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OPTIMIZED SCHWARZ METHODS FOR MAXWELL EQUATIONS

V.DOLEAN∗, M.J.GANDER† AND L.GERARDO-GIORDA‡

Abstract. Over the last two decades, classical Schwarz methods have been extended to systems
of hyperbolic partial differential equations, and it was observed that the classical Schwarz method
can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of
classical Schwarz methods applied to elliptic problems, for which overlap is essential for convergence.
Over the last decade, optimized Schwarz methods have been developed for elliptic partial differential
equations. These methods use more effective transmission conditions between subdomains, and are
also convergent without overlap for elliptic problems.

We show here why the classical Schwarz method applied to the hyperbolic problem converges
without overlap for the Maxwell’s equations. The reason is that the method is equivalent to a simple
optimized Schwarz method for an equivalent elliptic problem. Using this link, we show how to develop
more efficient Schwarz methods than the classical ones for the Maxwell’s equations. We illustrate
our findings with numerical results.

Key words. Schwarz algorithms, optimized interface conditions, Maxwell equations
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1. Introduction. Schwarz algorithms experienced a second youth over the last
decades, when distributed computers became more and more performant and avail-
able. Fundamental convergence results for the classical Schwarz methods were derived
for many partial differential equations, and can now be found in several authorita-
tive reviews, see [2, 38, 37], and books, see [32, 30, 36]. The Schwarz methods were
also extended to systems of partial differential equations, such as the time harmonic
Maxwell equations, see [6, 10, 1], or to linear elasticity [16, 17], but much less is known
about the behavior of the Schwarz methods applied to systems of equations. This is
true in particular for the Euler equations, to which the Schwarz algorithm was first
applied in [28, 29], where classical (characteristic) transmission conditions are used at
the interfaces, or with more general interface conditions in [5]. The analysis of such
algorithms applied to systems proved to be very different from the scalar case, see
[13, 14].

Over the last decade, a new class of Schwarz methods was developed for scalar
partial differential equations, namely the optimized Schwarz methods. These methods
use more effective transmission conditions than the classical Dirichlet conditions at the
interfaces between subdomains. New transmission conditions were originally proposed
for three different reasons: first, to obtain Schwarz algorithms that are convergent
without overlap, see [25] for Robin conditions. The second motivation for changing the
transmission conditions was to obtain a convergent Schwarz method for the Helmholtz
equation, where the classical Schwarz algorithm is not convergent, even with overlap.
Approximate radiation conditions were introduced in [8, 11]. The third motivation
was that the convergence rate of the classical Schwarz method is rather slow and very
much dependent on the size of the overlap. In a short note on non-linear problems
[23], Hagstrom et al. introduced Robin transmission conditions between subdomains
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and suggested nonlocal operators for best performance. In [3], these optimal, non-
local transmission conditions were developed for advection-diffusion problems, with
local approximations for small viscosity, and low order frequency approximations in
[26, 7]. In [33] we can find the low-frequency approximation of the absorbing boundary
conditions for Euler equations. Independantly, at the algebraic level, generalized
coupling conditions were introduced in [35, 34]. Optimized transmission conditions
for the best performance of the Schwarz algorithm were introduced for advection
diffusion problems in [24], for the Helmholtz equation in [4, 22], and for Laplace’s
equation in [15]. For complete results and attainable performance for symmetric,
positive definite problems, see [19], and for time dependant problems, see [21, 20].

We show in this paper that the classical Schwarz method, which uses character-
istic Dirichlet transmission conditions between subdomains, applied to the Maxwell’s
equations, is equivalent to an optimized Schwarz method applied to well known equiv-
alent elliptic problems. This explains why the classical Schwarz method in that case
can be convergent even without overlap, and it allows us to develop more effective
Schwarz methods for these systems of partial differential equations. Following the
ideas first showed in [paperDD17], in Section 2, we show that the results obtained
for the model problem of the Cauchy Riemann equations can be generalized to the
Maxwell equations. We prove again that using classical, characteristic conditions
in a Schwarz algorithm applied to Maxwell’s equations corresponds to an optimized
Schwarz method for an equivalent scalar problem, both for the time harmonic and the
time discretized case. We then derive better transmission conditions than the charac-
teristic ones for the Schwarz algorithm applied to the Maxwell system, and illustrate
our results with numerical experiments. We conclude in Section 3 with a summary of
our findings, and an outlook on future work.

2. Maxwell System. We now turn our attention to the Maxwell system, which
describes the propagation of electromagnetic waves,

−ε
∂E

∂t
+ curl H = J , µ

∂H

∂t
+ curl E = 0, (2.1)

where E = (E1, E2, E3)
T and H = (H1, H2, H3)

T denote the electric and magnetic
fields, respectively, ε is the electric permittivity, µ is the magnetic permeability, and J

is the applied current density. In the following, to simplify the notation, and without
loss of generality, we normalize the parameters ε = µ = 1, which corresponds to a
scaling of time and the vector fields E and H, and we assume the applied current
density to be divergence free, that is divJ = 0. Denoting the vector of physical
unknowns by

u = (E1, E2, E3, H1, H2, H3)
T

, (2.2)

the Maxwell system (2.1) can be rewritten in conservative form,

∂tu + Gx∂xu + Gy∂yu + Gz∂zu = f , (2.3)

where the right hand side is given by f = (J1, J2, J3, 0, 0, 0)T , and the coefficient
matrices are of the form

Gl =

[
Nl

−Nl

]
, l = x, y, z,
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where the 3 × 3 matrices Nl, l = x, y, z are given by

Nx =




0 0 0
0 0 1
0 −1 0



 , Ny =




0 0 −1
0 0 0
1 0 0



 , Nz =




0 1 0
−1 0 0
0 0 0



 .

For any unit vector v = (v1, v2, v3), ‖v‖ = 1, we can define the characteristic matrix
of system (2.3) by

C(v) = v1

[
Nx

−Nx

]
+ v2

[
Ny

−Ny

]
+ v3

[
Nz

−Nz

]
=

[
Nv

−Nv

]
,

whose eigenvalues are the characteristic speed of propagation along the direction v.
By the structure of the matrices Nl, l = x, y, z, the matrix C(v) is symmetric, and
hence has real eigenvalues, which implies that the Maxwell system is hyperbolic [31].

If we consider the Maxwell system (2.1) on the domain Ω = [0, 1] × R, the char-
acteristic matrix for the unit normal vector to the boundaries at x = 0 and x = 1,
ñ = (1, 0, 0), is

C(ñ) =

(
Nx

−Nx

)
.

