Schwarz methods were derived
for many partial differential equations, and can now be found in several authorita-
tive reviews, see [2, 38, 39], and books, see [32, 30, 37]. The Schwarz methods were
also extended to systems of partial differential equations, such as the time harmonic
Maxwell’s equations, see [10, 6, 36], or to linear elasticity [16, 17], but much less is
known about the behavior of the Schwarz methods applied to hyperbolic systems of
equations. This is true in particular for the Euler equations, to which the Schwarz
algorithm was first applied in [28, 29], where classical (characteristic) transmission
conditions are used at the interfaces, or with more general transmission conditions in
[5]. The analysis of such algorithms applied to systems proved to be very different
from the scalar case, see [13, 14].

Over the last decade, a new class of Schwarz methods was developed for scalar
partial differential equations, namely the optimized Schwarz methods. These meth-
ods use more effective transmission conditions than the classical Dirichlet conditions
at the interfaces between subdomains. New transmission conditions were originally
proposed for three different reasons: first, to obtain Schwarz algorithms that are con-
vergent without overlap, see [25] for Robin conditions. The second motivation for
changing the transmission conditions was to obtain a convergent Schwarz method
for the Helmholtz equation, where the classical Schwarz algorithm is not convergent,
even with overlap. As a remedy, approximate radiation conditions were introduced in
[8, 10]. The third motivation was that the convergence rate of the classical Schwarz
method is rather slow and very much dependent on the size of the overlap. In a
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short note on non-linear problems [23], Hagstrom et al. introduced Robin trans-
mission conditions between subdomains and suggested nonlocal operators for best
performance. In [3], these optimal, non-local transmission conditions were developed
for advection-diffusion problems, with local approximations for small viscosity, and
low order frequency approximations were proposed in [26, 7]. In [33], one can find
low-frequency approximations of absorbing boundary conditions for Euler equations.
Independently, at the algebraic level, generalized coupling conditions were introduced
in [35, 34]. Optimized transmission conditions for the best performance of the Schwarz
algorithm in a given class of local transmission conditions were first introduced for
advection diffusion problems in [24], for the Helmholtz equation in [4, 22], and for
Laplace’s equation in [15]. For complete results and attainable performance for sym-
metric, positive definite problems, see [18], and for time dependant problems, see
[21, 19].

The purpose of this paper is to design and analyze optimized Schwarz methods
for Maxwell’s equations in their fully general form; for the special case of a rot-rot
formulation, see [1]. The paper is organized as follows: in Section 2, we present
Maxwell’s equations and a reformulation thereof with characteristic variables used in
our analysis. In Section 3, we treat the case of time harmonic solutions. Following
ideas presented in [11] for the Cauchy-Riemann equations, we show that the classical
Schwarz method for Maxwell’s equations, which uses characteristic Dirichlet trans-
mission conditions between subdomains, is equivalent to a simple optimized Schwarz
method applied to an equivalent Helmholtz equation. This explains why the classical
Schwarz method in that case can be convergent even without overlap, and it allows us
to develop an entire hierarchy of optimized Schwarz methods for Maxwell’s equations
with greatly enhanced performance. In Section 4, we show that all the arguments
for the time harmonic case also apply to the case of time discretizations of Maxwell’s
equations. We then show in Section 5 numerical experiments in two and three spatial
dimensions, both for the time harmonic and time discretized case, which illustrate
the performance of the new optimized Schwarz methods for Maxwell’s equations. In
Section 6, we summarize our findings and conclude with an outlook on future research
directions.

2. Maxwell’s Equations. The hyperbolic system of Maxwell’s equations de-
scribes the propagation of electromagnetic waves, and is given by

−ε
∂E

∂t
+ curl H = J , µ

∂H

∂t
+ curl E = 0, (2.1)

where E = (E1, E2, E3)
T and H = (H1, H2, H3)

T denote the electric and magnetic
fields, respectively, ε is the electric permittivity, µ is the magnetic permeability, and J

is the applied current density. In the following, to simplify the notation, and without
loss of generality, we normalize the parameters ε = µ = 1, which corresponds to a
scaling of time and the vector fields E and H, and we assume the applied current
density to be divergence free, that is divJ = 0. Denoting the vector of physical
unknowns by

u = (E1, E2, E3, H1, H2, H3)
T , (2.2)

Maxwell’s equations (2.1) can be rewritten in the form

∂tu + Gx∂xu + Gy∂yu + Gz∂zu = f , (2.3)
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where the right hand side is given by f = (J1, J2, J3, 0, 0, 0)T , and the coefficient
matrices are of the form

Gl =

[
Nl

−Nl

]
, l = x, y, z,

where the 3 × 3 matrices Nl, l = x, y, z are given by

Nx =




0 0 0
0 0 1
0 −1 0



 , Ny =




0 0 −1
0 0 0
1 0 0



 , Nz =




0 1 0
−1 0 0
0 0 0



 .

For any unit vector v = (v1, v2, v3), ‖v‖ = 1, we can define the characteristic matrix
of system (2.3) by

C(v) = v1

[
Nx

−Nx

]
+ v2

[
Ny

−Ny

]
+ v3

[
Nz

−Nz

]
=

[
Nv

−Nv

]
,

whose eigenvalues are the characteristic speed of propagation along the direction v.
By the structure of the matrices Nl, l = x, y, z, the matrix C(v) is symmetric, and
hence has real eigenvalues, which implies that the Maxwell’s equations are hyperbolic,
see [31].

If we consider Maxwell’s equations (2.1) on the domain Ω = (0, 1) × R2, the
characteristic matrix for the unit normal vector to the boundaries at x = 0 and
x = 1, ñ = (1, 0, 0), is

C(ñ) =

(
Nx

−Nx

)
.

The eigenvalues of this matrix are

λ1,2 = −1, λ3,4 = 0, λ5,6 = 1,

and since the eigenvalues are not distinct, Maxwell’s equations are not strictly hyper-
bolic, see [31]. The matrix of the left eigenvectors of C(ñ) is given by

L =




0 0 0 1 0 0
−1 0 0 0 1 0
0 1 0 0 0 −1
0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0




,

which leads to the characteristic variables w = (w1, w2, w3, w4, w5, w6)
T associated

with the direction ñ, where

w1 = − 1
2 (E2 − H3), w2 = 1

2 (E3 + H2), w3 = H1,
w4 = E1, w5 = 1

2 (E2 + H3), w6 = − 1
2 (E3 − H2).

