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Abstract.

The Doppler spectrum estimation of a weather radar signal in a classic way
can be made by two methods, temporal one based in the autocorrelation of
the successful signals, whereas the other one uses the estimation of the power
spectral density PSD by using Fourier transforms. We introduces a new tool
of signal processing based on Ramanujan sums cq(n), adapted to the analysis
of arithmetical sequences with several resonances p/q. These sums are almost
periodic according to time n of resonances and aperiodic according to the order
q of resonances. New results will be supplied by the use of Ramanujan Fourier
Transform (RFT) for the estimation of the Doppler spectrum for the weather
radar signal.

PACS numbers: 84.40.Xb, 07.50.Qx

1. Introduction

In the signal processing field, transforms or methods have been used to move from a
space into another one (time towards frequency) or whatever, in order to estimate and
analyze, in a better way, the informational content of the signal. Up to now, Discrete
Fourier Transform (DFT) and its Fast Fourier Transform (FFT) have been the best
tools ever used for periodic or quasi-periodic signals. But this technique is not really
appropriate for the analysis of aperiodic random signals. This fact is not new. As
a result, multiple methods have been developed recently to analyze time series, the
wavelet method, AR model or the autoregressive moving average (ARMA) model.

In the context of the spectrum parameter estimation of a weather signal radar, an
algorithm called Pulse Pair (PP) and based on the calculation of the autocorrelation
of complex time series, Z (I,Q), has been developed at first, and this with one or two
lags development of the spectrum moments in Mc-Lauren series in order to reduce
the calculation time. Then, thanks to computers and data processors improvement,
the Fourier Transform has been introduced, followed by AR model and ARMA to
be used in the spectrum domain and analyze, in a better way, the detected weather
phenomenons.

This article aims mainly at introducing and studying the Ramanujan sums, cq(n),
in order to estimate the spectrum properties of pulsed Doppler radar signals, used in
meteorology.
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The use of the Ramanujan method in the domain of the Doppler spectrum
estimation of the weather radar signals, has been motivated by the recent researchers’
growing interest to introduce it as a new tool in signal processing [9][10]. This method
has been used by Ramanujan, for the first time, as a means for representing arithmetic
series by infinite extent sums. Moreover, transform coefficients, cq, come from the use
of arithmetic functions of the number theory. We may add that these coefficients
have the orthogonality property which makes them much more interesting in signal
processing.

In this article, the spectrum moment estimation - zero, one and two orders (power,
velocity and spectrum width) for a pulsed Doppler weather radar signal (section 2) –
has been dealt with and the two estimation domains: The first one which is based on
the autocorrelation estimation (Time domain estimation), and the second one which
is based on power spectrum densities PSD (frequency domain estimation), have been
treated while using the Discrete Fourier Transform (DFT). A certain notion of the
Ramanujan sums has been introduced and the Ramanujan-Fourier Transform (RFT)
presented as a new tool in signal processing of arithmetic sequences, based on the
prime number theory (section 3). Results about the calculation made on the real data
provided by a WSR-88 D pulse Doppler radar and discussions about estimations led
upon the Doppler spectrum by the estimators cited (section 4).

2. Spectral moment estimation

The radar data, repeated at regular time intervals is referred to as a volume scan.
The reflectivity measured in dBz often contained in weather Doppler radar signal
may contain precipitation and wind information.

The pulsed Doppler radar delivers the output voltages - I in-phase and Q in
quadrature phase – thus, generating the complex echo Z (I, Q). The power spectrum
density is given by the Fourier Transform of the autocorrelation function RZZ(τ). [1],
[2].

SZ(f) = ℑ{RZZ(τ)} (1)

Where Z (I, Q) =I+jQ is a complex signal generated at radar receiver by the
weather echoes returned [1], from the weather perturbations. The received Doppler
spectrum SZ(f)is represented in figure 1.

