N

HAL

open science

Resource Control Graphs

Jean-Yves Moyen

» To cite this version:

‘ Jean-Yves Moyen. Resource Control Graphs. 2007. hal-00107145v2

HAL Id: hal-00107145
https://hal.science/hal-00107145v2

Preprint submitted on 8 Jun 2007 (v2), last revised 3 Sep 2007 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00107145v2
https://hal.archives-ouvertes.fr

Resource Control Graphs

JEAN-YVES MOYEN
University of Paris 13

Resource Control Graphs can be seen as an abstract representation of programs. Each state of
the program is abstracted as its size, and each instruction is abstracted as the effects it has on
the size whenever it is executed. The Control Flow Graph of the programs gives indications on
how the instructions might be combined during an execution.

Termination proofs usually work by finding a decrease in some well-founded order. Here, the
sizes of states are ordered and such kind of decrease is also found. This allows to build termination
proofs similar to the ones in Size Change Termination.

But the size of states can also be used to represent the space used by the program at each
point. This leads to an alternate characterisation of the Non Size Increasing programs, that is the
ones that can compute without allocating new memory.

This new tool is able to encompass several existing analyses and similarities with other studies
hint that even more might be expressable in this framework thus giving hopes for a generic tool
for studying programs.

Categories and Subject Descriptors: D.S5dffware engineering]: Software/Program Verification; F.2.2pal-
ysis of algorithms and problem complexity]: Nonnumerical Algorithms and ProblemsSemputations on dis-
crete structuresF.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and reasoning about
Programs; G.2.2Qiscrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory, Verification
Additional Key Words and Phrases: Abstraction, implicit complexity, non-size increasing, pro-
gram analysis, size change termination, termination

1. INTRODUCTION
1.1 Motivations

The goal of this study is an attempt to predict and control potational resources like
space or time, which are used during the execution of a pnogFar this, we introduce a
new tool calledResource Control Graphend focus here on explaining how it can be used
for termination proofs and space complexity management.

We present a data flow analysis of a low-level language skedtbly means of Resource
Control Graph, and we think that this is a generic concepnfrehich several program
properties could be checked.

Usual data flow analyses (see Nielson et al. [1999] for a ldetaverview) use transfer
functions to express how a given property is modified whelofohg the program’s ex-
ecution. Then, a fixed point algorithm finds for each labelteo$all possible values for
the property. For example, one might be interested in whgnh & given variable can take

Author’s address: J.-Y. Moyen, LIPN, Institut Galilee, &enue J.B. Clément, 93430 Villetaneuse, France.
Permission to make digital/hard copy of all or part of thistenal without fee for personal or classroom use
provided that the copies are not made or distributed forfpwoiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead aotice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryversto redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 1529-3785/YY/00-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, 20¥¥ages 1-38.

2 : Jean-Yves Moyen

at each point. The instructions of the program gives coimigran this (from one label to
the next one). Iterating these constraints with a fixed palonrithm can find the set of all
possible signs for the variable at each label.

Here, we want to consider each execution separately. Son wéting the transfer
function and coming back to an already treated label, istéainifying of the new con-
straint with the old one and use fixed point, we will consides fis a new configuration.
In the end, instead of having one set associated to each ebelill get a set of so called
“walks”, each associating one value to each occurrencedf kdbel. For example, a first
walk can tell that if starting with a positive value at a givahel, the variable will stay pos-
itive, but another walk tells that if starting with a negativalue, the variable may become
positive (while in such a case, the fixed point algorithm Wilild the set{+, —} for each
label).

Of course, we then need a way to study this set of walks and @indhon properties on
them that tells something about the program.

The first problem we consider is the one of detecting progiantesto compute within a
constant amount of space, that is without performing dycangmory allocation. These
were dubbedNon Size Increasingy Hofmann [1999].

There are several approaches which try to solve this prabiém first protection mech-
anism is by monitoring computations. However, if the monisocompiled with the pro-
gram, it could itself cause memory leak or other problems §dtond is the testing-based
approach, which is complementary to static analysis. lddessting provides a lower
bound on the memory usage while static analysis gives arrigmuad. The gap between
both bounds is of some value in practice. Lastly, the thingragch is type checking done
by a bytecode verifier. In an untrusted environment (like edded systems), the type
protection policy (Java or .Net) does not allow dynamic@dlion. Actually, the former
approach relies on a high-level language, which captur@slaals with memory allocation
features [Aspinall and Compagnoni 2003]. Our approachantaes, and even provides,
a proof certificate of upper bound on space computation owddwel language without
disallowing dynamic memory allocations.

The second problem that we study is termination of prograrhss is done by closely
adapting ideas of Lee et al. [2001], Ben-Amram [2006] andlAmg Altenkirch [2002].
The intuition being that a program terminates wheneveketigeno more resources to con-
sume.

There are long term theoretical motivations. Indeed a lataik have been done in the
last twenty years to provide syntactic characterisatide®mplexity classes.g.by Bel-
lantoni and Cook [1992] or Leivant and Marion [1993]. Thosamcterisations are the
bare bone of recent research on delineating broad clasgge@fams that run in some
amount of time or space, like Hofmann, but also Niggl and Waulich [2006], Amadio
et al. [2004], and Bonfante et al. [2007].

We believe that our Resource Control Graphs will be able tmempass several, or even
all, of these analyses and express them in a common frameWwotkis sense, Resource
Control Graphs are an attempt to build a generic tool for @oganalysis.

1.2 Coping with undecidability

All these theoretical frameworks share the common pagritylof dealing with behaviours
of programs (like time and space complexity) and not onlywlie inputs/outputs relation

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 3

which only depends on the computed function.

Indeed, a given function can be computed by several prograthslifferent behaviours
(in terms of complexity or other). Classical complexity aine deals with functions and
considersextensionatomplexity. Here, we want to considietensionalcomplexity, that
is try to understand why a given algorithm is more efficiemtrttanother to compute the
same function.

The study of extensional complexity quickly reaches thenlauy of Rice’s theorem.
Any extensional property of programs is either trivial odenidable. Intuition and empir-
ical results point out that intensional properties are éamder to decide.

However, several very successful works do exist for stuglpioth extensional properties
(like termination) or intensional ones (like time or spacenplexity). As these works pro-
vide decidable criteria, they must be either incompletgétea valid program) or unsound
(accept an invalid program). Of course, the choice is ugdalensure soundness: if the
programis accepted by the criterion, then the propertynigtion, polynomial bound,. . .)
is guaranteed. This allows the criterion to be seen as dicaté in a proof carrying code
paradigm.

When studying intensional properties, two different kioflapproaches exist. The first
one consists of restricting the syntax of programs so thgtpgogram necessarily has
the wanted property. This is in the line of the works on priveitrecursive functions
where the recurrence schemata is restricted to only pvieniecursion. This approach
gives many satisfactory results, such as the charactensaif PriME by Cobham [1962]
or Bellantoni and Cook [1992], the works of Leivant and Maram tiering and predicative
analysis [1993] or the works of Jones on CONS-free progra®3(]. On the logical side,
this leads to explicit management of resources in Lineaid [igirard 1987].

All these characterisations usually have the very nice grypof extensional complete-
nessn the sense thag.g, a functionisin BIME if and only if it can be defined by bounded
primitive recursion (Cobham). Unfortunateiptensionalityis not their main concern:
these methods usually do not capture natural algorithmis§@dl998], and programmers
have to rewrite their programs in a non-natural way.

So, the motto of this first family of methods can be describetbaving the proof bur-
den to the programmer rather than to the analyser. If one céa & program with the
given syntax (which, in some cases, can be a real challetig®),certain properties are
guaranteed. The other family of methods will go in the othaywlLet the programmer
write whatever he wants but the analysis is not guaranteedtk.

Since any program campriori be given to the analysis, decidability is generally achdeve
by loosening the semantics during analysis. That is, onlecaiisidermorethan all the
executions a program can have.This approach is more reaehiabs already some very
successful results such as the Size Change Terminationgtlak 2001] or thenwp-
polynomials of Kristiansen and Jones [2005].

This second kind of methods can thus be described as not mgedth the programmer
and let the whole proof burden lay on the analysis. Of coutseanalysis being incom-
plete, one usually finds out that certain kinds of progranikneit be analysed correctly
and have to be rewritten. But this restriction is d@nprosterioriand nota priori and it
can be tricky to find what exactly causes the analysis to fail.