(2.4)

In the following, we will denote by w+, w0 and w− the characteristic variables asso-
ciated with the positive, null, and negative eigenvalues respectively, that is

w− = (w1, w2)
T , w0 = (w3, w4)

T , w+ = (w5, w6)
T . (2.5)
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The boundary value problem in the characteristic variables, associated with Maxwell’s
equations (2.1) on the domain Ω = (0, 1) × R2,






(∂t − ∂x)w1 + 1
2∂zw3 − 1

2∂yw4 = 1
2J2,

(∂t − ∂x)w2 + 1
2∂yw3 + 1

2∂zw4 = − 1
2J3,

∂tw3 + ∂zw1 + ∂yw2 − ∂zw5 − ∂yw6 = 0,
∂tw4 − ∂yw1 + ∂zw2 − ∂yw5 + ∂zw6 = −J1,

(∂t + ∂x)w5 − 1
2∂zw3 − 1

2∂yw4 = − 1
2J2,

(∂t + ∂x)w6 − 1
2∂yw3 + 1

2∂zw4 = 1
2J3,

(2.6)

together with the characteristic boundary conditions

w+(0, y, z) = r(y, z), w−(1, y, z) = s(y, z), (y, z) ∈ R
2, (2.7)

and with the Silver-Müller radiation condition on the unbounded part of the domain

lim
r→∞

r (H × n − E) = 0 (2.8)

where r = |x|, n = x/|x|, is well-posed, see [27].

3. The Case of Time Harmonic Solutions. As in the case of the second
order wave equation, ∂ttu − ∆u = f , it is also suitable for Maxwell’s equations to
assume the wave to be periodic in time. In this case, the time derivative becomes an
algebraic term, and only the spatial domain needs to be discretized for a numerical
approximation of the solution. The harmonic solutions of Maxwell’s equations are
complex valued static vector fields E and H such that the dynamic fields

E(x, t) = Re(E(x) exp(iωt)), H(x, t) = Re(H(x) exp(iωt))

satisfy Maxwell’s equations (2.1). The positive real parameter ω is called the pulsation
of the harmonic wave. The harmonic solutions E and H satisfy the time-harmonic
equations

curl E + iωH = 0, curl H − iωE = J , (3.1)

or, written in component form, and using the definition of u in (2.2),





−iωu1 + ∂yu6 − ∂zu5 = J1,
−iωu2 + ∂zu4 − ∂xu6 = J2,
−iωu3 + ∂xu5 − ∂yu4 = J3,

iωu4 + ∂yu3 − ∂zu2 = 0,
iωu5 + ∂zu1 − ∂xu3 = 0,
iωu6 + ∂xu2 − ∂yu1 = 0.

(3.2)

The time-harmonic problem in characteristic variables is therefore





(iω − ∂x)w1 + 1
2∂zw3 − 1

2∂yw4 = 1
2J2,

(iω − ∂x)w2 + 1
2∂yw3 + 1

2∂zw4 = − 1
2J3,

iωw3 + ∂zw1 + ∂yw2 − ∂zw5 − ∂yw6 = 0,
iωw4 − ∂yw1 + ∂zw2 − ∂yw5 + ∂zw6 = −J1,

(iω + ∂x)w5 − 1
2∂zw3 − 1

2∂yw4 = − 1
2J2,

(iω + ∂x)w6 − 1
2∂yw3 + 1

2∂zw4 = 1
2J3.

(3.3)
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3.1. Relation with Helmholtz Equations. We now derive the relation be-
tween the solution of the time harmonic Maxwell’s equations (3.3) and the solution
of a Helmholtz equation.

Proposition 3.1. Any component wj, j = 1, . . . , 6, of the characteristic vari-
ables of Maxwell’s equations (3.3) satisfies in the interior of Ω = (0, 1) × R

2 the
Helmholtz equation

(ω2 + ∆)wj = fj, j = 1, 2, . . . , 6, (3.4)

with right hand side given by

f1 = 1
2 (−(∂x + iω)J2 + ∂yJ1) , f4 = iωJ1,

f2 = 1
2 ((∂x + iω)J3 − ∂zJ1) , f5 = 1

2 (−(∂x − iω)J2 + ∂yJ1) ,
f3 = −∂yJ3 + ∂zJ2, f6 = 1

2 ((∂x − iω)J3 − ∂zJ1) .
(3.5)

Proof. From the last three equations in (3.2), we obtain uj , j = 4, 5, 6 as functions
of uj, j = 1, 2, 3 only. Substituting these expressions for uj , j = 4, 5, 6, into the first
three equations in (3.2), we obtain a system for uj, j = 1, 2, 3,






ω2u1 + (∂yy + ∂zz)u1 − ∂xyu2 − ∂xzu3 = iωJ1,
ω2u2 + (∂xx + ∂zz)u2 − ∂yzu3 − ∂xyu1 = iωJ2,
ω2u3 + (∂xx + ∂yy)u3 − ∂xzu1 − ∂yzu2 = iωJ3.

(3.6)

We now eliminate the variable u3 from the first two equations by differentiating the
first one with respect to y and subtracting it from the second one differentiated with
respect to x. We then eliminate u3 also from the second and third equations by
applying the operator [ω2 + (∂xx + ∂yy)] to the second one and adding it to the third
one differentiated with respect to y and z. After some simplifications, we obtain a
new system for u1 and u2,

∂y((ω2 + ∆)u1) − ∂x((ω2 + ∆)u2) = iω[∂yJ1 − ∂xJ2],
−∂xy((ω

2 + ∆)u1) + (ω2 + ∂xx)((ω2 + ∆)u2) = iω((ω2 + ∂xx + ∂yy)J2 + ∂yzJ3).

Applying ∂x to the first equation and adding it to the second one, we finally obtain,
after a division by ω2 and using divJ = 0,

(ω2 + ∆)u2 = iωJ2. (3.7)

Similar manipulations in (3.6) allow us to reduce the system to a single equation in
u1 and u3 as well, namely

(ω2 + ∆)u1 = iωJ1, (ω2 + ∆)u3 = iωJ3. (3.8)

On the other hand, we can eliminate from the first three equations in (3.2) the vari-
ables uj, j = 1, 2, 3 as functions of uj, j = 4, 5, 6. Proceeding as above, we obtain

(ω2+∆)u4 = −∂yJ3+∂zJ2, (ω2+∆)u5 = −∂zJ1+∂xJ3, (ω2+∆)u6 = −∂xJ2+∂yJ1.
(3.9)

The result now follows by taking linear combinations of (3.7), (3.8) and (3.9).
In order to investigate the influence of boundary conditions on the relation, we

consider now

(ω2 + ∆)w̃1 = f̃1 in Ω, (3.10)
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together with the boundary conditions

(∂x − iω)w̃1(0, y, z) = r̃1(y, z), w̃1(1, y, z) = s̃1(1, y, z), (y, z) ∈ R
2, (3.11)

and with Sommerfeld radiation conditions on the unbounded part of the domain,

lim
r→∞

r

(
∂w̃1

∂r
− iωw̃1

)
= 0, (3.12)

where r = |x|. Its solution is very much related to the solution of the time harmonic
Maxwell’s equations (3.3) in Ω = (0, 1)×R2 with boundary conditions (2.7) and (2.8).