The eigenvalues of this matrix are

λ1,2 = −1, λ3,4 = 0, λ5,6 = 1,

and since the eigenvalues are not distinct, the Maxwell system is not strictly hyperbolic
[31]. The matrix of the left eigenvectors of C(ñ) is given by

L =




0 0 0 1 0 0
−1 0 0 0 1 0
0 1 0 0 0 −1
0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0




,

which leads to the characteristic variables w = (w1, w2, w3, w4, w5, w6)
T associated

with the direction ñ, where

w1 = − 1
2 (E2 − H3), w2 = 1

2 (E3 + H2), w3 = H1,
w4 = E1, w5 = 1

2 (E2 + H3), w6 = − 1
2 (E3 − H2).

(2.4)

In the following, we will denote by w+, w0 and w− the characteristic variables asso-
ciated with the positive, null, and negative eigenvalues respectively, that is

w− = (w1, w2)
T , w0 = (w3, w4)

T , w+ = (w5, w6)
T . (2.5)

The boundary value problem in the characteristic variables, associated with the
Maxwell system (2.1) on the domain Ω = [0, 1]× R

2,

(∂t − ∂x)w1 + 1
2∂zw3 − 1

2∂yw4 = 1
2J2

(∂t − ∂x)w2 + 1
2∂yw3 + 1

2∂zw4 = − 1
2J3

∂tw3 + ∂zw1 + ∂yw2 − ∂zw5 − ∂yw6 = 0
∂tw4 − ∂yw1 + ∂zw2 − ∂yw5 + ∂zw6 = −J1

(∂t + ∂x)w5 − 1
2∂zw3 − 1

2∂yw4 = − 1
2J2

(∂t + ∂x)w6 − 1
2∂yw3 + 1

2∂zw4 = 1
2J3

(2.6)
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together with the characteristic boundary conditions

w+(0, y, z) = r(y, z), w−(1, y, z) = s(y, z), (y, z) ∈ R
2, (2.7)

and with the radiation condition on the unbounded part of the domain

|uj(x, y, z)| ≤ C√
y2 + z2

, (2.8)

where C is a constant, is well-posed ([27].

2.1. Time-harmonic Solutions. As in the case of the second order wave equa-
tion, ∂ttu −∆u = f , it is also suitable for the Maxwell equations to assume the wave
to be periodic in time. In this case, the time derivative becomes an algebraic term,
and only the spatial domain needs to be discretized for a numerical approximation of
the solution. The harmonic solutions of the Maxwell equations are complex valued
static vector fields E and H such that the dynamic fields

E(x, t) = Re(E(x) exp(iωt)), H(x, t) = Re(H(x) exp(iωt))

satisfy the Maxwell system (2.1). The positive real parameter ω is called the pulsation
of the harmonic wave. The harmonic solutions E and H satisfy the time-harmonic
equations

curl E + iωH = 0, curl H − iωE = J , (2.9)

or, written in component form, and owing to (2.2)

−iωu1 + ∂yu6 − ∂zu5 = J1, −iωu2 + ∂zu4 − ∂xu6 = J2, −iωu3 + ∂xu5 − ∂yu4 = J3,
iωu4 + ∂yu3 − ∂zu2 = 0, iωu5 + ∂zu1 − ∂xu3 = 0, iωu6 + ∂xu2 − ∂yu1 = 0.

(2.10)
The time-harmonic problem in characteristic variables reads thus

(iω − ∂x)w1 + 1
2∂zw3 − 1

2∂yw4 = 1
2J2 iωw4 − ∂yw1 + ∂zw2 − ∂yw5 + ∂zw6 = −J1

(iω − ∂x)w2 + 1
2∂yw3 + 1

2∂zw4 = − 1
2J3 (iω + ∂x)w5 − 1

2∂zw3 − 1
2∂yw4 = − 1

2J2

iωw3 + ∂zw1 + ∂yw2 − ∂zw5 − ∂yw6 = 0 (iω + ∂x)w6 − 1
2∂yw3 + 1

2∂zw4 = 1
2J3

(2.11)

2.2. Relation to a Scalar Equation. We investigate now the relation between
the solution of the time harmonic Maxwell system and the solution of some suitable
scalar equation. We consider the equation (2.9) in Ω = [0, 1]×R2 and the associated
boundary value problem with the boundary conditions given by (2.7).

Proposition 2.1.

Let u be as defined in (2.2) and w be the characteristic variables defined in (2.4).
Any component w̃j , j = 1, . . . , 6, of the characteristic variables of the Maxwell system
(2.10) satisfies, in the interior of Ω = [0, 1] × R2, the Helmholtz equation,

(ω2 + ∆)wj = f̃j, j = 1, 2, . . . , 6, (2.12)

with right hand side given by

f̃1 = 1
2 (−(∂x + iω)J2 + ∂yJ1) f̃4 = iωJ1

f̃2 = 1
2 ((∂x + iω)J3 − ∂zJ1) f̃5 = 1

2 (−(∂x − iω)J2 + ∂yJ1)

f̃3 = −∂yJ3 + ∂zJ2 f̃6 = 1
2 ((∂x − iω)J3 − ∂zJ1)

(2.13)
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Proof. From the last three equations in (2.10), we obtain uj, j = 4, 5, 6 as
functions of uj , j = 1, 2, 3 only. Substituting these expressions for uj, j = 4, 5, 6, into
the first three equations in (2.10), we obtain a system for uj ,j = 1, 2, 3

ω2u1 + (∂yy + ∂zz)u1 − ∂xyu2 − ∂xzu3 = iωJ1,
ω2u2 + (∂xx + ∂zz)u2 − ∂yzu3 − ∂xyu1 = iωJ2,
ω2u3 + (∂xx + ∂yy)u3 − ∂xzu1 − ∂yzu2 = iωJ3.

(2.14)

We now eliminate the variable u3 from the first two equations by differentiating the
first one with respect to y and subtracting it from the second one differentiated with
respect to x. We then eliminate u3 also from the second and third equations by
applying the operator [ω2 +(∂xx +∂yy)] to the second one and adding it the third one
differentiated with respect to y and z. After some simplifications, we obtain a new
system for u1 and u2,

∂y((ω2 + ∆)u1) − ∂x((ω2 + ∆)u2) = iω[∂yJ1 − ∂xJ2],
−∂xy((ω

2 + ∆)u1) + (ω2 + ∂xx)((ω2 + ∆)u2) = iω((ω2 + ∂xx + ∂yy)J2. + ∂yzJ3).

Applying ∂x to the first equation and adding it to the second one, we finally obtain,
after a division by ω2,

(ω2 + ∆)u2 = iωJ2,

Different manipulations in (2.14) allow to reduce to a single equation in u1 and u3. In
a similar way, we can eliminate from the first three equations in (2.10), the variables
uj , j = 1, 2, 3 as functions of uj , j = 4, 5, 6 only. We then proceed as above, and it
can be easily seen that we get

(ω2 + ∆)u1 = iωJ1, (ω2 + ∆)u3 = iω2J3, (ω2 + ∆)u4 = −∂yJ3 + ∂zJ2,
(ω2 + ∆)u5 = −∂zJ1 + ∂xJ3, (ω2 + ∆)u6 = −∂xJ2 + ∂yJ1.