The received Doppler spectrum represents the power spectrum density of the
received signal for a detection volume. Furthermore, without taking into account the
noise power, the total echo power is given by the zeroth moment function, [1], [2]:

P =

∫

S(v) dv (2)

The mean wind velocity where the first normalized moment is [2]:

v̄ =
1

P

∫

vS(v)dv (3)

The spectrum width of the Doppler spectrum mean velocity or shear is given by
the square root of the normalised second central moment [2]:

σ2
v =

1

P

∫

(v − v̄)2 S(v) dv (4)
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Figure 1. The received Doppler spectrum

The Doppler spectrum Sz(f) can be scaled according to the Doppler velocity
as S(v), using the relationship between the velocity and the Doppler frequency shift
where λ is the wavelength of the emitted signal: [3]

v =

(

λ

2

)

f (5)

In the same way, we may draw the relationship between the velocity width w and
the standard Doppler spectrum deviation σfas [1], [2]:

w =

(

λ

2

)

σf (6)

2.1. Time domain estimation

This approach is based on the estimation of the complex autocorrelation function of
the radar signal [1]. A complex and stationary random process representing the time
series of the radar signal (Z (I,Q)), (I: in phase and Q: quadratic components) sampled
at the pulse repetition time Ts can be written as:

Z(kTS) = I(kTS) + jQ(kTS) (7)
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Considering that these signals are statistically independent, thus the autocorre-
lation function is as follows [1]:

RZZ(Ts) =
1

m

m−1
∑

k=0

Z∗(kTs)Z((k + 1)Ts) (8)

Where m is the number of pulses considered. Assuming prior estimation of the
noise power N the total power can be estimated b [1], [6], [7]:

P̂ =
1

m

m
∑

k=1

|Z(kTS)|2 − N (9)

The estimate of the mean wind velocity and its variance is given respectively by
the estimators [1], [3], [6] and [7]:

v̂PP =
λ

4πTS

arg [RZZ(TS)] (10)

and

ŵ2
PP =

λ2

8π2T 2
S

[

1 −
RZZ(TS)

P̂

]

(11)

The spectrum width of the mean wind velocity is obtained straightforward by the
square root of the variance. The subscript (PP) stands for pulse-pair method.

2.2. Frequency domain estimation

Another technique for estimating the mean velocityv̂, the varianceσ2
v and the received

Doppler spectrum width,ŵ consists of estimating the power spectrum density via the
Discrete Fourier Transform [5], [7], [11] as follows:

V̂FT =
λ

2P̂TS

M

2
−1
∑

k=−M

2

SZ(k).

(

k

M − 1

)

(12)

and:

Ŵ 2
FT =

λ2

4P̂T 2
S

M

2
−1
∑

k=−M

2

SZ(k).

(

k

M − 1
+ 2

V̂FT TS

λ

)2

(13)

With,SZ (k)is the power spectrum density.
These estimated values which are indexed (FT), are referred to as Fourier method.
This spectrum estimation is normalized by the total mean power, P, dealt with

as a probability all over the considered bandwidth [4].
The advantage of the time implementation domain for the PP estimation is that

it is less time-consuming than all the methods which require the use of the Discrete
Fourier Transform (DFT) [6], [7].

The radar-reflected weather spectrum will not probably contradict these
assumptions, but the presence of the inverted clutter mode (change of direction) can
biase the mean spectrum estimation [6].

The DFT could be calculated with a fast DFT algorithm (FFT). However, the
DFT has two disadvantages, which are inherent to its approach. The first one is that
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the frequency resolution is limited by the reverse of the width of the recorded samples.
The second one implies the use of length-limited samples for the representation of
infinite range signals. If we consider that the sequences will be worthless out of the
finished interval, it means that a data windowing will be imposed. This windowing is
equivalent to the data multiplication by a rectangular window of unit amplitude. As
far as the frequency domain is concerned, the result is similar to a convolution of a
spectrum with a sinc function. [6][7].

This phenomenon is known as ‘spectrum losses’ because the signal energy is not
represented in the whole frequency domain [12][13].

These limitations of the DFT will arouse problems with short time sequences that
are used in airborne Doppler radars [7]. As far as our study is concerned, it is not the
case since we have adopted a ground-based pulse Doppler radar for our calculations.