Proposition 3.2. Let w be the solution of (3.3) with boundary conditions (2.7)
and (2.8), and let w̃1 be the solution of (3.10) with boundary conditions (3.11) and
(3.12). If f̃1(x, y, z) = f1(x, y, z) defined in (3.5), s̃1(y, z) = s1(y, z), and

r̃1(y, z) = ∆−1
yz

[
(∂x + iω) [(∂yy − ∂zz)w5 − 2∂yzw6] + ∂y (∂zJ3 + ∂yJ2)

]
(0, y, z),

where ∆yz denotes the Laplace operator in the y and z variables, then

w̃1(x, y, z) = w1(x, y, z) in Ω̄.

Proof. Proposition 3.1 showed that the characteristic variable w1 satisfies a
Helmholtz equation in Ω with right hand side f1 defined in (3.5). Since f = f̃
by assumption, the differential equations coincide and it suffices to verify the equiva-
lence of the boundary conditions. Now, given a solution of Maxwell’s equations with
a Silver-Müller radiation condition, any of its components satisfies also a Sommerfeld
radiation condition, see [27]. Therefore the same results holds for any characteristic
variable by linear combinations. The Dirichlet condition at (1, y, z) is identical, and
thus there is nothing to show. For the condition at (0, y, z), we consider the first two
and the last two equations in (3.3), which form a 4×6 linear system. We can therefore
determine the components of the solution wj , j = 1, .., 4 as functions of w5 and w6.
For any x = (x, y, z) ∈ Ω̄, it can be easily seen that we have

(∂x−iω)w1 = ∆−1
yz

[
(∂x +iω)(∂yy−∂zz)w5−2∂yz(∂x +iω)w6+∂yzJ3+∂yyJ2

]
. (3.13)

In particular, relation (3.13) also holds at (0, y, z), and hence w1 satisfies (3.10) with
boundary conditions (3.11), and the result follows by uniqueness.

Remark 1. Similar results can be obtained for any other propagating component
of the characteristic variables, i.e. w2, w5, and w6, with boundary conditions given
in (2.7) and with

(∂x−iω)w2 = ∆−1
yz

[
(∂x+iω) [(∂yy−∂zz)w5−2∂yzw6]+∂y (∂zJ3+∂yJ2)

]
, at (0, y, z),

(∂x+iω)w5 = ∆−1
yz

[
(∂x−iω) [(∂yy−∂zz)w1−2∂yzw2]+∂y (∂yJ3+∂zJ2)

]
, at (1, y, z),

(∂x+iω)w6 = ∆−1
yz

[
(∂x−iω) [2∂yzw1+(∂yy−∂zz)w2]+∂y (∂yJ3+∂zJ2)

]
, at (1, y, z).
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3.2. Classical Schwarz Algorithm for Maxwell’s Equations. We consider
now the problem (3.1) in Ω = (0, 1) × R2, with boundary conditions on (0, y, z) and
(1, y, z) given by (2.7), and with the radiation conditions (2.8). We decompose the
domain into two subdomains Ω1 := (0, b) × R2 and Ω2 := (a, 1) × R2, and we denote
the overlap by L := b − a ≥ 0. We solve system (2.3) in both subdomains and
we enforce on the subdomain interfaces the continuity of the incoming characteristic
variables. There are two incoming characteristics on both interfaces. Hence, to have
a well-posed problem, we have to impose two conditions on each subdomain. The
classical Schwarz algorithm, using subscript to denote components, and superscript
to denote the subdomain and the iteration count, is given by





iωu1,n +
∑

l=x,y,z

Gl∂lu
1,n = f in Ω1,

w
1,n
+ (0, y, z) = r(y, z),

w
1,n
− (b, y, z) = w

2,n−1
− (b, y, z),





iωu2,n +
∑

l=x,y,z

Gl∂lu
2,n = f in Ω2,

w
2,n
− (1, y, z) = s(y, z),

w
2,n
+ (a, y, z) = w

1,n−1
+ (a, y, z),

(3.14)
where in the transmission conditions (y, z) ∈ R2. We are interested in the relation
between algorithm (3.14) and the following simple optimized Schwarz algorithm for
the Helmholtz equation,






(ω2 + ∆)w̃1,n
1 = f̃1 in Ω1,

(∂x−iω)w̃1,n
1 (0, y, z) = r̃1(y, z),

w̃1,n
1 (b, y, z) = w̃2,n−1

1 (b, y, z)






(ω2 + ∆)w̃2,n
1 = f̃1 in Ω2,

w̃2,n
1 (1, y, z) = s̃1(y, z),

(∂x−iω)w̃2,n
1 (a, y, z) = (∂x−iω)w̃1,n−1

1 (a, y, z).
(3.15)

Proposition 3.3. Let w2,0
1 , w2,0

2 , w1,0
5 , w1,0

6 be given. If algorithm (3.15) is
started with an initial guess w̃1,0

1 and w̃2,0
1 such that

(∂x − iω)w̃1,0
1 = ∆−1

yz

[
(∂yy − ∂zz)(∂x + iω)w1,0

5 − 2∂yz(∂x − iω)w1,0
6 + ∂yzJ3 + ∂yyJ2

]
,

and w̃2,0
1 = w2,0

1 , then for any n ≥ 1, the first characteristic variable w1 of the iterates
of (3.14) and the iterates of (3.15) coincide, i.e.

w1,n
1 = w̃1,n

1 , w2,n
1 = w̃2,n

1 .

Proof. The proof is by induction. Proposition 3.2 shows the result for n = 1.
Assuming that the result holds at iteration n − 1, we obtain

(∂x−iω)w̃1,n−1
1 = ∆−1

yz

[
(∂x+iω)

[
(∂yy−∂zz)w

1,n−1
5 −2∂yzw

1,n−1
6

]
+∂y (∂zJ3+∂yJ2)

]
,

which holds in particular at (a, y, z). By uniqueness, the boundary condition at
(1, y, z) implies then that w2,n

1 = w̃2,n
1 .

Similarly, we have w1,n−1
1 (b, y, z) = w̃1,n−1

1 (b, y, z), and with the boundary condi-
tion at (0, y, z) the result follows.

From Proposition 3.3, the classical Schwarz algorithm with Dirichlet transmission
conditions applied to the time harmonic Maxwell’s equations (3.2) is equivalent to a
simple optimized Schwarz method for a related Helmholtz problem. This implies in
particular the equivalent convergence behavior we show in the following proposition
for an infinite domain Ω = R3. In what follows, we denote by ky and kz the Fourier
variables corresponding to a transform with respect to y and z, respectively.
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Proposition 3.4. Let Ω = R3, and consider Maxwell’s equations (3.2) in Ω with
the Silver-Müller radiation condition

lim
r→∞

r (H × n − E) = 0 (3.16)

where r = |x|, n = x/|x|. Let Ω be decomposed into Ω1 := (−∞, L) × R2 and Ω2 :=
(0, +∞)×R2, (L ≥ 0). For any given initial guess u1,0 ∈ (L2(Ω1))

6, u2,0 ∈ (L2(Ω2))
6,

the Schwarz algorithm (3.14) applied to system (3.2) converges for all Fourier modes
such that |k|2 := k2

y + k2
z 6= ω2. The convergence factor is

Rth =





∣∣∣∣
√

ω2−|k|2−ω√
ω2−|k|2+ω

∣∣∣∣ , for |k|2 < ω2,

e−
√

|k|2−ω2L, for |k|2 > ω2.