So far, the thesis follows immediately by linear combinations.
The above proposition states that the characteristic variables of the Maxwell system
satisfy an Helmholtz equation in the interior of the domain Ω = [0, 1] × R2. So far,
let us consider the following partial differential equation

(ω2 + ∆)w̃1 = f1 in Ω (2.15)

together with the boundary conditions

(∂x − iω)w̃1(0, y, z) = r̃1(y, z), w̃1(1, y, z) = s̃1(1, y, z), (y, z) ∈ R
2. (2.16)

which is very much related to the Maxwell system, as stated in the following propo-
sition.

Proposition 2.2. Let w be the solution of (2.11) with boundary conditions (2.7),
and let w̃1 be the solution of (2.15) with boundary conditions (2.16). If f1(x, y, z) =
f̃1(x, y, z), s̃1(y, z) = s1(y, z), and

r̃1(y, z) = ∆−1
yz

[
(∂x + iω) [(∂yy − ∂zz)w5 − 2∂yzw6] + ∂y (∂zJ3 − ∂yJ2)

]
(0, y, z)

where ∆yz denotes the Laplace operator in the y and z variables, then

w̃1(x, y, z) = w1(x, y, z) in Ω̄.



6

Proof. The foregoing proposition states that the characteristic variable w1 sat-
isfies an Helmholtz equation inside Ω with right hand side f̃1. Thus the differential
equations coincide and we need to verify only the equivalence between the bound-
ary conditions. In that order, notice that the boundary condition of Dirichlet type
in (1, y, z) stays the same. Consider then the first two and the last two equations in
(2.11): this is a 4×6 linear system, and we can express the components of the solution
wj , j = 1, .., 4 in terms of the sole components w5 and w6. For any x = (x, y, z) ∈ Ω̄,
it can be easily seen that we have

(∂x − iω)w1 = ∆−1
yz

[
(∂yy − ∂zz)(∂x + iω)w5 − 2∂yz(∂x + iω)w6 + ∂yzJ3 + ∂yyJ2

]

In particular, the above relation holds true for (0, y, z), thus, w1 satisfies (2.15) with
boundary conditions (2.16), and the thesis then follows by uniqueness.

Remark 1. Notice that a similar result can be obtained for any other propagating
component of the characteristic variables w2, w5, and w6, with boundary conditions
given in (2.7) and by

(∂x−iω)w2 = ∆−1
yz

[
(∂x+iω) [(∂yy − ∂zz)w5 − 2∂yzw6]+∂y (∂zJ3 + ∂yJ2)

]
, in (0, y, z),

(∂x+iω)w5 = ∆−1
yz

[
(∂x−iω) [(∂yy − ∂zz)w1 − 2∂yzw2]+∂y (∂yJ3 + ∂zJ2)

]
, in (1, y, z),

(∂x+iω)w6 = ∆−1
yz

[
(∂x−iω) [2∂yzw1 + (∂yy − ∂zz)w2]+∂y (∂yJ3 + ∂zJ2)

]
, in (1, y, z),

2.3. Classical Schwarz Algorithm for the Maxwell System. We consider
now the problem (2.9) in Ω = [0, 1] × R2, with boundary conditions on (0, y, z) and
(1, y, z) given by (2.7),and with the radiation conditions (2.8). We decompose the
domain into two subdomains Ω1 := (0, b) × R2 and Ω2 := (a, 1) × R2, and we denote
the overlap with L := b − a ≥ 0. We solve system (2.3) in both subdomains and
we enforce on the subdomain interfaces the continuity of the incoming characteristic
variables. There are two incoming characteristics on both interfaces. Hence, to have
a well-posed problem, we have to impose two conditions on each subdomain. The
classical Schwarz algorithm, using subscript to denote components, and superscript
to denote the subdomain and the iteration count, is given by

iω u1,n +
∑

l=x,y,z

Gl∂lu
1,n = f , in Ω1, iω u2,n +

∑

l=x,y,z

Gl∂lu
2,n = f , in Ω2,

w
1,n
+ (0, y, z) = r(y, z), w

2,n
− (1, y, z) = w(y, z),

w
1,n
− (b, y, z) = w

2,n−1
− (b, y, z), w

2,n
+ (a, y, z) = w

1,n−1
+ (a, y, z),

(2.17)
where in the transmission conditions (y, z) ∈ R2. From the previous equivalence
result, a Schwarz algorithm for the equivalent Helmholtz problem would read

(ω2 + ∆)w̃1,n
1 = f̃1, in Ω1, (ω2 + ∆)w̃2,n

1 = f̃1, in Ω2,

(∂x − iω)w̃1,n
1 (0, y, z) = r̃1(y, z), w̃2,n

1 (1, y, z) = s̃1(y, z),

w̃1,n
1 (b, y, z) = w̃2,n−1

1 (b, y, z), (∂x − iω)w̃2,n
1 (b, y, z) = (∂x − iω)w̃1,n−1

1 (b, y, z).
(2.18)
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We now show that the Schwarz algorithm with Dirichlet transmission conditions ap-
plied to the time harmonic Maxwell system (2.10) is equivalent to a simple optimized
Schwarz method for a related scalar partial differential equation, as stated in the
following proposition.

Proposition 2.3. Let w2,0
1 , w2,0

2 , w1,0
5 , w1,0

6 being given. If algorithm (2.18) is
started with initial data w̃1,0

1 and w̃2,0
1 such that

(∂x − iω)w̃1,0
1 = ∆−1

yz

[
(∂yy − ∂zz)(∂x + iω)w1,0

5 − 2∂yz(∂x − iω)w1,0
6 + ∂yzJ3 − ∂yyJ2

]

and w̃2,0
1 = w2,0

1 , then for any n ≥ 1 the first characteristic variable w1 of the iterates
of (2.17) and the iterates of (2.18) coincide, i.e.

w1,n
1 = w̃1,n

1 w2,n
1 = w̃2,n

1 .