Resource Control Graphs are intended to live within thissd&ind of analyses. Hence,
the toy language used as an example is Turing-complete dhdotbe restricted.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

4 : Jean-Yves Moyen

1.3 Oultline

Section 2 introduces the stack machines used all along aspdesyet powerful program-
ming language. Section 3 describes the core idea of Res@antigol Graphs that can be
summed up as finding a decidable (recursive) superset dieathtecutions that still ensure
a given property (such as termination or a complexity boumtgn, Section 4 immediately
shows how this can be used in order to detect Non Size Inog@sograms. Section 5
presents Vectors Addition Systems with States which aremgdised into Resource Sys-
tems with States in Section 6. They form the backbone of treo&®ee Control Graphs.
Section 7 present the tool itself and explain how to build adrece Control Graph for a
program and how it can be used to study the program. Sectibov@ssapplication of RCG
in building termination proofs similar to the Size Changemmation principle. Finally,
Section 9 discuss how matrices multiplication is or couldibed in program analyses thus
leading to several possible further developments.

1.4 Notations

In a directed graphG = (S, A), will write s-%s’ to say that is an edge betweenand
s'. Similarly, we will write s 25,23 ... %35, to say that; . . . a, is a path going through
verticessg, - - - , s,,. Or simplysg—s,, if w=a; ...a,. s — s’ means that there exists an
edgea such thats>s’ and, 5 are the transitive and reflexive-transitive closures-of

A partial order< is a well partial order if there are no infinite anti-chairatfs for every
infinite sequencey, - - - , z,, ... there are indexeis< j such thate; < «;. This mean that
the order is well-founded (no infinite decreasing sequebeealso that there is no infinite
sequence of pairwise incomparable elements. The ordecéuthy the divisibility relation
onN, for example, is well-founded but is not a well partial orderce the sequence of all
prime numbers is an infinite sequence of pairwise incomparlbments.

The set of integers (positive and negative)isandN is the set of integers 0, when
working with infinity, Z = Z|J{+oo}, that is we do not need o here. When working
with vectors ofZ*, < denotes the component-wise partial order. That4s b if and only
if a; < b; forall 1 <i < k. This is a well partial order oi*.

2. STACK MACHINES
2.1 Syntax

A stack machine consist of a finite numberregisters each able to store a letter of an
alphabet, and a finite number sthcls, that can be seen as lists of letters. Stacks can only
be modified by usugdush andpop operations, while registers can be modified by a given
set of operators each of them assumed to be computed in & siniglof time.

Iwe will uses € S to designate vertices and € A to designates edges. The choice of using French ini-
tials (“Sommet” and “Aréte”) rather than the usu@f, £) is done to avoid confusion between vertices and the
valuations introduced later.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 5

Definition 2.1 (Stack machine) Stack machines are defined by the following grammar:

(Alphabe} ¥ finite set of symbols
(Programs pu=Ibl 1 :dg;..lbl o, g
(Instructiong Z > 4 ::= if (test) then goto Ibl (else goto Ibl 1]
r := pop(stk)|push (r,stk)|r :=op(ry,---,rx)|end

(Labely L > Ibl finite set of labels
(Registery R > r finite set of registers
(Stacks S > stk finite set of stacks
(Operators O > op finite set of operators

Each operator has a fixed arityandn is an integer constant. The syntax of a program
induces a functiomext : £ — L such thammext (Ibl ;) = Ibl ;1 and a mapping
v: L — T such that(lbl ;) = i,. Thepop operation removes the top symbol of a stack
and put it in a register. Thpush operation copies the symbol in the register onto the
top of the stack. The if-instruction gives control to eitltdr o or bl ; depending on the
outcome of the test. Each operator is interpreted with i@gpe given semantics function

[op].

The precise sets of labels, registers and stacks can begdfieom the program. Hence
if the alphabet is fixed, the machine can be identified withpitogram itself.

The syntaxlbl : if (test) then goto Ibl (can be used as a shorthand for
bl :if (test) then goto Ibl , else goto next (lbl). Similarly, we can ab-
breviateif true then goto Ibl asgotolbl , that is an unconditional jump to a

given label. What kind of tests can be used is not specifieel. K@f course, tests must be
computables (for obvious reasons) in constant time andesfzacthat they do not play an
important part when dealing with complexity propertiespniparisons between letters of
the alphabetd.g. < if they are integers) are typical tests that can be used.

If the alphabet contains a single letter, then the registersiseless and the stacks can
be seen as unary numbers. The machine then becomes an usoigraoachine [Shep-
herdson and Sturgis 1963].

Example2.2. The following program reverses a list in stelkd put the result in stack
I". It uses registea to store intermediate letters. The empty stack is denjoted

0:if I=] then goto end ; 3 : goto O;
1 :a:=pop(l); end : end;
2 : push (a,l');

2.2 Semantics

Definition 2.3 (Stores) A storeis a functiono assigning a symbol (letter of the al-
phabet) to each register and a finite stringtihto each stack. Store update is denoted
of{x — v}.

Definition 2.4 (States) Letp be a stack program. Atateof p is a coupled = (IP , o)
where thenstruction PointerlP is a label andr is a store. LeD be set of all state*
(©%) be the set of finite (infinite) sequences of states@ftd be the union of both.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

6 : Jean-Yves Moyen

i=uIP)=r:=o0p(ri, - ,rg) o =ofr — [op](a(ri),...,o(rr))}

pk (IP,o)>(next (IP),o’)

((IP) =if (test) then goto Ibl 1 else goto Ibl 2 (test)is true

pE P, o) e p | o)

t(IP)=if (test) then goto Ibl ;1 else goto Ibl o (test)is false

pE (P o) s p oy

i=u(IP)=r:=pop(stk) o(stk)=Aw o =ocfr — A\;stk «— w}

pF (IP, o) (next (IP),a’)

i=(IP)=r:=pop(stk) o(stk)=¢

pF (P o)51

i=1(IP)=push(r,stk) o =o{stk — o(r).o(stk)}

pk (IP,o)>(next (IP),o’)

Fig. 1. Small steps semantics

Definition 2.5 (Executions) The operational semantics of Figure 1 defines a relation
AN

An executiorof a progranp is a sequence (finite or ngt)- 903013 A [

An infinite execution is said to beon-terminating A finite execution igerminating If
the program admits no infinite execution, then itirsformly terminating

We usel to denote runtime error. We may also allow operators to netuif we want to
allow operators generating errors. It is important to retltat L is not a state, and hence,
will not be considered when quantifying over all states.

If the instruction is not specified, we will write simpjyt+ 6 — ¢’ and use’, = for the
transitive and reflexive-transitive closures.

Definition 2.6 (Traces) The trace of an executiorp + 903913 L ... 1S the
instructions sequence. . . i, . ..

Definition 2.7 (Length) Letd = (IP ,o) be a state. ltéength|f| is the sum of the
number of elements in each stidcKhat is:

0= 3 Istk |

stk €S

2Notice that the label on the edge is technically not an instruction since for testsalso keep the information
of which branch is taken.

®Hence, it should more formally bEIP , o)| = 3 gy . cs lo(stk ;)| . Since explicitly mentioning the store
everywhere would be quite unreadable, we st&e; instead ofo(stk ;) and, similarly,r instead ofo(r), when
the context is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 7

Length is the usual notion of space. Since there is a fixed euoftregisters and each
can only store a finite number of different values, the spamro store all registers is
always bounded. So, we do not take registers into accoutd wbimputing space usage.

The notion of length allows to define usual time and space texitp classes.

Definition 2.8 (Running time, running space)lhetime usageof a finite execution is
the number of states in it. Thranning timeof a program is an increasing functigirsuch
that the time usage of each execution is bounded(t{) whered is the first state of the
execution.

Thespace usagef a finite execution is the maximum length of a state in it. Turening
spaceof a program is an increasing functigrsuch that the space usage of each execution
is bounded byf (|0|) whered is the first state of the execution.

Definition 2.9 (Complexity) Let f : N — N be an increasing function. The claB§f)
is the set of functions which can be computed by a program &homing time is bounded
by f. The classS(f) is the set of function which can be computed by a program whose
running space is bounded by
As usual, BIME denotes the set of all functions computable in polynomiaétithat is
the union ofl"'(P) for all polynomialsP and so on.

If we want to define classes such aed&SPACE, then we must, as usual, use some
read-only stacks which can only Ip@p ed but notpush ed and who play no role when
computing the length of a state.