(3.17)

Proof. Because of linearity, it suffices to analyze the convergence to the zero
solution when the right hand side vanishes. Performing a Fourier transform of system
(3.2) in the y and z direction, the first and the fourth equation provide an algebraic
expression for û1 and û4, which is in agreement with the fact that these are the
characteristic variables associated with the null eigenvalue. Inserting these expressions
into the remaining Fourier transformed equations, we obtain the first order system

∂x




û2

û3

û5

û6


+

i

ω




0 0 kykz ω2 − k2
y

0 0 k2
z − ω2 −kykz

−kykz k2
y − ω2 0 0

ω2 − k2
z kykz 0 0







û2

û3

û5

û6


 =




0
0
0
0


 . (3.18)

The eigenvalues of the matrix in (3.18) and their corresponding eigenvectors are

λTH
1,2 = −

√
|k|2 − ω2, v1 =




kykz

iω
√

|k|2−ω2

k2
z−ω2

iω
√

|k|2−ω2

1
0




, v2 =




ω2−k2
y

iω
√

|k|2−ω2

− kykz

iω
√

|k|2−ω2

0
1




, (3.19)

and

λTH
3,4 =

√
|k|2 − ω2, v3 =




− kykz

iω
√

|k|2−ω2

ω2−k2
z

iω
√

|k|2−ω2

1
0




, v4 =




k2
y−ω2

iω
√

|k|2−ω2

kykz

iω
√

|k|2−ω2

0
1




. (3.20)

Because of the radiation condition, the solutions ul of system (3.18) in Ωl, l = 1, 2,
are given by

u1 = (α1v1 + α2v2)e
√

|k|2−ω2(x−L), u2 = (β1v3 + β2v4)e
−
√

|k|2−ω2x, (3.21)

where the coefficients αj and βj (j = 1, 2) are uniquely determined by the transmission
conditions. At the n-th step of the Schwarz algorithm, the coefficients α = (α1, α2)
and β = (β1, β2) satisfy the system

αn = A−1
1 A2e

−
√

|k|2−ω2Lβn−1, βn = B−1
1 B2e

−
√

|k|2−ω2Lαn−1,
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where the matrices in the iteration are given by

A1 =

[
−kykz k2

y−ω2+iωλ
k2

z−ω2+iωλ −kykz

]
, A2 =

[
kykz −(k2

y−ω2−iωλ)
−(k2

z−ω2−iωλ) kykz

]
,

(3.22)
and where Bl = Al, l = 1, 2, and we have set λ :=

√
|k|2 − ω2. A complete iteration

over two steps of the Schwarz algorithm leads then to

αn+1 = A−1
1 A2B

−1
1 B2e

−2λLαn−1, β
n+1 = B−1

1 B2A
−1
1 A2e

−2λLβ
n−1,

and we obtain

A−1
1 A2B

−1
1 B2 = B−1

1 B2A
−1
1 A2 =

( |k|2
(λ + iω)2

)2

Id.

Now by the definition of λ, we have |k|2 = (λ− iω)(λ+ iω), and thus the convergence
factor of the algorithm is

ρ(|k|) =

∣∣∣∣∣

√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

e−
√

|k|2−ω2L

∣∣∣∣∣ .

Separating the two cases |k|2 < ω2 and |k|2 > ω2 then concludes the proof.
Note that for |k|2 = ω2, the convergence factor equals 1, independently of the overlap,
which indicates that the algorithm is not convergent in general when used in the
iterative form described here. This precise result was also observed for the equivalent
optimized Schwarz method applied to the Helmholtz equation, see [22]. In practice,
Schwarz methods are however often used as preconditioners for Krylov methods, which
can handle such situations.

We also see from the convergence factor (3.17) that the overlap is necessary for
the convergence of the evanescent modes, |k|2 > ω2. Without overlap, L = 0, we have
ρ(|k|) < 1 only for the propagative modes, |k|2 < ω2, and ρ(|k|) = 1 when |k|2 ≥ ω2.
In the time-harmonic case, the classical Schwarz algorithm without overlap is thus
convergent only for propagative modes, and corresponds to the algorithm proposed
by Desprès et al. in [9] for the Helmholtz equation.

3.3. Transparent Boundary Conditions. To design optimized Schwarz algo-
rithms for Maxwell’s equations, we derive now transparent boundary conditions for
those equations. We consider the time harmonic Maxwell’s equations (3.2) on the
domain Ω = (0, 1) × R

2, with right hand side J compactly supported in Ω, together
with the boundary conditions

(w+ + S1w−)(0, y, z) = 0, (w− + S2w+)(1, y, z) = 0, (y, z) ∈ R
2, (3.23)

where w− and w+ are defined in (2.5), and the operators Sl, l = 1, 2, are general,
pseudo-differential operators acting in the y and z directions.

Lemma 3.5. If the operators Sl, l = 1, 2 have the Fourier symbol

F(Sl) =
1

(
√
|k|2 − ω2 + iω)2

[
k2

y − k2
z −2kykz

−2kykz k2
z − k2

y

]
, j = 1, 2, (3.24)

then the solution of Maxwell’s equations (3.2) in Ω with boundary conditions (3.23)
coincides with the restriction on Ω of the solution of Maxwell’s equations (3.2) on
R3.
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Proof. We show that the difference e between the solution of the global problem
and the solution of the restricted problem vanishes. This difference satisfies in Ω the
homogeneous counterpart of (3.2) with homogeneous boundary conditions (3.23), and
we obtain after a Fourier transform in y and z

ê = (α1v1 + α2v2)e
√

|k|2−ω2x + (α3v3 + α4v4)e
−
√

|k|2−ω2x,

where the vectors vj, j = 1, .., 4, are defined in (3.19) and (3.20). Using the boundary
condition (3.23) at (0, y, z), we obtain that the coefficients αj , j = 3, 4, satisfy the
system of equations

[
−kykz k2

y − ω2 + iω
√
|k|2 − ω2

k2
z − ω2 + iω

√
|k|2 − ω2 −kykz

] [
α3

α4

]
=

[
0
0

]
,

which implies α3 = α4 = 0. Now using the boundary condition at (1, y, z), we obtain
for the coefficients αj , j = 1, 2, the same system of equations as for αj , j = 3, 4, which
implies α1 = α2 = 0. Thus ê = 0, which concludes the proof.