3. Ramanujan Fourier transform

A In this section, notions of the Ramanujan sums, cq(n), have been dealt with. These
sums may be defined as the nth power of the qth primitive roots of the unit [9].

cq(n) =
∑q

p=1 exp(2iπ p

q
n)

(p, q) = 1
(14)

Where (p, q) =1 means that p and q are coprimes
And the coefficients, cq(n), are sums from a set of ep(n) characters
With:

ep(n) = exp(2iπ
p

q
n) (15)

That the sums introduced by Ramanujan will play a fundamental role in the
projection of arithmetic sequences, x (n).

x(n) =

∞
∑

q=1

xqcq(n) (16)

Glancing at the above equation, one can easily notice that infinite series having
q → ∞ may lead us to Fourier series [9], [10]. Moreover, the Discrete Fourier Transform
takes a finite q value. The arithmetic function,σ(n), sum of n dividers, can be written

with RFT coefficients as σq = π2n
6

1
q2 , consequently

σ(n) =
π2n

6

{

1 +
(−1)n

22
+

2 cos(2nπ/3)

32
+

2 cos(nπ/2)

42
+ .....

}

(17)

For mean value functions, x (n), we have :

Av(x) = lim 1
t

∑t

n=1 x(n)
t → ∞

(18)

Getting the inversion formula [9]

xq =
1

φ(q)
Av(x(n)cq(n)) (19)
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From [9], the formula can be generalized. In what follows, the indexed coefficient,
xq,, represent the Ramanujan Fourier Transform (RFT). The result is a multiplicative
property of the Ramanujan sums (coefficients):

cqq′(n) = cq(n)cq′(n) if (q, q′) = 1 (20)

Where the orthogonality property is:

q
∑

n=1

c2
q(n) = qφ(q) (21)

The Ramanujan coefficients have been evaluated with the number theory functions.
(q, n) represent the greater common divider of q and n. Factoring a number into
prime numbers, one may transcript q and n as:

q =
∏

i

qαi

i (qiprime) (22)

n =
∏

k

nβk

k (nkprime) (23)

We can also find the number φ(q)of the irreducible fraction of denominator, q,
also called Euler Totient function

φ(q) = q
∏

i

(1 −
1

qi

) (24)

And Moebius functionµ(n), with which these prime numbers could be obtained,
is defined as

µ(n) =







0 if n content squared value βk > 1
1 if n = 1,

(−1)k if n is the product of k prime number

(25)

From [9], the Ramanujan sums have been evaluated as follows:

cq(n) = µ

(

q

(q, n)

)

φ(q)

φ
(

q

(q,n)

) (26)

It should be noted that the sequences, cq(n), are periodic.
Having to face serious problems when calculating the mean wind velocity and

its spectrum width with the Ramanujan-Fourier method, we had to calculate the
spectrum density of the power deriving from the Discrete Fourier Transform (DFT)
[12], [13].

f̂ =
∑

i

fiSRFT (fi)/
∑

i

SRFT (fi) (27)

And

ŵ2 =
∑

i

(fi − f̂)2SRFT (fi)/
∑

i

SRFT (fi) (28)

With

v̂ = λ/2f̂ (29)

With v̂ and ŵ as being the estimated mean velocity and its spectrum width
respectively, and SRFT (fi) the Ramanujan spectrum of the complex series, Z (I, Q).
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4. Results and comments

The data used are taken by a pulse Doppler radar WSR-88D at the state of Memphis
Tennessee in July of 1997; they contains samples data I, Q, Azimuth, Elevation, Prt
(pulse repetition times), Time (UNIX time).

The real data used are filtered by using IIR elliptic filter with fourth poles order,
in order to reject the clutters and noises. This phase is very important to get only the
weather spectrum modes.

We give in the figure 2 and figure 3, the representation of the complex series I
and Q and their Doppler spectrum, for the Range cell n◦1.