2.3 Turing Machines

Stack machines are Turing complete. We quickly describe ther straightforward way to
simulate a Turing machine by a stack machine.

Simulating a TM with a single tape and alphabetan be done with a stack machine
with the alphabek | Q (whereQ is the set of states of the TM), two stacks and two reg-
isters. The two stacks and the first register will encodedpe tn an usual way (one stack,
reversed, for the left-hand side, the register for the sedsymbol and the other stack for
the right-hand side). Another register will contain thereut state of the automaton.

At each step, the program will go through a sequence of testhestate and scanned
symbol in order to find the right set of instructions to penficaind after that jump back to
the beginning of the program. There will be at m@stm such tests whergis the number
of states of the TM andh the number of symbols in the alphabet. Then, simulation of a
step is quite easily done by modifying the “scanned symbadister and then simulating
movement.

Simulating movement first has to check that the correct simaiot empty,push a
“blank symbol” on it if necessary and thgrush the scanned symbol on one stack and
pop the other stack onto it.

Each step of the TM is simulated in a constant number of stéfiseastack machine
(depending only on the TM). So that the time complexity of gt@ck machine will be
the same as the time complexity of the TM (up to a multipliGatonstant). Similarly, at
any step of the simulation, the length of the configuratiothefstack machine will be the
number of non-blank or scanned symbols on the tape (minubecause one symbol is
stored into a register). So the space complexity will be Hrees

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

8 : Jean-Yves Moyen

@*w @*w

*W
SN o © O
ov ov S
v
A A A

Fig. 2. Sequences of states, executions and admissiblersezgi

3. ATASTE OF RCG

This section describes the idea behind Resource ContrghSrim order to get a better
grip on the formal definitions later on.

3.1 Admissible sequences

Consider an execution of a program. It can be described agleesee of states. Clearly,
not all sequences of states describe an execution. So walsatef executions&, which
is a subset of the set of all sequences of states (finite oitafi®*~.

The undecidability results mean that given a program it jgassible to say if the set of
executionsY', and®¥, the set of infinite sequences of states, are disjoint. ®adtwa here
is to find a set4 of admissiblesequences, which is a superset of the set of all executions,
and whose intersection witB“ can be computed. If this intersection is empty, tlzen
fortiori, there are no infinite executions of the program, but if thergection is not empty,
then we cannot decide if this is due to some non-terminatiegution of the program or
to some of the sequences added for the sake of the analyssmEans that depending
on the machine considered and the wéys build, we can be in three different situations
as depicted in Figure 2. We build O T such that4 () ©“ is decidable. If it is empty,
then the program uniformly terminates; otherwise, we carap anything. Of course, the
undecidability theorem means that if we requitdo be recursive (or at least recursively
separable fron®“), then there will necessarily be some programs for whickstheation
will be the one in the middle (in Figure 2), that is we falsalyppose that the program does
not uniformly terminate.

One convenientway to represent all the possible execuf@mtsonly these), is to build a
state-transition graphThis is a directed graph where each vertex is a state of tigg@m
and there is an edge between two vertices if and only if it &sfide to go from one state
to the other with a single step of the operational semant@&course, since there are
infinitely many different stores, there are infinitely margspible states and the graph is
infinite.

3.2 The folding trick

Using the state-transition graph to represent executgnsticonvenient since handling an
infinite graph can be tedious. To circumvent this, we musk ioto states and decompose
them.

A state is actually a couple of one label and one store. Thel kadrresponds to the
control of the program while the store represemiemory A first try to get ride of the
infinite state-transition graph is then to only considerdbastrol part of each state.

Thus, there will only be finitely many different nodes in thrajh (since there are only
finitely many different labels). By identifying all statesedring the same label, it becomes

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 9

goto 0

Fig. 3. CFG of the reverse program.

possible to “fold” the infinite state-transition graph irddinite graph, called th€ontrol
Flow Graph(CFG) of the program. The CFG is an usual tool for programyaes and
transformations and can directly be built from the program.

Definition 3.1 (Control Flow Graph) Let p be a program. It€ontrol Flow Graph
(CFG) is a directed grapfi = (.5, A) where:

—S = L. There is one vertex for each label.

—If «(Ibl) = if (test) then goto Ibl ; else goto Ibl o then there is one
edge frombl tolbl labelled (test),. and one frombl tolbl - labelled (test)se

—If «(Ibl) = end then there is no edge going outlbf
—Otherwise, there is one edge frdbh tonext (Ibl) labelled.(Ibl).

Vertices and edges are named after, respectively, thedalestructiorf they represent.
No distinction is made between the vertex and the label oetlge and the instruction as
long as the contextis clear.

Example3.2. The CFG of the reverse program is displayed on Figure 3.

With state-transition graphs, there was a one-to-one sporedence between executions
of the program and (maximal) paths in the graph. This is ngéotrue with Control Flow
Graphs. Now, to each execution corresponds a path (finitafimite) in the CFG. The
converse, however, is not true. There are paths in the CR@dha@spond to no execution.

Let P be the set of paths in the CF@®. is a regular language over the alphabet of
the edges (see Lemma 5.9), herftés recursive. Since we can associate a path to each
execution, we can say th&tis a superset of .

This leads to a first try at building a set of admissible segasiby choosingl = P.

However, as soon as the graph contains logpwjll contain infinite sequences. So this
is quite a poor try at building an admissible set of sequertm@sesponding exactly to the
trivial analysis ‘A program without loop uniformly terminates

In order to do better, we need to plug back the memory into #&.C

4Again, since the two branches of tests are separated, sages dd not correspond exactly to an instruction of
the program. We will nonetheless continue to call thesetriicsions”.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

10 . Jean-Yves Moyen

3.3 Walks

So, in order to take memory into account but still keep the CWw& will not consider
vertices any more but states again. Clearly, each statedégiased to a vertex of the CFG.
Moreover to each instruction) we can associate a functi¢ij such that for all state ¢’
suchthap - 60 = (IP ,0)-%(IP’,¢') = ¢, we haver’ = [i](o).

So, instead of considering paths in the graph, we can nowidemwalks. Walks are
sequences of states following a path where each new stomriputed according to the
semantics functioffi] of the edge just followed.

The only case where the CFG has out-degree greateritharfor tests. In order to
prevent the wrong branch to be taken, the semantics funfttesd,e] can be a partial
function only defined for stores where the test is true (anmversely for the false branch
of tests).

But if we do this exactly that way, then there will be a bijectibetween the executions
and the walks and everything will stay undecidable.

So the idea at this point is to keep both branches of the tesilge, that is more or less
replacing a deterministic test by a non-deterministic cadietween the two outcomes.
This leads to a set of walks bigger than the set of executiahshopefully, recursively
separable from the set of infinite sequences of states.

4. MONITORING SPACE USAGE

In order to illustrate the ideas of previous Section, weoidtrce here the notion of Resource
Control Graph for the specific case of monitoring space usag&ection 7, this notion
will be fully generalised to define Resource Control Graphs.

4.1 Space Resource Control Graphs
Definition 4.1 (Weight) For each instruction we define aveightk; as follows:

—The weight of any instruction that is neithgush norpop is 0.
—The weight of gopush instruction is+1.
—The weight of gpop instruction is—1.

PROPOSITION 4.2. For all states such thatp + 0-56/, we havdd'| = |0] + k.

It is important here that bottand¢’ are states. Indeed, this means that when an error
occurs (L), we remove all constraints.

Definition 4.3 (Space Resource Control Graphlet p be a program. Its Space Re-
source Control Graph (Space-RCG) is a weighted directquhgresuch that:

—G@ is the Control Flow Graph agj.
—For each edgé the weighto(7) is ;.

Definition 4.4 (Configurations, walks) A configurationis a coupled = (s,v) where
s € Sis avertex and € Z is thevaluation A configuration isadmissiblef and only if
v e N,

A walk is a sequence (finite or not) of configuratioss, vo)%> . .. %5 (sn, vn) "3 ...

A, An+1

such thatsp s, %3 ... %5, " ... and for alli > 0, v; = v;_1 + w(a;). A walk is
admissibldf all configurations in it are admissible.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 11

Definition 4.5 (Traces) Thetrace of a walk is the sequence of all edges followed by
the walk, in order.