Remark 2. As in the case of the Cauchy-Riemann equations, see [11], the sym-
bols in (3.24) can be written in several, mathematically equivalent forms,

F(Sl) =
1

(
√

|k|2−ω2+iω)2
M =

1

|k|2

√
|k|2−ω2−iω√
|k|2−ω2+iω

M = (
√
|k|2−ω2−iω)2M−1,

where M =

[
k2

y − k2
z −2kykz

−2kykz k2
z − k2

y

]
, which motivate different approximations of the

transparent conditions in the context of optimized Schwarz methods. The first form
contains a local and a non-local term, since multiplication with the matrix M cor-
responds to second order derivatives in y and z, which are local operations, whereas
the term containing the square-root of |k|2 represents a non-local operation. The last
form contains two non-local operations, since the inversion of the matrix M corre-
sponds to an integration. This integration can however be passed to the other side of
the transmission conditions by multiplication with the matrix M from the right. The
second form contains two non-local terms and a local one.
Similarly, we can consider the associated Helmholtz equation (3.4) in Ω = (0, 1)×R2,
with right hand side compactly supported in Ω, and with boundary conditions

(∂x − S̃1)u(0, y, z) = 0, (∂x + S̃2)u(1, y, z) = 0, (y, z) ∈ R
2, (3.25)

where S̃j (j = 1, 2) are general, pseudo-differential operators acting in the y and z
directions.

Lemma 3.6. If the operators S̃l (l = 1, 2) have the Fourier symbol

σ̃l = F(S̃l) =
√
|k|2 − ω2 (3.26)

then the solution of (3.4) in Ω with boundary conditions (3.25) coincides with the
restriction to Ω of the solution of the Helmholtz equation (3.4) on R3 with Sommerfeld
radiation condition (3.12).

Proof. The proof follows along the same lines as in the previous Lemma. Per-
forming a Fourier transform in the y and z directions, the symbol of the difference
between the solution of the global problem and the solution of the restricted one,
denoted by ẽ, is given by

ẽ = αe
√

|k|2−ω2

+ βe−
√

|k|2−ω2

.
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The boundary condition at (0, y, z) implies then that α = 0, whereas the boundary
condition at (1, y, z) implies that β = 0, which concludes the proof.

3.4. Optimized Schwarz Algorithms for Maxwell’s Equations. The trans-
parent operators Sl, l = 1, 2, introduced in Subsection 3.3, are important in the
development of optimized Schwarz methods. They lead to the best possible per-
formance of the method, as we will show in Remark 3. The transparent operators
are however unfortunately non-local operators, and hence difficult to use in practice.
In optimized Schwarz methods, they are therefore approximated to obtain practical
methods. If one is willing to use second order transmission conditions, then the only
parts of the symbols in (3.24) that need to be approximated are the multiplications
by (

√
|k|2 − ω2 + iω)−2, because the entries of the matrices are polynomials in the

Fourier variables, which correspond to derivatives in the y and z direction.
We now introduce a Schwarz algorithm for Maxwell’s equations (3.2) with more

general transmission conditions, which are for Ω1 given by

[(w− + S1w+)(L, y, z)]1,n = [(w− + S1w+)(L, y, z)]2,n−1, (y, z) ∈ R
2, (3.27)

and for Ω2 by

[(w+ + S2w−)(0, y, z)]2,n = [(w+ + S2w−)(0, y, z)]1,n−1, (y, z) ∈ R
2. (3.28)

Proposition 3.7. a) If the operators S1 and S2 have the Fourier symbol

σl := F(Sl) = γl

[
k2

y − k2
z −2kykz

−2kykz k2
z − k2

y

]
, γl ∈ C(kz , ky) (l = 1, 2), (3.29)

then the convergence factor of the Schwarz algorithm with transmission conditions
(3.27)-(3.28) is

ρ(ω, L, |k|, γ1, γ2)=

∣∣∣∣
(
√

|k|2−ω2−iω)2

(
√

|k|2−ω2+iω)2

1−γ1(
√

|k|2−ω2+iω)2

1−γ1(
√

|k|2−ω2−iω)2

1−γ2(
√

|k|2−ω2+iω)2

1−γ2(
√

|k|2−ω2−iω)2
e−2

√
|k|2−ω2L

∣∣∣∣

1
2

.

(3.30)
b) If the operators S1 and S2 have the Fourier symbol

σl := F(Sl) = δl

[
k2

y − k2
z −2kykz

−2kykz k2
z − k2

y

]−1

, γl ∈ C(kz , ky) (l = 1, 2), (3.31)

then the convergence factor of the Schwarz algorithm with transmission conditions
(3.27)-(3.28) is

ρ(ω, L, |k|, δ1, δ2)=

∣∣∣∣
(
√

|k|2−ω2+iω)2

(
√

|k|2−ω2−iω)2

δ1−(
√

|k|2−ω2−iω)2

δ1−(
√

|k|2−ω2+iω)2

δ2−(
√

|k|2−ω2−iω)2

δ2−(
√

|k|2−ω2+iω)2
e−2

√
|k|2−ω2L

∣∣∣∣

1
2

.

(3.32)
c) If the operator S1 has the Fourier symbol (3.29) and S2 has the Fourier sym-
bol (3.31), then the convergence factor of the Schwarz algorithm with transmission
conditions (3.27)-(3.28) is

ρ(ω, L, |k|, γ1, δ2) =

∣∣∣∣
1−γ1(

√
|k|2−ω2+iω)2

1−γ1(
√

|k|2−ω2−iω)2

δ2−(
√

|k|2−ω2−iω)2

δ2−(
√

|k|2−ω2+iω)2
e−2

√
|k|2−ω2L

∣∣∣∣
1/2

. (3.33)
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Proof. The convergence result is again based on Fourier analysis, as in Section
3.2. At the n-th step of the Schwarz algorithm, the coefficients αn = (αn

1 , αn
2 ) and

β = (β1, β2) in (3.21) satisfy

αn = Ā−1
1 Ā2e

−λLβn−1, βn = B̄−1
1 B̄2 e−λLαn−1, (3.34)

where λ =
√
|k|2 − ω2, and the matrices Āl and B̄l, l = 1, 2, are given by

Ā1 = A1 + σ1A2, Ā2 = A2 + σ1A1, B̄1 = A1 + σ2A2, B̄2 = A2 + σ2A1,

with Al, l = 1, 2, defined in (3.22). A complete double iteration of the Schwarz
algorithm leads therefore to

αn+1 = Ā−1
1 Ā2B̄

−1
1 B̄2e

−2λLαn−1, βn+1 = B̄−1
1 B̄2Ā

−1
1 Ā2e

−2λLβn−1.

a) In this case we obtain the iteration matrix

Ā−1
1 Ā2B̄

−1
1 B̄2 = B̄−1

1 B̄2Ā
−1
1 Ā2 =

(
|k|2

(λ+iω)2

)2
(1−γ1(λ+iω)2)(1−γ2(λ+iω)2)
(1−γ1(λ−iω)2)(1−γ2(λ−iω)2) Id,

and since |k|2 = (λ − iω)(λ + iω), the result follows.
b) In this case the iteration matrix is

Ā−1
1 Ā2B̄

−1
1 B̄2 = B̄−1

1 B̄2Ā
−1
1 Ā2 =

(
|k|2

(λ−iω)2

)2
(δ1−(λ−iω)2)(δ2−(λ−iω)2)
(δ1−(λ+iω)2)(δ2−(λ+iω)2) Id,

and the result follows as in the first case.
c) The conclusion follows as in the first two cases.