Proof. The proof proceeds by induction. Proposition 2.2 entails the result for
n = 1. Assume then that the result is true at iteration n − 1. We then have

(∂x−iω)w̃1,n−1
1 = ∆−1

yz

[
(∂x+iω)

[
(∂yy − ∂zz)w

1,n−1
5 − 2∂yzw

1,n−1
6

]
+∂y (∂zJ3 + ∂yJ2)

]

which holds in particular at (a, y, z). By uniqueness, the boundary condition in
(1, y, z) entails then w2,n

1 = w̃2,n
1 . In a similar way, we have w1,n−1

1 (b, y, z) = w̃1,n−1
1 (b, y, z),

and from the boundary condition in (0, y, z) the thesis follows.
From the foregoing proposition, the Schwarz algorithm with Dirichlet transmission
conditions applied to the time harmonic Maxwell system (2.10) is equivalent to a sim-
ple optimized Schwarz method for a related scalar partial differential equation. This
implies in particular the equivalent convergence behavior we show in the following
proposition for an infinite domain Ω = R3. In what follows we denote by kx, ky and
kz the Fourier variables corresponding to a transform with respect to x, y and z,
respectively. MAH

Proposition 2.4. Let Ω = R3, and consider the Maxwell system (2.10) in Ω
with the radiation condition

lim
r→∞

r(n × E + n × (n × H)) = 0, (2.19)

where r = |x|, n = x/|x|. Let Ω be decomposed into Ω1 := (−∞, L) × R2 and
Ω2 := (0, +∞) × R2, (L ≥ 0). For any given initial guess u1,0 ∈ (L2(Ω1))

6, u2,0 ∈
(L2(Ω2))

6, the Schwarz algorithm (2.17) applied to system (2.10) converges for all
Fourier modes such that k2

y + k2
z 6= ω2. The convergence factor is

Rth =





∣∣∣∣
√

ω2−(k2
y
+k2

z
)−ω√

ω2−(k2
y
+k2

z
)+ω

∣∣∣∣ , for k2
y + k2

z < ω2,

e−
√

k2
y
+k2

z
−ω2L, for k2

y + k2
z > ω2.

(2.20)

Proof. Because of linearity, it suffices to analyze the convergence to the zero
solution when the right hand side vanishes. Performing a Fourier transform of system
(2.10) in the y and z direction, the first and the fourth equation provide an algebraic
expression for û1 and û4, which is in agreement with the fact that these latter are the
characteristic variables associated with the null eigenvalue. Inserting these expressions
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into the remaining Fourier transformed equations, we obtain the first order system

∂x




û2

û3

û5

û6


+

i

ω




0 0 kykz ω2 − k2
y

0 0 k2
z − ω2 −kykz

−kykz k2
y − ω2 0 0

ω2 − k2
z kykz 0 0







û2

û3

û5

û6


 =




0
0
0
0


 .

(2.21)
The eigenvalues of the matrix in (2.21) and their corresponding eigenvectors are

λTH
1,2 = −

√
|k|2 − ω2, v1 =




kykz

iω
√

|k|2−ω2

k2
z
−ω2

iω
√

|k|2−ω2

1
0




, v2 =




ω2−k2
y

iω
√

|k|2−ω2

− kykz

iω
√

|k|2−ω2

0
1




,

and

λTH
3,4 =

√
|k|2 − ω2, v3 =




− kykz

iω
√

|k|2−ω2

ω2−k2
z

iω
√

|k|2−ω2

1
0




, v4 =




k2
y
−ω2

iω
√

|k|2−ω2

kykz

iω
√

|k|2−ω2

0
1




,

where |k|2 = k2
y + k2

z .

Because of the radiation condition, the solutions ul of system (2.21) in Ωl (l = 1, 2)
are given by

u1 = (α1v1 + α2v2)e
√

|k|2−ω2(x−L), u2 = (β1v3 + β2v4)e
−
√

|k|2−ω2x, (2.22)

where the coefficients αj and βj (j = 1, 2) are uniquely determined by the interface
conditions. At the n-th step of the Schwarz algorithm, the coefficients α = (α1, α2)
and β = (β1, β2) satisfy the system

αn = A−1
1 A2e

−
√

|k|2−ω2Lβn−1, βn = B−1
1 B2e

−
√

|k|2−ω2Lαn−1,

where the matrices in the iteration are given by

A1 =

[
−kykz k2

y − ω2 + iωλ
k2

z − ω2 + iωλ −kykz

]
, A2 =

[
kykz −(k2

y − ω2 − iωλ)
−(k2

z − ω2 − iωλ) kykz

]
,

(2.23)
and where Bl = Al, l = 1, 2 and we have set λ :=

√
|k|2 − ω2. A complete iteration

over two steps of the Schwarz algorithm leads then to

αn+1 = A−1
1 A2B

−1
1 B2e

−2λLαn−1, βn+1 = B−1
1 B2A

−1
1 A2e

−2λLβn−1,

and we finally obtain

A−1
1 A2B

−1
1 B2 = B−1

1 B2A
−1
1 A2 =

( |k|2
(λ + iω)2

)2

Id.

Now by the definition of λ, we have |k|2 = (λ− iω)(λ+ iω), and thus the convergence
factor of the algorithm is

ρ(|k|) =

∣∣∣∣∣

√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

e−
√

|k|2−ω2L

∣∣∣∣∣ .
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Separating the two cases |k|2 < ω2 and |k|2 > ω2 then concludes the proof.
Notice that for |k|2 = ω2, the convergence factor equals 1, independently of the
overlap, which indicates that the algorithm is not convergent in general when used
in the iterative form described here. This precise result was also observed for the
equivalent optimized Schwarz method applied to the Helmholtz equation, see [22].
In practice, the Schwarz methods are however used as preconditioners for Krylov
methods, and then a few non-convergent modes in the iterative form can easily be
handled by the Krylov method.

We also see from the convergence factor (2.20) that the overlap is necessary for
the convergence of the evanescent modes, |k|2 > ω2. Without overlap, L = 0, we have
ρ(|k|) < 1 only for the propagative modes, |k|2 < ω2, and ρ(|k|) = 1 when |k|2 ≥ ω2.
In the time-harmonic case, the classical Schwarz algorithm without overlap is thus
convergent only for propagative modes, and corresponds to the algorithm proposed
by B. Després et al. in [9] for the Helmholtz equation.

2.4. Optimized Schwarz Method for the Maxwell Equations.

2.4.1. Transparent Boundary Conditions. To design optimized Schwarz al-
gorithms for the Maxwell system, we derive now the transparent boundary conditions
for those equations. We consider the time harmonic Maxwell equations (2.10) on the
domain Ω = (0, 1) × R2, with right hand side J compactly supported in Ω, together
with the boundary conditions

(w+ + S1w−)(0, y, z) = 0, (w− + S2w+)(1, y, z) = 0, (y, z) ∈ R
2, (2.24)

where w− and w+ are defined in (2.5), and the operators Sl, l = 1, 2, are general,
pseudodifferential operators acting in the y and z directions.

Lemma 2.5. If the operators Sl, l = 1, 2 have the Fourier symbol

F(Sl) =
1

(
√
|k|2 − ω2 + iω)2

[
k2

y − k2
z −2kykz

−2kykz k2
z − k2

y

]
, j = 1, 2, (2.25)

then the solution of the Maxwell equations (2.10) in Ω with boundary conditions (2.24)
coincides with the restriction on Ω of the solution of the Maxwell system (2.10) on
R3.