PROPOSITION 4.6. Letp be a program(= be its Space-RCG and- 6, = (I Py,01) —
.. — 0, = (I P,,0,) be an execution with trace then there is an admissible walk
(I P1,]61]) — ... — (1 Py, |60,]), with the same trace

PROOF By construction of the Space-RCG and induction on the leofthe execu-
tion. O

4.2 Characterisation of Space usage

THEOREM 4.7. Let f be a total functiolN — N. Letp be a program and~ be its
Space-RCG.

p € S(f)ifand only if for each staté, = (I Py, 0o) and each executiont- 6,6, the
trace of the execution is also the trace of an admissible Wlal, |6o|) — (I P1,71) —
... — (I P,,1i,) and for eachk, i, < f(|6o])-

PROOF Proposition 4.6 tells us that = |0;|. Then, both implications hold by defini-
tion of space usage.[J

Definition 4.8 (Resource awarenessf Space-RCG isf-resource awardf for any
walk (so, vo)L(sn, Un)y Un < f(v0).

COROLLARY 4.9. Let f : N — N be a total functionp be a program and= be its
Space-RCG.
If G is f-resource aware, thep € S(f).

Here, the converse is not true because the Space-RCG caadiangsible walks with
uncontrolled valuations which do not correspond to any ezatution.

4.3 Non Size Increasingness

The study of Non Size Increasing (NSI) functions was intiainy Hofmann [1999]. For-
mer syntactical restrictions formfMME, such as the safe recurrence of Bellantoni and Cook
[1992], forbid to iterate a function because this can yi@dstiper-polynomial growth.
However, this prevents from using perfectly regular algponis such as the insertion sort
where the insertion function is iterated. The idea is thamitlerating functionsvho do not
increase the size of data harmless.

In order to detect these functions, Hofmann uses a typeditunat programming lan-
guage. A special type®, is added. There are no constructors for this type, meaning
that the only normal forms of typé are variables. It can be seen as the type of pointers
to free memory. Constructors of other types now require anaare <. Typically, the
usualcons for lists requires & in addition to the data and the list and will then be typed
cons : < x a x L(a) — L(a). When building a list, the&> must be a variable (no closed
term of type<), similar to a pointer to a free cell in memory where the lesh de built.

Whenever a list is destroyed, tkein thecons is freed (in a variable) and can thus be
later reused to build another list. By ensuring a linear tgiseipline, one can be sure that
no < is ever duplicated. Then, any program that can be typed Wigttype system can be
computed in a NSI wa.g.be compiled intdC without anymalloc instruction.

Example4.10. Here is the insertion sorttfe NSI-way. Notice how theCs freed by
the pattern matching are then reused when the resulting Imiilt. With usual chained

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

12 . Jean-Yves Moyen

lists in C (struct with a value and a pointer to next cell), this correspondieidea
of reusing the same pointers over and over rather than acfusting memory at pattern
matching before reallocating it afterwards.

insert : <& x axList (o) — List ()

insert (d, a, nil) —cons (d, a, nil)
insert (d,a,cons (d',b,1)) —if a < b
thencons (d, a, cons (d', b,1))
elsecons (d',b,insert (d, a, nil))

sort :List («a)— List («)

sort (nil) —nil
sort (cons (d,a,l)) —insert (d,a,sort (1))

With Space RCG, valuations in a walk play the same role as ldofris diamonds<).
The higher the value, the more diamonds are needed in thentwonfigurationpush
has positive weight, meaning that it uses diamondgbpt has negative weight, meaning
that it releases diamonds for later use.

Definition 4.11(Non Size Increasing)A program isNon Size Increasing\Sl) if its
space usage is bounded by.z + « for some constant.

NSl is the class of functions which can be computed by Non Bizeeasing programs.
Thatis{J, S(Az.z +).

PROPOSITION 4.12. Letp be a program and= be its Space-RCG. f is \z.x + a-
resource aware for some constantthenp is NSI.

PROOF This is a direct consequence of Theorem 4[7.

THEOREM 4.13. Letp be a program and be its Space-RCGx is A\x.x + a-resource
aware (for some) if and only if it contains no cycle of strictly positive whig

PROOF Ifthereis no cycle of strictly positive weight, then tebe the maximum weight
of any path inG. Since there is no cycle of strictly positive weight, it isllagefined.
Consider a walKso, vg)—(sn, v,) in G. Sincea is the maximum weight of a path, we
havev,, < vy + a. HenceG is A\z.z + a-resource aware.

Conversely, if there is a cycle of strictly positive weigthte it can be followed infinitely
many time and provides an admissible walk with unboundedatains. [

Building the Space-RCG can be done in linear time in the sizkeoprogram. Finding
the maximum weight of a path can be done in polynomial timehangize of the graph
(so in the size of the program) with Bellman-Ford’s algarit{fCormen et al. 1990] chap-
ter 25.5). So we can detect NSI programs and find the constantpolynomial time in
the size of the program.

Example4.14. The Space-RCG of the reverse program (from Examplei®.@is-
played on Figure 4. Since it contains no cycle of strictlyifis weight, the program

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 13

®)

Fig. 4. Space-RCG of the reverse program.

is Non Size Increasing. Moreover, since the maximum weidlainy path is0, it can be
computed in spacgz.z, that is the constant is 0 for this program.

This result, however, lacks an intensionality statemeat(imuch of all NSI programs
are caught?) or even an extensional completeness one {wveseist functions in NSI
that are not captured by such a program?) Of course, the(cBf&sctions) NSI is unde-
cidable and the class of glfogramswhich are Non Size Increasing is also undecidable.
This means that intensionality statements are hard toeehldowever, we can reach an
extensional completeness one.

Without loss of generality, we consider here that in theéah@tonfiguration of a TM, the
tape consists in only blank symbols except faramsecutivesequence of symbols which
areall non-blank. That is, we do not allow input tape to have the shapy wherex and
y are non-blank symbols andis the blank symbol. This allows to detect the end of input
as the first blank symbol. The head is assumed to scan theokfimon-blank symbol at
the beginning of computation.

PROPOSITION 4.15 (NORMALISING TMs). LetM be a NSI Turing Machine running
in space\z.xz + a. There exists a TM/, computing the same function, running in space
Az.x + « + 2, proceeding ir2 phases:

(1) Firstly, M writes 2 # anda B on blank squares of its tape, where bgthand B are
new symbols.

2 Secondly]\7 never scans a blank symbol again.

PROOF M starts by going one square left and writiggthere. Then it goes to the end
of the input, writea B after it (sincex is fixed for M and does not depend on the input,
this can be done) and finally anoth&r Then, it goes back to the beginning of the input
(the symbol immediately after th#) and goes into the second phase.

In the second phas@f simulatesV/. However# are never overwritten. Whenevéf
request to write over &, the whole content of the tape is shifted one square lefiigbt)y
and simulation ofM resumes where it stopped. Sint€ is NSI, the simulation can be
done entirely between the twp. O

Of course, this simulation is rather costly from a time pahtiiew, but since we are
only concerned with space here, that does not matter. Naisogthat such a normalisation
could be made for a TM running in spag¢ér) for any computable functiofi. However, in

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

14 . Jean-Yves Moyen

Phase | | Phase Il

_ . I
Find end of input Eeog[i)nargilr(lgtgo | Simulate steps
push # push B push # |
. C I
1 1 1 |
0 0 | 0

I

Fig. 5. Space-RCG of the simulation of a normalised NSI Tairmachine.

that case the simulation would require an additional tapstoputef (x) from the input
and then allocate sufficiently many new squares. This woeldjlite tricky to do and
require control over the space used to compifte). . .

THEOREM 4.16 (EXTENSIONAL COMPLETENESY. Let M be a NSI TM,M be the
corresponding normalised machine apdbe the program simulating/ according to the
simulation of Section 2.3. Lét be the Space-RCG pf

G contains no cycle of strictly positive weight.

PROOF. During the second phase of the simulatiod6f M never scan a blank symbol.
Hence, there is no need paush new (blank) symbols on any of the stacks. While moving
the head, eacphush on one stack is immediately followed bypap on the other stack,
thus yielding only paths of weigttt

During the first phase of the simulatignstarts by adding a symbol on a stack (a blank
symbol immediately erased b#, or alternatively directly a# with a slightly smarter
simulation). Then it loops to find the end of the input. Durthig loop, eaclpush is also
followed by apop, thus creating only cycles of weight Then it addsy + 1 new symbols
(B and#), but sincex does not depend on the input, this can be done by1 separate
push , thus creating no cycles. And lastly it goes back to the sffatie input, again each
push is followed immediately by @op. Figure 5 shows how the Space-RCGpdboks
like. O

This result means that our characterisation of NSI is ext@adly complete. Each
function in NSI can be computed by a program which fits into¢haracterisation (that
is, whose Space-RCG sr.z + a-resource aware). Of course, intentional completeness
(capturing all NSI programs) is far from reached (but is acteble with a decidable al-
gorithm).