Figure 2. Time series I and Q

The three methods (pulse-pair, FFT and Ramanujan Fourier RFT), used for the
estimation of the Doppler spectrum parameters of the wind perturbation led to the
results represented in figures 5 and 6.

The algorithm based in the time domain (PP), is a simple method to program,
because we have considered only the calculation of autocorrelation function of
the received weather radar signalsZ(iTs). It has less calculation time (13 ms)
comparatively to RFT (16 ms), and much less to FFT (26ms), and converges at
the first iteration (see table 1).

The estimation made by this method for the mean radial velocity of the wind
Doppler spectrum, is very close to those provided in PPI form (Plan Position Indicator)
by R.J. Keeler.

The variance σ2
V and the spectral width w estimated by the pulse-pair method are

weaker compared to those of the FFT and RFT methods. The main disadvantage of
this method is that the results related to the autocorrelation function are not easy to
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Figure 3. Doppler spectrum

interpret, contrary to those of the spectral methods which are distributed over several
frequencies (periodograms), [6], [13].

Moreover, the Ramanujan estimations which have been produced by the
Ramanujan Fourier Transform (RFT), for the PSD calculation, are almost better to
those provided by the FFT algorithm. The results are not different and the estimated
values oscillate closely to those estimated about pulse-pair method. One advantage of
using this method in calculations – compared to FFT – is that it is less time-computing,
since it requires reduced samples only (see table 1).

In addition it is seen well (in the figure 5), these estimations done by Ramanujan
Fourier algorithm are however better to those estimated by FFT method and non
divergent. The disadvantage of this method lies in the execution time which is long to
pulse-pair one. This long calculation time is due to the use of various coefficients for the
PSD estimation and which takes more calculation time. To reduce this execution time,
there is a real time signal processing technique which uses electronic implementation
circuit, Digital Signal Processor [11]. So, the estimation of the mean wind velocity and
width done by the RFT algorithm will be improved and made in real time without
any delay.

Consequently, the time - used for estimating the weather parameters (velocity,
deviation/width) and forecasting different phenomena by the Ramanujan Fourier
algorithm – might be easily reduced.
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Figure 4. Ramanujan Spectrum for the range cell of N◦1

Table 1 : Calculation performances of the three algorithms

Methods V[m/s] W[m/s] Calculation
time (ms)

Pulse pair 13.64 – - 16.96 1.20 – 0.85 13
FFT 14.60 – 15.00 1.29 – 1.02 26
Ramanujan Fourier 13.65 – 14.40 1.22 – 1.14 16

It can be noted that the calculation performances of the three algorithms - which
have been used to estimate the Doppler spectrum of a wind perturbation detected by
pulsed Doppler ground-based radar – have been mentioned in table 1. The expected
values, provided by the Ramanujan Fourier algorithm - for the mean wind and variance
estimation - are not inferior to than those provided by the FFT and Pulse Pair ones.
Meanwhile, it might be noted that the calculation time for a range cell is shorter than
the one used by a classical FFT 16 ms Fourier algorithm (see table 1). The time-
estimating algorithm has the lowest calculation time but its results are much more
difficult to interpret because of the use of autocorrelation functions.
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Figure 5. Mean wind velocity estimation

5. Conclusion

Using the Ramanujan Transform might be useful to identify a low magnitude
spectrum. This transform is based on the prime numbers theory in relation with
Moebius or Mangoldt functions.

This technique (RFT) permits faster calculations than the Discrete Fourier
Transform since the calculations are made upon samples only; with respect to Moebius
function. This technique takes only coprime resonances (p,q)=1. We might consider
only a reduced number of samples because the estimation is made near zero frequency)

The spectrum estimation – particularly after filtering I and Q samples (complex
series Z) of the weather data – seems to be very useful, knowing that the Ramanujan
Transform facilitates the distinction of low-level weather modes like low intensity winds
or rains.

Applying further notions of the number theory or even mathematics to the
weather signal processing field may help obtain much more significant results and
contribute for a better exploration of this wide and exciting field.
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Figure 6. Spectral mean wind width estimation
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