Proof. As in Section ??, we prove that the difference between the solution of the
global problem and that of the restricted problem (which we will denote by e), which
satisfies in Ω the homogeneous counterpart of (2.10) with boundary conditions (2.24)
vanishes. Proceeding as in the previous section, the solution in Fourier is given by

ê = (α1v1 + α2v2)e
√

|k|2−ω2x + (α3v3 + α4v4)e
−
√

|k|2−ω2x,

where the vectors vj (j = 1, .., 4) are defined in Section 2.3. Using the boundary
condition (2.24) in (0, y, z), we obtain that the coefficients αj , j = 3, 4 satisfy the
system of equations

[
−kykz k2

y − ω2 + iω
√
|k|2 − ω2

k2
z − ω2 + iω

√
|k|2 − ω2 −kykz

] [
α3

α4

]
=

[
0
0

]
,

which implies α3 = α4 = 0. Now using the boundary condition at (1, y, z), we obtain
for the coefficients αj , j = 1, 2, the same system of equations as for αj , j = 3, 4, which
implies α1 = α2 = 0. Thus ê = 0, which concludes the proof.
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Remark 2. As in the case of the Cauchy-Riemann equations in Remark ??, the
symbols in (2.25) can be written in several, mathematically equivalent forms:

F(Sl) =
1

(
√
|k|2 − ω2 + iω)2

M =
1

|k|2

√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

M = (
√

|k|2 − ω2 − iω)2M−1,

where M =

[
k2

y − k2
z −2kykz

−2kykz k2
z − k2

y

]
.

which also will lead to different approximations of the transparent conditions in the
context of optimized Schwarz methods. The first form contains a local and a non-local
term, since multiplication with the matrix M corresponds to second order derivation
operations in y and z, which is a local operation, whereas the term containing the
square-root of |k|2 is a non-local operation. The last form contains two non-local
operations, since the inversion of the matrix M corresponds to an integration. This
integration can however be passed to the other variable by multiplication with this
matrix. The second form contains also two non-local terms and a local one. These
different forms motivate different local approximations of the transparent boundary
conditions.
Similarly, we can consider the associated Helmholtz equation 2.12 in Ω = (0, 1)×R2,
with right hand side compactly supported in Ω, and with boundary conditions

(∂x − S̃1)u(0, y, z) = 0, (∂x + S̃2)u(1, y, z) = 0, (y, z) ∈ R
2, (2.26)

where S̃j (j = 1, 2) are general, pseudodifferential operators acting in the y and z
directions.

Lemma 2.6. If the operators S̃l (l = 1, 2) have the Fourier symbol

σ̃l = F(S̃l) =
√
|k|2 − ω2 (2.27)

then the solution of (2.12) in Ω with boundary conditions (2.26) coincides with the
restriction on Ω of the solution of the Helmholtz equation (2.12) on R3.

Proof. The proof follows along the same lines as in the previous Lemma. Per-
forming a Fourier transform in the x2 and x3 directions, the symbol of the difference
between the solution of the global problem and the solution of the restricted one, that
we denote with ẽ, is given by

ẽ = αe
√

|k|2−ω2

+ βe−
√

|k|2−ω2

.

The boundary condition at (0, y, z) implies then α = 0, whereas the boundary condi-
tion at (1, y, z) implies β = 0, which concludes the proof.

2.4.2. Schwarz Algorithm with General Interface Conditions. The op-
erators Sl, l = 1, 2, introduced in the previous section and leading to the optimal
performance, are unfortunately non-local operators, hence difficult to be used in prac-
tice. They must therefore be approximated in some suitable way. If one is willing to
use second order transmission conditions, then the only parts of the symbols in (2.25)
that need to be approximated are the multiplication by (

√
|k|2 − ω2 + iω)−2, because

the entries of the matrices are polynomials in the Fourier variables, which correspond
to derivatives in the y and z direction. We apply now to (2.10) a Schwarz algorithm
with more general interface conditions, which are given for Ω1 by

[(w− + S1w+)(L, y, z)]1,n = [(w− + S1w+)(L, y, z)]2,n−1, (y, z) ∈ R
2, (2.28)
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and for Ω2 by

[(w+ + S2w−)(0, y, z)]2,n = [(w+ + S2w−)(0, y, z)]1,n−1, (y, z) ∈ R
2. (2.29)

Proposition 2.7. a) If the operators S1 and S2 have the Fourier symbol

σl := F(Sl) = γl

[
k2

y − k2
z −2kykz

−2kykz k2
z − k2

y

]
, γl ∈ C(kz , ky) (l = 1, 2), (2.30)

then the convergence factor of the Schwarz algorithm with interface conditions (2.28)-
(2.29) is

ρ(ω, L, |k|, γ1, γ2) =

∣∣∣∣∣
(
√
|k|2 − ω2 − iω)2

(
√
|k|2 − ω2 + iω)2

1 − γ1(
√
|k|2 − ω2 + iω)2

1 − γ1(
√
|k|2 − ω2 − iω)2

1 − γ2(
√

|k|2 − ω2 + iω)2

1 − γ2(
√

|k|2 − ω2 − iω)2
e−2

√
|k|2−ω2L

∣∣∣∣∣

1/2

.

(2.31)
b) If the operators S1 and S2 have the Fourier symbol

σl := F(Sl) = δl

[
k2

y − k2
z −2kykz

−2kykz k2
z − k2

y

]−1

, γl ∈ C(kz , ky) (l = 1, 2), (2.32)

then the convergence factor of the Schwarz algorithm with interface conditions (2.28)-
(2.29) is

ρ(ω, L, |k|, δ1, δ2) =

∣∣∣∣∣
(
√
|k|2 − ω2 + iω)2

(
√
|k|2 − ω2 − iω)2

δ1 − (
√
|k|2 − ω2 − iω)2

δ1 − (
√
|k|2 − ω2 + iω)2

δ2 − (
√
|k|2 − ω2 − iω)2

δ2 − (
√
|k|2 − ω2 + iω)2

e−2
√

|k|2−ω2L

∣∣∣∣∣

1/2

.

(2.33)
c) If the operator S1 has the Fourier symbol (2.30) and S2 have the Fourier symbol
(2.32) then the convergence factor of the Schwarz algorithm with interface conditions
(2.28)-(2.29) is

ρ(ω, L, |k|, γ1, δ2) =

∣∣∣∣∣
1 − γ1(

√
|k|2 − ω2 + iω)2

1 − γ1(
√
|k|2 − ω2 − iω)2

δ2 − (
√
|k|2 − ω2 − iω)2

δ2 − (
√
|k|2 − ω2 + iω)2

e−2
√

|k|2−ω2L

∣∣∣∣∣

1/2

.