4.4 Linear Space

LINSPACE seems to be closely related to NSI. Indeedy &PACE functions can be com-
puted in spacez.5x + o and so NSl is a special case ofNSPACE with 5 = 1. So we
want to adapt our result to detect linear space usage.

The idea is quite easy: since we are allowed to uysditne more space than what is
initially allocated, it is sufficient to consider that evetisne some of the initial data is
freed,(“tokens” (©) are released and can later be used to coptifferent allocations.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 15

In order to do so, the most convenient way is to design cestaitks of the machine (or
certain tapes of a TM) asput stacksand the others must be initially empty. Themap
operation over an input stack would have weight instead of simply-1 to account for
this linear factor. However, doing so we must be careful tieatly allocated memory (that
is, furtherpush) will only be counted ag when freed again (to avoid a cycle of freeing
one slot, allocatingp, freeing theses slots and reallocating? and so on). In order to do
so, we simply require that the input stacks are read-onligérsense that it is not possible
to perform gpush operation on them.

Notice that any program can be turned into such kind of pmogog having twice as
many stacks (one input and one work for each) and startingppyiag all the input stacks
into the corresponding working stacks and then only dealiitig the working stacks.

With these programs, the invariant will not be the lengthtafess, but something slightly
more complicated, namelytimes the length of input stacks plus the length of work stack
We will call this measursize Globally, we will use size to denote some kind of measure
on states that is used by the RCG for analysis. The termigadogose from the one of the
Size Change Termination [Lee et al. 2001] where values awnasd to have some (well-
founded) “size ordering” which is not specified and not neae$y related to the actual
space usage of the data. Typically, termination of a progvarking over positive integers
can be proved using the usual ordering¥as size ordering, even if the integers are3all
bits integers, thus taking exactly the same space in memory.

Definition 4.17(Extended stack machineshn extended stack machiiea stack ma-
chine with the following modification:

There are two disjoint sets of stacks; is the set ofinput stacksand S,, is the set
of working stacks There are two instructionsop; andpop,, depending on whether an
input or working stack is considered but only gnesh = push , instruction, that is it is
impossible tqpush anything on an input stack.

The 3-sizeof a state is3 times the length of input stacks plus the length of working

stacks, that is:
10]s=5 D Istk o[+ > stk

stk ;€S8; stk ., ESw

Theweightof pop; is — /3, the weight ofpop,, is —1, the weight ofpush is +1. the
weight of other instructions i8.

The 3-Space RCG is build as the Space-RCG: the underlying grabie isontrol flow
graph and the weight of each edge is the weight of the correipg instruction.

Proposition 4.6 becomes:

PROPOSITION 4.18. Let p be a program,Gs be its 3-Space RCG ang - 6, =
(1Py,01) — ... — 0, = (I P,,0,) be an execution with trace then there is an ad-
missible walk(l Py, [|01][3) — ... — (I Py, |6, 3) with the same trace

Then, adapting Theorem 4.7 and Theorem 4.13, we have:

PROPOSITION 4.19. Letp be a program andx s be itsj-Space RCG. I+ is Az.x +
a-resource aware for some constantthenS(p) < \z.fz + o .

THEOREM 4.20. Let p be a program and~3 be its 3-Space RCGGg is Az.x + a-
resource aware (for some) if and only if it contains no cycle of strictly positive whig

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

16 . Jean-Yves Moyen

@)

Fig. 6. (-Space RCG of the double-reverse program.

COROLLARY 4.21. Letp be a program. If there exist8 such that its3-Space RCG
contains no cycle of strictly positive weight, thers in LINSPACE.

This can be checked in NIMVE since 3 is polynomially bounded in the size of the
program.

For LINSPACE also, the normalisation process of Turing Machine can ceatgly be
performed, typically by using an input (read-only) tape andorking tape where space
usage is counted. The first phase of the normalised TM coimsigipeatedly copy one
symbol from the input tape to the right of the working tape adds — 1 B at the left of
the working tape, then putting the tw#é on the working tape. This means that here also
the characterisation is extensionally complete: for eanhSPACE function, there exists
one program computing it that fits into the characterisation

Example4.22. The following program “double-reverses” a list. Itsisnilar to the
reverse program but each element is present twice in thé.ré&e listl is an input stack
(and hence cannot lprish ed) whilel’ is a working stack.

0:if 1=] then goto end ; 3 : push ,(al1);
1 : a:=pop;(l); 4 : goto 0;
2 : push ,(al); end : end;

Its 5-Space RCG is displayed on Figure 6. Since it contains nceayfcstrictly positive
weight if § > 2, the program is in IN SPACE, more precisely, it can be computed in space
A\z.2x

5. VECTOR ADDITION SYSTEM WITH STATES

This section describes Vectors Addition Systems with Stf#SS). Resources Con-
trol Graphs are a generalisation of VASS. VASS are known tcefeivalent to Petri
Nets [Reutenauer 1989].

5.1 Definitions

Definition 5.1 (VASS, configurations, walksp Vector Addition System with Statiss
a directed graplir = (S, A) together with aveighting functiono : A — Z* wherek is a
fixed integer.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 17

A configurationis a couplefl = (s,v) wheres € S is a vertex and) € Z* is the
valuation A configuration isadmissiblef and only if v € N*,

A walkis a sequence (finite or not) of configuratiqrs, vo) B ... ﬂ'(sn, vy,) such that
s085 3 ... Bs, and for alli > 0, v; = v;i_1 + w(a;). A walk is admissibleif all
configurations in it are admissible.

We say that path; . .. a,, is theunderlying pathof the walk and the walkollows this
path. Similarly,GG is theunderlying graptfor the VASS.

As for graphs and paths, we will write — ¢’ if there exists an edge such thap-=¢’
and®, = for the closures.

Definition 5.2 (Weight of a path) Let V' be a VASS and; .. .a, be a path init. The
weight of edges is extended to paths canonicallft; . ..a,) = > w(a;). This means
thatw is a morphism betweefn, -) (the free monoid generated by the edges) (@fd +).

LEMMA 5.3. LetV be a VASS and; ... a,, be afinite path in it. There exists a valu-
ation v, such that for0 <4 < n, vo +w(ay ...a;) € NF,

This means that every finite path is the underlying path ofdamissible walk.

PROOF Because the path is finite, thith component ofv(a; . . . a;) is bounded from
below by somex; (of course, this bound is not necessarily reached with thees&or
all components, but nonetheless such a bound exists forcemsponent separately). By
putting 8, = max(0, —«;) (thatis0 if «; is positive), theryy = (54, - - - , Bx) verifies the
property. O

LEMMA 5.4. Let(sg,v9) — ... — (sn,v,) be an admissible walk in a VASS. Then,
for all v{ > vy (component-wise comparisoti}g, v() — ... — (s, v),) is an admissible
walk (following the same path).

PROOF By monotonicity of the addition.

Definition 5.5 (Uniform termination) A VASS is said to bainiformly terminatingf it
admits no infinite admissible walk. That is, every walk idheitfinite or reaches a non-
admissible configuration.

THEOREM 5.6. A VASS isiot uniformly terminating if and only if there exists a cycle
whose weight is ifN* (that is, is non-negative with respect to each component).

PROOF If such a cycle exists, starting and ending at vestethen by Lemma 5.3 there
existsvy such that the walk starting &t, vy) and following it is admissible. After follow-
ing the cycle once, the configuratids, v1) is reached. Since the weight of the cycle is
non-negativey; > vy. Then, by Lemma 5.4 the walk can follow the cycle one more time
reaching(s, v2), and still be admissible. By iterating this process, it isgible to build an
infinite admissible walk.

Conversely, letsg,vg) — ... — (sn,v,) — ... be an infinite admissible walk. Since
there are only finitely many vertices, there exists at leastwertexs’ appearing infinitely
many times in it. Le(s;, v;) be the occurrences of the corresponding configurationsin th
walk. Since the component-wise order over vectofs'ois a well partial order, there exists
i, j such that; < v%. The cycle followed betwees ands; has a positive weight.[J

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

18 . Jean-Yves Moyen

5.2 Decidability of the uniform termination

Definition 5.7 (Linear parts, semi-linear parts)Let (M, +) be a commutative monoid.
A linear partof M is a subset of the form+ V* wherev € M andV is a finite subset of
M. Thatis, ifV = {v1,--- ,v,}, alinear part can be expressed as:

i=p
{v + anvzml S N}

=1
A semi-linear partof M is a finite union of linear parts.
LEMMA 5.8. Inacommutative monoid, rational parts are exactly the skmeiar parts.