Remark 3. From (3.30), we see that the choice γ1 = γ2 = 1/(
√
|k|2 − ω2 + iω)2

is optimal, since then ρth(|k|) ≡ 0, for all frequencies |k|. With this choice of γ1 and
γ2, the matrices Ā2 and B̄2 actually vanish.

3.5. Relation to a Schwarz Algorithm for a Scalar Equation. We present
here several particular choices of the transmission operator Sl with Fourier symbol σl

(l = 1, 2) in the transmission conditions (3.27) and (3.28).
Case 1: taking γ1 = γ2 = 0 in (3.29), which amounts to enforce the classical charac-

teristic Dirichlet transmission conditions, the convergence factor is

ρ1(ω, L, |k|) =

∣∣∣∣∣∣

(√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

)2

e−2
√

|k|2−ω2L

∣∣∣∣∣∣

1
2

.

In the non-overlapping case, L = 0, this choice ensures convergence only for
propagative modes, and corresponds to the Taylor transmission conditions of
order zero proposed in [9] for the Helmholtz equation.

Case 2: taking γ1 = γ2 = 1

|k|2
s−iω
s+iω in (3.29) or γ1 = 1

|k|2−2ω2+2iωs
in (3.29) and

δ2 = |k|2 − 2ω2 − 2iωs in (3.31) with s ∈ C, the convergence factor is

ρ2(ω, L, |k|, s) =

∣∣∣∣∣∣

(√
|k|2 − ω2 − s√
|k|2 − ω2 + s

)2

e−2
√

|k|2−ω2L

∣∣∣∣∣∣

1
2

.
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Case 3: taking γ1 = γ2 = 1

|k|2−2ω2+2iωs
in (3.29) with s ∈ C, the convergence factor

is

ρ3(ω, L, |k|, s) =

∣∣∣∣∣

√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

∣∣∣∣∣ ρ2(ω, L, |k|, s) ≤ ρ2(ω, L, |k|, s).

Case 4: taking γl = 1

|k|2
sl−iω
sl+iω , l = 1, 2 in (3.29) or γ1 = 1

|k|2−2ω2+2iωs1

in (3.29) and

δ2 = |k|2 − 2ω2 − 2iωs2 in (3.31) with sl ∈ C, l = 1, 2, the convergence factor
is

ρ4(ω, L, |k|, s1, s2) =

∣∣∣∣∣

√
|k|2 − ω2 − s1√
|k|2 − ω2 + s1

√
|k|2 − ω2 − s2√
|k|2 − ω2 + s2

e−2
√

|k|2−ω2L

∣∣∣∣∣

1
2

.

Case 5: taking γl = 1

|k|2−2ω2+2iωsl

in (3.29) with sl ∈ C, l = 1, 2, the convergence

factor is

ρ5(ω, L, |k|, s1, s2) =

∣∣∣∣∣

√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

∣∣∣∣∣ ρ4(ω, L, |k|, s1, s2) ≤ ρ4(ω, L, |k|, s1, s2).

Except for Case 1, all cases use second order transmission conditions, even though we
use only a zeroth order approximation of the non-local operator

√
|k|2 − ω2. In Case

2 and Case 4, the convergence factor is the same as the one obtained for optimized
Schwarz methods for the Helmholtz equation in [22]. In the cases with parameters,
the best choice for the parameters is in general the one that minimizes the convergence
factor for all |k| ∈ K, where K denotes the set of relevant numerical frequencies. One
therefore needs to solve the min-max problems

min
s∈C

max
|k|∈K

ρj(ω, L, |k|, s), j = 2, 3, min
s1,s2∈C

max
|k|∈K

ρj(ω, L, |k|, s1, s2) j = 4, 5.

(3.35)
We can choose K = [(kmin, k−) ∪ (k+, kmax)]

2, where kmin denotes the smallest fre-
quency relevant to the subdomain, kmax = C

h denotes the largest frequency supported
by the numerical grid with mesh size h, and k± are parameters to be chosen to exclude
the resonance frequencies. If for example the domain Ω is a rectilinear conductor with
homogeneous Dirichlet conditions on the lateral surface, the solution is the sum of the
transverse electric (TE) and transverse magnetic (TM) fields. If the transverse section
of the conductor is a rectangle with sides of length a and b, the TE and TM fields
can be expanded in a Fourier series with the harmonics sin(nπy

a ) sin(mπz
b ), where the

relevant frequencies are |k| = π
√

m2

a2 + n2

b2 , m, n ∈ N+. The lowest one is therefore

kmin = π
√

1
a2 + 1

b2 , and if the mesh size h satisfies h = a
N = b

M , where N and M are

the number of grid points in the y and z direction, then the highest frequency would

be kmax =
√

2π
h . The parameters k± would correspond to the frequencies closest to ω,

i.e. k− = π

√
m2

1

a2 +
n2

1

b2 and k+ = π

√
m2

2

a2 +
n2

2

b2 , where π

√
m2

1

a2 +
n2

1

b2 < ω < π

√
m2

2

a2 +
n2

2

b2 ,

but such precise estimates are not necessary if Krylov acceleration is used, see [22, 20].
Using the results in [20] for Case 2 and Case 4, which are identical to the Helmholtz

case, and optimization techniques as in [20] for the other cases, we obtain asymptotic
formulas for the optimized parameters, of the form s = p(1 − i) and sl = pl(1 − i),
l = 1, 2, with p and pl shown in Table 3.1.
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with overlap, L = h without overlap, L = 0
Case ρ parameters ρ parameters

1 1 −
√

k+ − ω2h none 1 none

2 1 − 2C
1
6
ω h

1
3 p = C

1
3
ω

2·h
1
3

1 −
√

2C
1
4
ω√

C

√
h p =

√
CC

1
4

ω√
2
√

h

3 1 − 2(k2
+ − ω2)

1
6 h

1
3 p =

(k2
+−ω2)

1
3

2·h
1
3

1−
√

2(k2
+−ω2)

1
4

√
C

√
h p =

√
C(k2

+−ω2)
1
4

√
2
√

h

4 1 − 2
2
5 C

1
10
ω h

1
5





p1 = C
2
5
ω

2
7
5 ·h

1
5

,

p2 = C
1
5
ω

2
6
5 ·h

3
5

1 − C
1
8

ω

C
1
4

h
1
4





p1 = C
3
8

ω ·C
1
4

2·h
1
4

,

p2 = C
1
8

ω ·C
3
4

h
3
4

5 1−2
2
5 (k2

+−ω2)
1
10 h

1
5





p1 =
(k2

+−ω2)
2
5

2
7
5 ·h

1
5

,

p2 =
(k2

+−ω2)
1
5

2
6
5 ·h

3
5

1 − (k2
+−ω2)

1
8

C
1
4

h
1
4





p1 =
(k2

+−ω2)
3
8 ·C

1
4

2·h
1
4

,

p2 =
(k2

+−ω2)
1
8 ·C

3
4

h
3
4

Table 3.1

Asymptotic convergence factor and optimal choice of the parameters in the transmission con-
ditions for the five variants of the optimized Schwarz method applied to Maxwell’s equations, when
the mesh parameter h is small, and the maximum numerical frequency is estimated by kmax = C

h
,

and where Cω = min
(
k2
+ − ω2, ω2

− k2
−

)
.