(2.34)
Proof. The convergence result is again based on Fourier analysis, as in Section

2.3. At the n-th step of the Schwarz algorithm, the coefficients αn = (αn
1 , αn

2 ) and
β = (β1, β2) in (2.22) satisfy

αn = Ā−1
1 Ā2e

−λLβn−1, βn = B̄−1
1 B̄2 e−λLαn−1, (2.35)

where λ =
√
|k|2 − ω2. A complete double iteration of the Schwarz algorithm leads

to

αn+1 = Ā−1
1 Ā2B̄

−1
1 B̄2e

−2λLαn−1, βn+1 = B̄−1
1 B̄2Ā

−1
1 Ā2e

−2λLβn−1,

where the matrices in (2.35) are given by

Ā1 = A1 + σ1A2, Ā2 = A2 + σ1A1, B̄1 = A1 + σ2A2, B̄2 = A2 + σ2A1.

where Al (l = 1, 2) are defined in (2.23).
a) In the first case this leads to the iteration matrix

Ā−1
1 Ā2B̄

−1
1 B̄2 = B̄−1

1 B̄2Ā
−1
1 Ā2 =

( |k|2
(λ + iω)2

)2
(1 − γ1(λ + iω)2)(1 − γ2(λ + iω)2)

(1 − γ1(λ − iω)2)(1 − γ2(λ − iω)2)
Id.
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Therefore, since |k|2 = (λ − iω)(λ + iω), the convergence factor is given by

ρ(ω, L, |k|, γ1, γ2) =

∣∣∣∣∣
(
√
|k|2 − ω2 − iω)2

(
√
|k|2 − ω2 + iω)2

1 − γ1(
√
|k|2 − ω2 + iω)2

1 − γ1(
√
|k|2 − ω2 − iω)2

1 − γ2(
√

|k|2 − ω2 + iω)2

1 − γ2(
√

|k|2 − ω2 − iω)2
e−2

√
|k|2−ω2L

∣∣∣∣∣

1
2

.

b) In the second case this leads to the iteration matrix

Ā−1
1 Ā2B̄

−1
1 B̄2 = B̄−1

1 B̄2Ā
−1
1 Ā2 =

( |k|2
(λ − iω)2

)2
(δ1 − (λ − iω)2)(δ2 − (λ − iω)2)

(δ1 − (λ + iω)2)(δ2 − (λ + iω)2)
Id.

Therefore, since |k|2 = (λ − iω)(λ + iω), the convergence factor is given by

ρ(ω, L, |k|, δ1, δ2) =

∣∣∣∣∣
(
√
|k|2 − ω2 + iω)2

(
√
|k|2 − ω2 − iω)2

δ1 − (
√
|k|2 − ω2 − iω)2

δ1 − (
√
|k|2 − ω2 + iω)2

δ2 − (
√
|k|2 − ω2 − iω)2

δ2 − (
√
|k|2 − ω2 + iω)2

e−2
√

|k|2−ω2L

∣∣∣∣∣

1
2

.

c) The conclusion follows as in the first two cases.

Remark 3. From (2.31), we see that the choice γ1 = γ2 = 1/(
√
|k|2 − ω2 + iω)2

is optimal, since then ρth(|k|) ≡ 0, respectively, for all frequencies |k|. With this
choice of γ1 and γ2, the matrices Ā2 and B̄2 actually vanish.

2.4.3. Relation to a Schwarz Algorithm for a Scalar Equation. We present
here several particular choices of the transmission operator Sl with Fourier symbol σl

(l = 1, 2) in the interface conditions (2.28) and (2.29).

Case 1: taking γ1 = γ2 = 0 in (2.30), which amounts to enforce the classical Dirichlet
transmission conditions, the convergence factor is

ρ1(ω, L, |k|) =

∣∣∣∣∣∣

(√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

)2

e−2
√

|k|2−ω2L

∣∣∣∣∣∣

1
2

.

In the non-overlapping case, L = 0, this choice ensures convergence only
for propagative modes, and corresponds to the Taylor interface conditions of
order zero proposed in [9] for the Helmholtz equation.

Case 2: taking γ1 = γ2 =
1

|k|2
p − iω

p + iω
in (2.30) or γ1 =

1

|k|2 − 2ω2 + 2iωp
in (2.30)

and δ2 = |k|2 − 2ω2 − 2iωp in (2.32) with p ∈ C, the convergence factor is

ρ2(ω, L, |k|, p) =

∣∣∣∣∣∣

(√
|k|2 − ω2 − p√
|k|2 − ω2 + p

)2

e−2
√

|k|2−ω2L

∣∣∣∣∣∣

1
2

.

Case 3: taking γ1 = γ2 =
1

|k|2 − 2ω2 + 2iωp
in (2.30) with p ∈ C, the convergence

factor is

ρ3(ω, L, |k|, p) =

∣∣∣∣∣

√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

∣∣∣∣∣ ρ2(ω, L, |k|, p) ≤ ρ2(ω, L, |k|, p).
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Case 4: taking γl =
1

|k|2
pl − iω

pl + iω
, l = 1, 2 in (2.30) or γ1 =

1

|k|2 − 2ω2 + 2iωp1
in

(2.30) and δ2 = |k|2 − 2ω2 − 2iωp2 in (2.32) with pl ∈ C, l = 1, 2, the con-
vergence factor is

ρ4(ω, L, |k|, p1, p2) =

∣∣∣∣∣

√
|k|2 − ω2 − p1√
|k|2 − ω2 + p1

√
|k|2 − ω2 − p2√
|k|2 − ω2 + p2

e−2
√

|k|2−ω2L

∣∣∣∣∣

1
2

.

Case 5: taking γl =
1

|k|2 − 2ω2 + 2iωpl
in (2.30) with pl ∈ C, l = 1, 2, the conver-

gence factor is

ρ5(ω, L, |k|, p1, p2) =

∣∣∣∣∣

√
|k|2 − ω2 − iω√
|k|2 − ω2 + iω

∣∣∣∣∣ ρ4(ω, L, |k|, p1, p2) ≤ ρ4(ω, L, |k|, p1, p2).

Except in the Case 1, all the other cases provide second order transmission conditions
even if we use only a zero order approximation of the non-local operator

√
|k|2 − ω2.

Note also that in the Case 2 and Case 4 the convergence rate is the same as the one
obtained in the case of the Helmholtz equations in [22]. In the cases with parameters,
the best choice for the parameters is in general the one that minimizes the convergence
factor for all |k| ∈ K, where K denotes the set of relevant numerical frequencies. One
therefore needs to solve the min-max problems

min
p>0

max
|k|∈K

ρj(ω, L, |k|, p), j = 2, 3, min
p1,p2>0

max
|k|∈K

ρj(ω, L, |k|, p1, p2) j = 4, 5.

(2.36)
where K = [(kmin, k−)∪(k+, kmax)]2, k± are parameters to be chosen, kmin denotes
the smallest frequency relevant to the subdomain and kmax = C

h denotes the largest
frequency supported by the numerical grid (a reasonable choice for C would be π).
If the domain Ω is a cilindrical conductor with homogeneous Dirichlet conditions on
the lateral surface, the solution is the sum of the transverse electric (TE) and trans-
verse magnetic (TM) fields. If the transverse section of the conductor is a rectangle
with sides of length a and b, TE and TM are expanded in Fourier series with the

harmonics sin(nπy
a ) sin(mπz

b ), where the relevant frequencies are k = π
√

m2

a2 + n2

b2 .