Recall that rational parts are build from union and Kleene'’s stér When dealing with
words (that is the free monoid generated by a finite alphakd$) word concatenation (not
commutative) and so rational parts are exactly the regatayuages.

PROOF Semi-linear parts are expressed as rational parts.

Conversely, itis sufficient to show that the set of semidingarts contains all finite parts
and is closed by union, sum arid The hard point being the closure undewhich is a
consequence of commutativity. It holds becalise V*)* = (v+ ({v} U V)*) U{0} (the
key idea being thata(b*))* = «*b* in @ commutative monoid). See [Reutenauer 1989]
(Proposition 3.5) for details.d

LEMMA 5.9. The set of cycles in a graph is a rational part (of the free mdmgener-
ated by the edges).

PrROOF Consider the graph as an automaton with each edge labgleeddparate label.
The set of paths between two given vertices is a regular g (accepted by the automa-
ton with the proper input and accepting nodes). So is thefsgtabes as finite union of
regular languages..]

COROLLARY 5.10. The set of weights of cycles in a VASS is a semi-linear p&t of

PROOF. Since the weighting functiow is a morphism betweef, -) and (Z*, +), it
preserves rational parts. Hence, the set of weights of sysla rational part oZ*. Since
+ is commutative, it is also a semi-linear parf]

Notice that the proofs are constructive. Hence the serealirpart can effectively be
built.

THEOREM 5.11. Uniform termination of VASS is decidable.

PROOF By Theorem 5.6, a VASS isot uniformly terminating if and only if there is a
cycle whose weight is itN*. Since the set of weights of cycles is a semi-linear paz’of
itis sufficient to be able to decide whether a linear pat/vintersectsN* (and try this for
each linear part of the union).

LetU = {uy,--- ,u,} andu + U* be a linear part oZ*. It intersectN* if and only if
there existsy, - - - ,n, € Nsuch that. +) n;u; > 0.

This can be solved in polynomial time using usual linear progming techniques.d

Since VASS and Petri nets are equivalent, this also showsuttitorm termination of
Petri nets is decidable. Without going through the equivede a direct and simpler proof
can be made for Petri nets. Such a proof can be found in [Mo§88]2(theorent0, page
83).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 19

(0,—1,+1) (0,0,—1) (0,+2,+1) (0,0,—1)

(0,+1,-2) (0,0,+1) (—1,0,+1) (0,—1,0)

Fig. 7. Two VASS

Example5.12. Figure 7 displays two VASS. More formally, the first csteould be
described as a graght = (.5, 4) with:

—S ={a,b,c,d}

—A = {a®b,a%B¢,0%¢, c*d, dBa

—w(ay) = (0,—-1,41), w(az) = (-1,0,0), w(az) = (0,+1,—2), w(ag) = (0,0,+1),
w(as) = (0,0,-1).

Let A = (((a1a3)]az)aqsas)* be aregular expression describing cycles fiotma. Then
the set of all cycles in these VASS is the language recogtigélde regular expression:

A|(a3a4a5Aa1)|(a4a5A(a1a3|a2))|(a5A(a1a3|a2)a4)

This corresponds to the semi-linear $6t,azaqas), (a2aqas)}*
The set of weights of cycles in the first VASS is obtained frdra set of cycles by
applying the weighting function (which is a morphism). Thwg obtain:

{(w(ar)+w(az)+w(as) +wlas)), (wlaz) +w(as) +wlas))}* = {(=1,0,—k)|k,l € N}

Obviously, this set does not interse®3 (apart from the trivial0 solution), hence the
VASS is uniformly terminating.

For the second VASS, we obtain the §681—k, k—1, k—21)|k, [, € N}. ItintersectdN?,
for example withk = 2,1 = 1, corresponding to the cycle;azasas)?(azasas) whose
weightis(1, 1,0). Hence, the VASS is not uniformly terminating.

However, any infinite walk starting from the configuratien (0, 14, 0)) is not admissi-
ble. Deciding whether a given configuration leads to an itgiadmissible walk or notis a
different problem than uniform termination.

It is worth noticing that in the second case, the cycle detkignota simple cycle. So
the problem is different from the one of detecting simplelegdn graphs and requires a
specific solution.

5.3 VASS as Resource Control Graphs
Before the formal definition of Resource Control Graphs, h@shere how VASS can be
used to build proofs of uniform termination of programs.

In the rest of this section, we consider the following sizection:

[I(IP o) || = (Istk 1, ..., IStk s[)stk ;es
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

20 . Jean-Yves Moyen

Fig. 8. The Resource Control VASS for the reverse program

that is, the vector whose components are the length of tiferelift stacks of a given pro-
gram. Moreover, we usg;) to denote the canonical basis &f, that ise; is the vector
whosejth componentis; ;.

Definition 5.13(Weights) To each instruction, we assign the followingight

—uw(r :=pop(stk ;)) = —e¢;
—w(push (r,stk ;)) =e;
—w(i) = 0 for all other instructions.

Definition 5.14(Resource Control VASS) et p be a program. ItRkesource Control
VASSis a VASS whose underlying graph is the Control Flow Graph ahd edge has
weightw(7) as defined above.

PROPOSITION 5.15. Letp be a program and- be its Resource Control VASSHif =
(I Py, 00)=(1 P,,0,) = 6, is an execution op, then(l Py, ||6y||)=(I P,, ||0.]]) is an
admissible walk of7 with the same trace.

PROOF By induction on the length of the execution. Notice thataetsns leading to
errors (L) are not taken into account here.]

THEOREM 5.16. Let p be a program and~ be its Resource Control VASS.df is
uniformly terminating, thep is uniformly terminating.

PrROOF Otherwise, there would exist an infinitely long executibattcan be mapped
onto an infinite admissible walk by the previous Propositidnl

Since uniform termination of VASS is decidable, this allowsdecide uniform termi-
nation of a broad class of programs. Of course, the conversetitrue since uniform
termination of programs is not decidable.

Example5.17. The Resource Control VASS of the reverse program @alied on
Figure 8. Since it is uniformly terminating, so is the reegpsogram.

Weighted graphs, as used in Section 4 to prove Non-Sizedsitrgness of programs are
also a special case of VASS with only one dimension.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 21

6. RESOURCE SYSTEMS WITH STATES

Resource Systems with States (RSS) are a generalisatioAS® \¢een in the previous
Section. In VASS, the only information kept is a vector okigeérs, and only addition of
vectors can be performed. When modelling programs, thioissafficient. Indeed, if
one wants to closely represent the memory of a stack macainegtor is not sufficient.
Moreover, vector addition is not powerful enough to repnésesual operations such as
copy of a variable :=).

Hence, we will now relax the constraints on valuations anijiats and basically allow
valuations to be drawn from any set and weights to be any kifdrections (between
valuations). Notice that for VASS, the addition of a vectarould be represented as the
function\z.x + v.

In order to be a bit more general, we will even allow the setsabfations to be different
for each vertex. This may seem strange, but a typical useabfighto have vectors with
different numbers of components as valuations (that is ¢h@fvaluations for vertex;
would beZ*") and matrix multiplications as weights (where the matricage the correct
number of rows and columns). Of course, it is always possibtaeke the (disjoint) union
of these sets, but it usually clutters needlessly the rostati See Example 9.3 for more
details.

6.1 Graphs and States

Definition 6.1 (RSS, configurations, walksp Resource System with Sta{&SS) is a
tuple (G, V,V*+, W, w) where

—G = (S, A) is a directed graph$ = {s1,---,s,} is the set of vertices and =
{a1, - ,a,} is the set of edges.

—Vi,---,V, are the sets ofaluations V is the union of all of them.

—Vf C V; are the sets addmissible valuationd/* is the union of them.

—W, ; : V; — V; are the sets ofreights W is the union of them.

—w : A — W is theweighting functiorsuch thatv(a) € W; ; if siﬁsj.