4. The Case of Time Discretization. If we do not assume the wave to be
periodic in time, the time domain also needs to be discretized. We consider a uniform
time grid with time step ∆t, and use a semi-implicit time integration scheme for the
time derivative in (2.1) of the form

−En+1 − En

∆t
+curl

(
Hn+1 + Hn

2

)
= J ,

Hn+1 − Hn

∆t
+curl

(
En+1 + En

2

)
= 0,

where the mean value is introduced to ensure energy conservation, see [12]. With this
time discretization, we have to solve at each time step the system

−√
ηE1 + ∂yH3 − ∂zH2 = J̃1,

√
ηH1 + ∂yE3 − ∂zE2 = g1,

−√
ηE2 + ∂zH1 − ∂xH3 = J̃2,

√
ηH2 + ∂zE1 − ∂xE3 = g2,

−√
ηE3 + ∂xH2 − ∂yH1 = J̃3,

√
ηH3 + ∂xE2 − ∂yE1 = g3,

(4.1)

where we have set (E, H) := (En+1, Hn+1)
√

η := 2
∆t , J̃ := J − 2

∆tE
n − curl Hn,

g = 2
∆tH

n − curl En, and Ej and Hj denote the new fields at time step n + 1. As in
the time harmonic case, we have the equivalent of Proposition 3.1:

Proposition 4.1. Let u be as defined in (2.2). At time step n+1, any component
ui of the solution of Maxwell’s equations (4.1) satisfies the elliptic equation

(η − ∆)uj = fj , (4.2)

where the right hand side depends on J , η, and the solution at the previous time step,
un.

Proof. The result follows like in the time harmonic case.
In contrast to the time harmonic case however, (4.2) is a positive definite Helmholtz
equation, which is much easier to solve numerically than the Helmholtz equation (3.4).

There is also an equivalence result including boundary conditions, as in Proposi-
tion 3.2, for which we omit the details here. Instead, we state directly the equivalent
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of Proposition 3.4, i.e a convergence result for the classical Schwarz algorithm applied
to the time discretized Maxwell’s equations.

Proposition 4.2. Let Ω = R3, and consider Maxwell’s equations (3.2) in Ω with
the Silver-Müller radiation condition

lim
r→∞

r (H × n − E) = 0 (4.3)

where r = |x|, n = x/|x|. Let Ω be decomposed into Ω1 := (−∞, L) × R2 and
Ω2 := (0, +∞) × R2, (L ≥ 0). For any given initial guess u1,0 ∈ (L2(Ω1))

6, u2,0 ∈
(L2(Ω2))

6, the Schwarz algorithm





√
ηu1,n +

∑

l=x,y,z

Gl∂lu
1,n = f in Ω1,

w
1,n
− (b, y, z) = w

2,n−1
− (b, y, z),





√
ηu2,n +

∑

l=x,y,z

Gl∂lu
2,n = f in Ω2,

w
2,n
+ (a, y, z) = w

1,n−1
+ (a, y, z),

(4.4)
converges for all Fourier modes to the solution of (4.1),

‖u(L,·)−u2n
1 (L,·)‖2+‖u(0,·)−u2n

2 (0,·)‖2≤Rn(‖u(L,·)−u0
1(L,·)‖2+‖u(0,·)−u0

2(0,·)‖2),
(4.5)

and the convergence factor is

Rtd =

√
Lη + 2 −√

Lη√
Lη + 2 +

√
Lη

e−
√

Lη
√

Lη+2 < 1. (4.6)

Proof. This result follows like in the time harmonic case, simply replacing iω by√
η. The convergence factor in Fourier is

ρ(|k|) =

∣∣∣∣∣

√
|k|2 + η − η√
|k|2 + η + η

e−
√

|k|2+ηL

∣∣∣∣∣ ,

and the method thus converges for all Fourier modes. To conclude the proof, it suffices
to take the maximum of the convergence factor over |k|.
The preceding theorem shows that the classical Schwarz algorithm with Dirichlet
transmission conditions applied to the time-discretized Maxwell’s equations is conver-
gent for all frequencies |k|, and that the overlap is not necessary to ensure convergence.
The classical Schwarz algorithm corresponds to a simple optimized Schwarz algorithm
for the associated positive definite Helmholtz equation (4.2). With this equivalence,
Lemma 3.5, Remark 2, Proposition 3.7 and all the cases in subsection 3.5 hold un-
changed upon replacing iω by

√
η, so we do not restate these results here. We show

however in Table 4.1 the asymptotically optimal parameters to use in the time do-
main case, since they are fundamentally different from the time harmonic case and
real, s = p ∈ R and sl = pl ∈ R, l = 1, 2.

It is interesting to note a relationship of the optimized parameters for the time
domain case with the one for Cauchy-Riemann, see [11]: Case 2 and 4 are identical,
since the corresponding convergence rates in the two cases are the same, while for Case
1, 3 and 5 there is a small difference in the constants, which is due to the additional
low frequency term in the Maxwell case. The difference appears to be systematic, the
convergence factor of the Maxwell case is obtained from the convergence factor of the
Cauchy-Riemann case by replacing h by 2h, while for the optimized parameters one
has to multiply by 2 in addition to the replacement of h by 2h.
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with overlap, L = h without overlap, L = 0
Case ρ parameters ρ parameters

1 1 − 2
3
2 η

1
4

√
h none 1 − 2

√
η

C h none

2 1 − 2
13
6 η

1
6 h

1
3 p = 2−

1
3 η

1
3

h
1
3

1 − 4η
1
4

√
h√

C
p =

√
Cη

1
4√

h

3 1 − 2
7
4 η

1
8 h

1
4 p =

√
2η

1
4√

h
1 − 2

5
3 η

1
6

C
1
3

h
1
3 p = 2

2
3 C

2
3 η

1
6

h
2
3

4 1 − 2
4
5 η

1
10 h

1
5 p1 = η

1
5

2
2
5 h

3
5

, p2 = η
2
5

16
1
5 h

1
5

1 −
√

2η
1
8

C
1
4

h
1
4 p1 =

√
2C

3
4 η

1
8

h
3
4

, p2 = C
1
4 η

3
8

√
2h

1
4

5 1 − 2
7
6 η

1
12 h

1
6 p1 = 2

2
3 η

1
3

h
1
3

, p2 = 2
1
3 η

1
6

h
2
3

1 − 2η
1
10

C
1
5

h
1
5 p1 = 2C

4
5 η

1
10

h
4
5

, p2 = 2C
2
5 η

3
10

h
2
5

Table 4.1

Asymptotic convergence factor and optimal choice of the parameters in the transmission con-
ditions for the five variants of the optimized Schwarz method applied to the time domain Maxwell’s
equations, when the mesh parameter h is small, and the maximum numerical frequency is estimated
by kmax = C

h
.