The lowest one is kmin = π
√

1
a2 + 1

b2 , while their spatial distribution is more com-

plicated than in the case treated in [22, 18]. However, if ω falls on one of the rel-

evant frequencies, say ω = π

√
m2

0

a2 +
n2

0

b2 for some m0 and n0, choosing for instance

k± = π

√
(m0±1)2

a2 +
n2

0

b2 leaves precisely one frequency k = ω (that can be easily han-

dled by a Krylov method when the Schwarz algorithm is used as a preconditioner)
and treats all the other frequencies by optimization. If ω falls between the relevant

frequencies, say π

√
m2

1

a2 +
n2

1

b2 ≤ ω ≤ π

√
m2

2

a2 +
n2

2

b2 , the we get the iterative method to

converge by choosing k− = π

√
m2

1

a2 +
n2

1

b2 and k+ = π

√
m2

2

a2 +
n2

2

b2 , which will allow us
to directly verify the asymptotic analysis without the use of a Krylov method. Using
the same techniques as in [18], we obtain the asymptotically optimized parameters
for the other cases as shown in Table 2.1.

2.5. Numerical Experiments for the time-harmonic equations. We now
show numerical experiments for the time harmonic Maxwell equations solved on the
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with overlap, L = h without overlap, L = 0
Case ρ parameters ρ parameters

1 1 −
√

k+ − ω2h none 1 none

2 1 − 2C
1
6
ω h

1
3 p = C

1
3
ω

2·h
1
3

1 −
√

2C
1
4

ω√
C

√
h p =

√
CC

1
4

ω√
2
√

h

3 1 − 2(k2
+ − ω2)

1
6 h

1
3 p =

(k2
+−ω2)

1
3

2·h
1
3

1 −
√

2(k2
+−ω2)

1
4

√
C

√
h p =

√
C(k2

+−ω2)
1
4

√
2
√

h

4 1 − 2
2
5 C

1
10
ω h

1
5





p1 = C
2
5
ω

2
7
5 ·h

1
5

,

p2 = C
1
5
ω

2
6
5 ·h

3
5

1 − C
1
8
ω

C
1
4

h
1
4





p1 = C
3
8

ω ·C
1
4

2·h
1
4

,

p2 = C
1
8

ω ·C
3
4

h
3
4

5 1 − 2
2
5 (k2

+ − ω2)
1
10 h

1
5





p1 =
(k2

+−ω2)
2
5

2
7
5 ·h

1
5

,

p2 =
(k2

+−ω2)
1
5

2
6
5 ·h

3
5

1 − (k2
+−ω2)

1
8

C
1
4

h
1
4





p1 =
(k2

+−ω2)
3
8 ·C

1
4

2·h
1
4

,

p2 =
(k2

+−ω2)
1
8 ·C

3
4

h
3
4

Table 2.1

Asymptotic convergence rate and optimal choice of the parameters in the transmission condi-
tions for the five variants of the optimized Schwarz method applied to the Maxwell equations, when
the mesh parameter h is small, and the maximum numerical frequency is estimated by kmax = C

h
,

and where Cω = min
(
k

2
+ − ω2, ω2

− k
2
−

)
.

with overlap, L = h without overlap, L = 0
h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

Case 1 18 27 46 71 - - - -
Case 2 16 16 17 20 28 36 50 68
Case 3 10 12 14 16 31 40 56 81
Case 4 17 17 20 22 26 28 33 38
Case 5 10 12 14 17 41 53 63 73

Table 2.2

Number of iterations to attain convergence for different interface conditions and different mesh
sizes in the overlapping and non-overlapping case. The tolerance is fixed at ε = 10−6.

unit square Ω = (0, 1)2. The frequency ω = 2π is choosen such that the thumb rule
(at least 10 discretization point per wavelength) shoult be respected. We decompose
the domain into two subdomains Ω1 = (0, β) × (0, 1) and Ω2 = (α, 1) × (0, 1), where
0 < α ≤ β < 1, and therefore the overlap is L = β − α, and we consider both decom-
positions with and without overlap. We discretize the equations using a finite volume
method, on a uniform mesh with mesh parameter h. In all comparisons that follow,
we simulate directly the error equations, f = 0, and we use a random initial guess to
ensure that all the frequency components are present in the iteration.

Table 2.2 shows the iteration count for all Schwarz algorithms considered pre-
viously, in the overlapping and non-overlapping case. We have to note that for the
non-overlapping algorithm the iterative version doesn’t converge therefore, applying
a Krylov method is necessary.

2.6. Time Discretized Solutions. If we do not assume the wave to be periodic
in time, the time domain also needs to be discretized. We consider a uniform time
grid with time step ∆t, and use a semi-implicit time integration scheme for the time
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10
−2
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Fig. 2.1. Asymptotics for the Non Overlapping (left) and Overlapping (right) cases for the
Time harmonic equations

derivative in (2.1) of the form

−En+1 − En

∆t
+curl

(
Hn+1 + Hn

2

)
= J ,

Hn+1 − Hn

∆t
+curl

(
En+1 + En

2

)
= 0,

where the mean value is introduced to ensure the energy conservation (see [12]). With
this time discretization, the Maxwell system (2.3) can be rewritten as a system that
needs to be solved in each time step,

−√
ηE1 + ∂yH3 − ∂zH2 = J̃1,

√
ηH1 + ∂yE3 − ∂zE2 = g1,

−√
ηE2 + ∂zH1 − ∂xH3 = J̃2,

√
ηH2 + ∂zE1 − ∂xE3 = g2,

−√
ηE3 + ∂xH2 − ∂yH1 = J̃3,

√
ηH3 + ∂xE2 − ∂yE1 = g3,

(2.37)

where we have set (E, H) = (En+1, Hn+1)
√

η = 2
∆t , J̃ = J − 2

∆tE
n − curl Hn,

g = 2
∆tH

n − curl En, and Ej and Hj denote the new fields at the time step n + 1.
As in the time harmonic case, we have the equivalent of Proposition 2.1:

Proposition 2.8. Let u be as defined in (2.2). At time step n+1, any component
ui of the solution of the Maxwell system (2.37) satisfies the elliptic equation

(η − ∆)uj = fj , (2.38)

where the right hand side depends on J, η, and the solution at the previous time step
un.

Proof. The result follows like in the time harmonic case.
In contrast to the time harmonic case however, (2.38) is a positive definite Helmholtz
equation, which is much easier to solve numerically than the Helmholtz equation
(2.12).