When both the valuations and weights sets are clear, we aitlenthe RSS after the un-
derlying graphG.
A configurationis a coupled = (s,v) wheres = s; € S is a vertex of the graph and
v € V; is a valuation. A configuration isdmissiblds v € Vf is admissible.
A1

A walk is a sequence (finite or not) of configuratia@ds, vo)= ... 23(s,, vn) = ...
such thatsp %51 %3 ... %5, 3" . and foralli > 0, v; = w(a;)(vi—1). A walk is admis-
sibleif all configurations in it are admissible.

The walkfollows pathp which is called eitheunderlying pathor trace of the walk.

As earlier, we writed — ¢’ if the relation holds for an unspecified edge and = for
the transitive and reflexive-transitive closures.

The idea behind having both valuations and admissible tiahgis that this allow$”
to have some nice algebraic properties not shardd byMoreover, this also allows the set
of valuations to be the closure of the admissible valuatiorder the weighting functions,
thus removing the deadlock problem of reaching somethiagwiould not be a valuation
(and replacing it by the more semantical problem of detgation admissible valuations).
Typically with VASS, V is ZF, thus being a ring, anti * is N*. Since weights can add

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

22 . Jean-Yves Moyen

any vector, with positive or negative components, to a tanaV is the closure of/ ™ by
this operation. Moreover, VASS do not suffer from the deeklproblems that appear in
Petri nets (but this is done by introducing the problem ofdiag if a walk is admissible).

Notice that either unions (fo¥’, V' or W) can be considered to be a disjoint union
without loss of generality.

Definition 6.2 (Weight of a path) LetG be a RSS. The weighting function can be canon-
ically extended over all paths i@ by choosingv(ab) = w(b) o w(a).

(W, o) is amagma. Itis not a monoid because the identity is not unigbere is a finite
set of neutral elements, the identities over edch

Notice that we do not actually need the wholé Only the part generated by the indi-
vidual weights of edges is necessary to handle a RSS. We vataad the notation and
call it W as well.

In practise, it is often more convenient to descrilfeas a set together with some right-
action onV. Thatis, there is an operatian: V' x W — V such thab ® w(a) = w(a)(v).
In this case, the function composition becomes an inteevaldf W, s : W x W — W
such thatv(a)sw(b) = w(b)ow(a). This turnsv in a morphism betweef,) and(1V,).

This notation is much more convenient when composing wsigliing a path. Indeed,
sincew is a morphismw(ab) = w(a) ¢ w(b), that is the weights are composed in the same
order as the edges along the path while using functional ositipn we hadv(ab) =
w(b) ow(a), needing to reverse the order of edges along the path. Meresimce weights
usually have some common shaf#é, ¢) is usually a well known algebraic structure.

Example6.3. For the VASS of previous Section, we hage= Z* andV;" = N* for
all 4, andw(a;) = A\z.z + u,; for some vectow; € Z*. Or, we could describe VASS by
sayingthat/ = W = Z*, V+ = N and® = 5 = +.

The notation with® andg is much more convenient, especially to handle easily wsight
of paths such as done in the lemmas and theorems of the psesemtion.

Moreover, the fact that weights (as functions) all have #mmesshape (namelyy.x+«)
allows to identify each weight with the vectar thus giving a more convenient definition.

Of course, If we consideV; as objects and € W as arrows, we have a category.
Indeed, identity exists for eadlj and composition of two arrows is properly defined.

6.2 Properties of RSS
6.2.1 Order

Definition 6.4 (Ordered RSS)An ordered RS$s an RSSG = (G, V, V™', W,w) to-
gether with a partial ordering over valuations such that the restriction-obverV " is a
well partial order.

For VASS, the component-wise order on vectors of the sangthen the well partial
order (ovelV+ = N¥) that was used in the previous Section.

Definition 6.5 (Monotonicity, positivity) Let(G,V,V*, W,w) be an ordered RSS. We
say that it ismonotonidf all weighting functionsw(a;) are increasing with respect te.
Since the composition of increasing functions is still gasing, the weighting function of
any path will be increasing.

We say thalG, V, VT, W, w) is positiveif for eachv € V* andv’ € V, v < v implies
v eV,

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 23

VASS are both monotonic and positive. Monotonicity is thg ké Lemma 5.4 while
positivity is implicitly used in the proof of Theorem 5.6 taysthat the valuation reached
after one cycle is still admissible.

Definition 6.6 (Resource awareness)et G be an ordered RSS anfd: V' — V be a
function. G is f-resource awaréf for any walk (so, vo)— (sn, v,) We havev, < f(vo)

6.2.2 Uniform termination

Definition 6.7 (Uniform termination) Let G be a RSS(G is uniformly terminatingf
there is no infinite admissible walk i@.

Notice that if a RSS is not uniformly terminating, then thexésts an infinite admissble
walk that stay entirely within one strongly connected comgra of the underlying graph.
In the following, when dealing with infinite walks we suppagihout loss of generality
that the RSS is strongly connected.

Theorem 5.6 can be generalised to RSS:

THEOREM 6.8. If G doesnotuniformly terminates, then there is an admissible cycle
(s, v)i(s, u) with v < w. If G is monotonic and positive, then this is an equivalence.

PrRoOOEF If an infinite admissible walk exists, then we can extraetririt an infinite se-
quence of admissible configuratiofs$, v;,) since there is only a finite number of vertices.
Since the order is a well partial order &, there exists a < j with v; < v;, thus leading
to the cycle.

If the cycle exists, then it is sufficient to follow it infiniiemany time to have an infinite
admissible walk. Monotonicity is needed to ensure thatyetiere one follows the cycle,
the valuation does indeed increase. Positivity is neededgare that when going through
always increasing valuations one will never leave. O

PROPOSITION 6.9. LetG = (G, V,V*,W,w) be a RSS.
(1) If V isfinite, thenlV is finite.
(2) If V is finite, then uniform termination @¥ is decidable.
(3) If bothV and W are enumerable, then it is semi-decidable to kno@ is not uni-
formly terminating.
PROOF

(1) Because the set of functiol§V, V) is finite and containgV.

(2) Since both/ andWV are finite, it is possible to computes all the values w(a) and
check whether one is both increasing (with respeet}@and corresponds to a cycle.

(3) By enumerating x W.

O
Corollary 5.10 can be generalised:

PROPOSITION 6.10. If (W, 3) is commutative, then the set of weights of cycles of a RSS
is semi-linear.

This will allow to easily find candidates for a generalisataf Theorem 5.11 if the set
of “positive” weights is easily expressible (as it was theector VASS). Among other, if it
is itself semi-linear, then uniform termination is decitiafintersection of two semi-linear
parts being decidable).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

24 . Jean-Yves Moyen

6.3 Equational versus constraint based approach

Up to now, the only weights we have considered are functioesning that ifs—s’, for
each valuation there is only one valuation’ such that(s, v)-%(s’,v'). Sometimes, it
is more convenient to have several possible results be@nmeximations done on the
values leads to a lost of knowledge. In this case, the weiggrisidered will be relations
rather than functions and we requirec ©(a)(v) rather than’ = w(a)(v).

6.3.1 Constraints RSS

Definition 6.11(RSS, configurations, walks)
A Constraints RS a tuple(G, V, V™, W,w) where

—G = (S, A) is adirected graph.

—Vf C V; are the sets of admissible valuations and valuations.
—W; ; : Vi = P(V;) are the sets alveights

—& : A — W is theweighting functiorsuch thati(a) € W; ; if s;—>s;.

Configurations and admissible configurations are definedidigie
A walk is a sequence (finite or not) of configuratioss, vo)%> . .. %5 (sn, vn) " ...

ay Ani1

such thatsg s, %3 ... %35, 2" .. and foralli > 0, v; € @(a;)(v;_1). A walk is admis-
sibleif all configurations in it are admissible.

It is important to notice that even if weighting functiongumn sets (that is, they are
relations rather than functions), each walk has to chooseetament from this set as a
new valuation. That is, we do not consider configuration$\gitts as valuations, but
rather introduce some kind of non-determinism in the RS® Mhin use for this will be
when some valuations are in no way related to the previous ané can be anything.Q.
if a value is provided via some external mechanism suchsasiaf instruction).

Definition 6.12(Weight of a path) Let G be a RSS. The weighting function can be

canonically extended over all paths @ by choosing(ab)(z) = @(b)(©(a)(z)) =

{LO)(W)ly € ©(a)(x)}.