5. Numerical Experiments. We discretize the equations using a finite volume
method, on a uniform mesh with mesh parameter h. In all comparisons that follow,
we simulate directly the error equations, f = 0, and we use a random initial guess to
ensure that all the frequency components are present in the iteration.

We first show the two dimensional problem of transverse electric waves, since
this allows us to compute with finer mesh sizes and thus to illustrate our asymptotic
results by numerical experiments. We then show also the full 3d case.

5.1. Two-dimensional case. We consider the transverse electric waves prob-
lem (TE) in the plane (x, y, 0). There is no more dependence on z and the components
E3, H1 H2 are identically zero. The problem obtained is formally identical to the
three-dimensional case (2.3), if u = (E1, E2, H3)

t, and the matrix Nv becomes

Nv =

(
−vy

vx

)
,

and the matrices Gx, Gy and Gv are

Gx =

(
Nex

N t
ex

)
, Gy =

(
Ney

N t
ey

)
and Gv =

(
Nv

N t
v

)
.

All the analytical results remain valid, we only need to replace |k| by |ky|), and
the corresponding quantities in the optimized parameters for both time-harmonic
and time-discretized solutions. We solve Maxwell’s equations on the unit square
Ω = (0, 1)2, decomposed into the two subdomains Ω1 = (0, β) × (0, 1) and Ω2 =
(α, 1) × (0, 1), where 0 < α ≤ β < 1, and therefore the overlap is L = β − α, and we
consider both decompositions with and without overlap.

In the time-harmonic case, the frequency ω = 2π is chosen such that the rule of
thumb of 10 points per wavelength is not violated. Table 5.1 shows the iteration count
for all Schwarz algorithms we considered, in the overlapping and non-overlapping
case. The results are presented in the form itS(itGM ), where itS denotes the iteration
number for the iterative version of the algorithm and itGM the iteration number for
the accelerated version using GMRES.

In Figure 5.1 we show the results we obtained in a graph, together with the
expected asymptotics. Both on the left in the overlapping case and on the right in
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with overlap, L = h without overlap, L = 0
h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

Case 1 18(17) 27(21) 46(27) 71(33) -(48) -(73) -(100) -(138)
Case 2 16(13) 16(14) 17(15) 20(17) 28(22) 36(26) 50(34) 68(40)
Case 3 10(12) 12(13) 14(14) 16(17) 31(20) 40(23) 56(25) 81(28)
Case 4 17(13) 17(14) 20(16) 22(18) 26(20) 28(24) 33(28) 38(30)
Case 5 10(12) 12(13) 14(15) 17(18) 41(24) 53(26) 63(30) 73(32)

Table 5.1

Number of iterations in the 2d time harmonic case to attain an error tolerance of = 10−6 for
different transmission conditions and different mesh sizes.
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Asymptotic convergence for the non−overlapping algorithm: time−harmonic case

 

 
case 2
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O(h−1/4)

O(h−1/4

Fig. 5.1. Asymptotics for the overlapping (left) and non-overlapping (right) cases for the time
harmonic equations.

the non-overlapping one, the asymptotics agree quite well, except for the classical case
with overlap, where the algorithm performs better than predicted by the asymptotic
analysis. In the case of the Cauchy-Riemann equations, see [14], we analyzed such a
discrepancy further and showed that certain discretizations of the hyperbolic system
can introduce higher order terms in the discretized transmission conditions, which
can improve the convergence behavior, as we observe it here.

For the time discretized Maxwell’s equations we choose η = 1. Table 5.2 shows the
iteration count for all Schwarz algorithms we considered, in the overlapping and non-
overlapping case. We observe that the classical non-overlapping algorithm converges
only very slowly, the need of optimized methods is evident here.

In Figure 5.2 we show the results we obtained in a graph, together with the
expected asymptotics, and there is very good agreement.

5.2. Three-dimensional case. We solve now Maxwell’s equations on the unit
cube Ω = (0, 1)3. We decompose the domain into two subdomains Ω1 = (0, β)×(0, 1)2

and Ω2 = (α, 1) × (0, 1)2, with 0 < α ≤ β < 1, and L = β − α as before. In the time-
harmonic case, we chose the frequency ω = 2π/3 to satisfy the rule of thumb of 10
points per wavelength. Table 5.3 shows the iteration count for all Schwarz algorithms
we considered, both in the overlapping and non-overlapping case.

The results for the time discretized Maxwell’s equations where η = 1 are shown
in Table 5.4.
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with overlap, L = h without overlap, L = 0
h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

Case 1 17 24 33 45 280 559 1310 2630
Case 2 13 15 19 24 39 56 77 111
Case 3 12 14 16 18 13 16 20 26
Case 4 12 13 15 17 21 25 30 36
Case 5 12 14 16 18 13 17 19 22

Table 5.2

Number of iterations in the 2d time discretized case to attain an error tolerance of 10−6 for
different transmission conditions and different mesh sizes.
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Asymptotic convergence for the overlapping algorithm: time−domain case
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Asymptotic convergence for the non−overlapping algorithm:time−domain case
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Fig. 5.2. Asymptotics for the overlapping (left) and non-overlapping (right) cases for the time
discretized equations.

6. Conclusions. We have shown that for Maxwell’s equations, a classical Schwarz
algorithm using characteristic Dirichlet transmission conditions between subdomains
is equivalent to an optimized Schwarz method applied to a Helmholtz equation, with a
low frequency approximation of the optimal transmission conditions. This equivalence
shows that the classical Schwarz algorithm with characteristic Dirichlet conditions for
Maxwell’s equations is convergent, even without overlap. This equivalence allowed
us to develop easily an entire hierarchy of optimized Schwarz methods with better
transmission conditions than the characteristic ones for Maxwell’s equations. We il-
lustrated with numerical experiments that the new algorithms converge much more
rapidly than the classical ones.

The equivalence between systems and scalar equations has already been instru-
mental for the development of optimized Schwarz algorithms for the Cauchy-Riemann
equations, and will almost certainly play an important role for other cases. For ex-
ample, it was already observed in [14] that for Euler’s equation, the classical Schwarz
algorithm with characteristic information exchange at the interfaces is convergent,
even without overlap.
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