There is also an equivalence result including boundary conditions, as in Proposi-
tion 2.2, for which we omit the details here. Instead, we state directly the equivalent
of Proposition 2.4, i.e a convergence result for the classical Schwarz algorithm applied
to the time discretized Maxwell equations.

Proposition 2.9. Let Ω = R3, and consider the Maxwell system (2.10) in Ω
with the radiation condition

lim
r→∞

r(n × E + n × (n × H)) = 0, (2.39)
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with overlap, L = h without overlap, L = 0
Case ρ parameters ρ parameters

1 1 − 2
3
2 η

1
4

√
h none 1 − 2

√
η

C h none

2 1 − 2
13
6 η

1
6 h

1
3 p = 2−

1
3 η

1
3

h
1
3

1 − 4η
1
4

√
h√

C
p =

√
Cη

1
4√

h

3 1 − 2
7
4 η

1
8 h

1
4 p =

√
2η

1
4√

h
1 − 2

5
3 η

1
6

C
1
3

h
1
3 p = 2

2
3 C

2
3 η

1
6

h
2
3

4 1 − 2
4
5 η

1
10 h

1
5 p1 = η

1
5

2
2
5 h

3
5

, p2 = η
2
5

16
1
5 h

1
5

1 −
√

2η
1
8

C
1
4

h
1
4 p1 =

√
2C

3
4 η

1
8

h
3
4

, p2 = C
1
4 η

3
8

√
2h

1
4

5 1 − 2
7
6 η

1
12 h

1
6 p1 = 2

2
3 η

1
3

h
1
3

, p2 = 2
1
3 η

1
6

h
2
3

1 − 2η
1
10

C
1
5

h
1
5 p1 = 2C

4
5 η

1
10

h
4
5

, p2 = 2C
2
5 η

3
10

h
2
5

Table 2.3

Asymptotic convergence rate and optimal choice of the parameters in the transmission condi-
tions for the five variants of the optimized Schwarz method applied to the time domain Maxwell
equations, when the mesh parameter h is small, and the maximum numerical frequency is estimated
by kmax = C

h
.

where r = |x|, n = x/|x|. Let Ω be decomposed into Ω1 := (−∞, L) × R2 and
Ω2 := (0, +∞) × R2, (L ≥ 0). For any given initial guess u1,0 ∈ (L2(Ω1))

6, u2,0 ∈
(L2(Ω2))

6, the Schwarz algorithm (2.17) applied to system (2.37) converges for all
Fourier modes to the solution of (2.37) in the following sense

||u(L, ·)−u2n
1 (L, ·)||2+||u(0, ·)−u2n

2 (0, ·)||2 ≤ Rn(||u(L, ·)−u0
1(L, ·)||2+||u(0, ·)−u0

2(0, ·)||2),
(2.40)

The convergence factor is

Rtd =

√
Lη + 2 −√

Lη√
Lη + 2 +

√
Lη

e−
√

Lη
√

Lη+2 < 1. (2.41)

Proof. This result follows like in the time harmonic case.
The preceding theorem shows that the classical Schwarz algorithm with Dirichlet
transmission conditions applied to the time-discretized Maxwell system is convergent
for all frequencies |k|, and that the overlap is not necessary to ensure convergence.
The classical Schwarz algorithm corresponds to a simple optimized Schwarz algorithm
for the associated positive definite Helmholtz equation (2.38). With this equivalence,
Lemma 2.5, Remark 2, Proposition 2.7 and all the cases in subsection 2.4.3 hold
unchanged upon replacing iω by η, so we do not restate these results here. We
show however in Table 2.3 the asymptotically optimal parameters to use in the time
domain case. It is interesting to note the relationship of the optimized parameters
for the Maxwell time domain case with the one for Cauchy-Riemann: Case 2 and 4
are identical, since the corresponding convergence rates in the two cases are the same,
while for Case 1, 3 and 5 there is a small difference in the constants, which is due
to the additional low frequency term in the Maxwell case. The difference appears
to be systematic, the convergence factor of the Maxwell case is obtained from the
convergence factor of the Cauchy-Riemann case by replacing h by 2h, while for the
optimized parameters one has to multiply by 2 in addition to the replacement of h by
2h.

2.7. Numerical Experiments for the time discretized equations. We now
show numerical experiments for the time discretized Maxwell equations solved on the
unit square Ω = (0, 1)2. Here η = 1. We decompose the domain into two subdomains
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with overlap, L = h without overlap, L = 0
h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

Case 1 17 24 33 45 280 559 1310 2630
Case 2 13 15 19 24 39 56 77 111
Case 3 12 14 16 18 13 16 20 26
Case 4 12 13 15 17 21 25 30 36
Case 5 12 14 16 18 13 17 19 22

Table 2.4

Number of iterations to attain convergence for different interface conditions and different mesh
sizes in the overlapping and non-overlapping case. The tolerance is fixed at ε = 10−6.

Ω1 = (0, β) × (0, 1) and Ω2 = (α, 1) × (0, 1), where 0 < α ≤ β < 1, and therefore the
overlap is L = β − α, and we consider both decompositions with and without over-
lap. We discretize the equations using a finite volume method, on a uniform mesh
with mesh parameter h. In all comparisons that follow, we simulate directly the error
equations, f = 0, and we use a random initial guess to ensure that all the frequency
components are present in the iteration.

Table 2.4 shows the iteration count for all Schwarz algorithms considered previ-
ously, in the overlapping and non-overlapping case.

We can see from the table 2.4, that the classical non-overlapping algorithm con-
verges but very slowly, the need of optimized methods is very obvious in this case. We
should note that numerically the optimized methods behave as we expected even if
the difference between them is not very important especially in the overlapping case.
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Fig. 2.2. Asymptotics for the Non Overlapping (left) and Overlapping (right) cases for the
Time harmonic equations

3. Conclusions. We have shown in this paper, that for the Cauchy-Riemann
equations and the Maxwell’s equations, a Schwarz algorithm using characteristic in-
formation at the interfaces between subdomains is equivalent to an optimized Schwarz
method applied to the corresponding scalar equation, with a low frequency approxima-
tion of the optimal transmission conditions. This equivalence shows that the Schwarz
algorithms with characteristic conditions for those systems of partial differential equa-
tions are convergent even without overlap. We then used the equivalence to develop
better transmission conditions than the characteristic ones for the Cauchy-Riemann
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and the Maxwell equations. We illustrated with numerical experiments that the new
algorithm converge much more rapidly than the classical ones. Although we have
shown the equivalence only for two model problems, our results indicate that it also
holds for other systems of partial differential equations. In particular for the Euler
equations, it was already observed in [Victorita], that the classical Schwarz algorithm
with characteristic information exchange at the interfaces is convergent, even without
overlap. We currently focus on the optimization of the new transmission conditions
introduced here, and also on optimized transmission conditions for the Euler equations
and for linear elasticity.
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