As earlier, uniform termination means that there existsifiaite admissible walk. How-
ever, monotonicity becomes= y = V2’ € ©(z), 3y’ € ©(y)/2’' < y'.
Then, Theorem 6.8 becomes:

THEOREM 6.13. Let G be a positive monotonic Constraints R&Sis not uniformly
terminating if and only if there is an admissible cy(;l;em)ﬁ(s, v1) such thaty =< v;.

ProOF If an admissible infinite walk exists, then we can extrashfrit an admissible
cycle in exactly the same way as in Theorem 6.8.

Conversely, if an admissible cyaleexists, let(s, vo) (s', v))— (s, v1) be the firsts and
last configurations when following the cycle. By hypothesis=< v .

Then, there exists| € &(a)(v;1) such that(s, v;)-=(s’,v}) andv) < v}. By positivity
of the VASS,v] is still admissible.

By iterating this process, we build the admissible cy@le;) (s, v2) With v; < vy.
Then, this can be dore infinitumthus leading to an admissible infinite walkd

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 25

Fig. 9. Constraints VASS for Ackermann’s function

6.3.2 Constraints VASS.
Let us show how this concept apply to VASS and why it can beulsetien studying
programs.

Definition 6.14(Constraints VASS)A Constraints VASE a directed grapty’ = (S, A)

together with aveighting functionv : A — 7" wherek is a fixed integer.

A configurationis a coupled = (s,v) wheres € S andv € ZF. It is admissibleif
v e NF,

A walkis a sequence (finite or not) of configuratiqns, vo) B ... ﬂ'(sn, vy) such that
s0B5 3 ... Bs, and for alli > 0, v; < v;i_1 + w(a;). A walk is admissibleif all
configurations in it are admissible.

To express a Constraints VASS as a Constraints RSS, we stmnsiler the weighting
function®(a) : Z*¥ — P(Z*) such thati(a)(v) = {v'|v/ < v+ w(a)}. Then, the relation
between valuations in a walk will be the generale &(a;)(v;—1). Since, all constraints
have the same shape, we can express this in a more readabl€warastraints VASS are
positive and monotonic. When there is oo in the weights, it is always “best” to choose
the greatest possible valuation, that is use the (regula§S/with the same underlying
graph and weighting function.

Example6.15. Consider the following functional program computit\gkermann’s
function:

Ack(0,n) —n +1
Ack (m + 1,0) —Ack(m,1)
Ack (m +1,n+ 1) —Ack (m,Ack (m + 1,n))

For functional programs, an equivalent of the CFG can bectils graph there is one
vertex for each function symbol (here only one) and one edgedch call (here3). Since
there are two positive integers in the program, it is nattwahoosgm, n) as valuation.
However, when considering the outer call in the last linesénd argumentisck (m+
1, n) which cannot be related to the parametén any easy way. So, using a regular VASS,
this call would not be representable, whigeg, the call in the second line corresponds to
adding the vectof—1, +1) to the valuation.
With a Constraints VASS, we can represent this last calledad not knowing anything
on the result simply means that we can relax all constramtswhich will be represented
by the vector—1, +o0). The constraints VASS for Ackermann’s function is displye

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

26 . Jean-Yves Moyen

Figure 9.
Since this Constraints VASS is uniformly terminating, ségkermann’s function.
This both illustrates why Constraints VASS can be useful e @& hints how to apply
the ideas behind RCG to functional programs.

7. RESOURCES CONTROL GRAPHS

Instead of the weighted graphs or VASS used before, we will nge any RSS to model
programs. A set of admissible valuations will be given tohestate and weighting func-
tions simulate the corresponding instruction.

Since we can now have any approximation of the memory (thresytdor valuations,
we cannot simply use the length of a state. Instead, we cengiden asize functiorthat
associates to each state (or to each store) some size. Ehfusttion is unspecified in
general. Of course, when using RCG to model programs, thetirg to do is usually to
determine a suitable size function (according to the studieperty). Notice that depend-
ing on the size function, weights of instructions can or e defined properly (that is,
some sizes are either too restrictive or too loose and ndifumcan accurately reproduce
on the size the effect of a given instruction on actual datethis case, the RCG cannot be
defined and another size function has to be considered.

7.1 Resources Control Graphs

Definition 7.1(RCG) Letp be a program and' be its control flow graph. Let’+ be
a set of admissible valuations (ardbe a well partial order on it). Lete || : © — V'
be a size function from states to valuations afjfl be the image by o || of all states
(Ibl , o) for all storess.

For each edge ofG, letw(i) be a function such that for all statéserifyingp - 6--¢’,
w(i)(]10]]) = |0']|. LetV be the closure oF * by all the weighting functions (7).

The Resource Control GrapfRCG) of p is the RSS build o7 with weightsw(i) for
each edge, valuationsl” and admissible valuatiori§* (ordered by<). Vi being the
admissible valuations for vertetsl

As stated before, we will write ® w(i) instead ofw(i)(v) andw(i) § w(j) instead of
w(j) o w(i).
LEMMA 7.2. Let p be a program,G be its RCG anp + 6y — ... — 6, be an

execution with trace. There exists an admissible wally, [|6o]|) — ... — (sn, [|0n]])
with the same trace

THEOREM 7.3. Letp be a program and~ be its RCG. IfG is uniformly terminating,
thenp is also uniformly terminating.

Example7.4. A Space-RCG as defined in Section 4 is a special case efgdRCG.
In this case||0|| = |6], this leads toVj; = V*+ = N for each labelbl . Similarly,
w(i) = A\z.z + k; with k; as in definition 4.1. Sincé € Z, the closure o’ ™ by the
weighting functions i9” = Z.

In this case, resource awareness of the Space-RC@E $pace-RCG) guarantees a re-
source bound on the program execution.

Example7.5. For a better representation of programs, the size ctirebeector where
each component is the length of a stafiktP , o)|| = (|stk 1],...,|Stk s|)sik ,es. This

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 27

corresponds exactly to what is done with the Resource Clov®S of Section 5.3. As
shown, this allows to decide uniform termination of severagrams.

This termination analysis is close to the Size Change Teation [Lee et al. 2001] in
the sense that the size of data is monitored and a well oglerinit ensure that it can-
not decrease forever. It is sufficient to prove uniform teration of most common lists
programs such as reversing a list or insertion sort. It is,ats some way, slightly more
efficient than the original SCT because it can take into actoat only the decreasing in
size, but also the increasing. In this way, a program thatldvtnop on something like
pop pop push (2 pops andl push) is not caught by SCT but is proved uniformly ter-
minating with this analysis. In this sense, itis closer ® 8CT with difference constraints
(6SCT) [Ben-Amram 2006].

This method is in PIME, as we have shown, uniform termination of VASS is ine.
The original SCT, as well a8SCT, is BPACEcomplete. However, this simple method
does not allow for data duplication or copy. Lee, Jones and&mram already claimed
in the original SCT that there exists a poly-time algorittan$CT dealing with “programs
whose size-change graphs have in- and out-degrees boupdédbis easy to check that
VASS can only model such kind of programs accur&ehence the poly-time bound is
not a big surprise.

Moreover, this method has a fixed definition of size and heritaot detect termination
of programs whose termination argument does not depenceatettrease of the length of
a list. Among other, any program working solely on integeepfesented as letters of the
alphabet) will not be analysed correctly.

Example7.6. However, even this representation can be improved.icd@ijp, using
Resource Control VASS it is impossible to detect anythingpeming to registers. If we
have a suitable size functighe || : ¥ — N for register§, we can choosg(IP ,o)|| =
(Ir1lls- -5 lIrelDr;em- In this case, depending on the operators, weight could therei
vectors addition or matrices multiplication (to allow thapy of a register).

Remark7.7. Taking exactly the image (ife || as the set of admissible valuatioris
might be a bit too harsh. Indeed, this set might have any saagés probably not really
easy to handle. So, it is sometimes more convenient to cenaiduperset of it in order
to easily decide if a valuation is admissible or not. The exlull (in V) of the image
of || e || is typically such a superset. Notice that it is very similattie idea of trying to
find an admissible set of sequences of states which will bemanageable than the set of
executions. Here, we try to find an admissible set of valaatighich is more manageable
than the actual set of sizes. For more details on how to buaidnaanage such a superset,
see the work of Avery [2006].

Remark7.8. The size function is not specified and may depend on theepty one
wants to study. We do not address here the problem of findingabde size function for a
given program. As hinted, it might be a simple vector of fims over stacks and registers
but it can also be a more complicated function such as a lie@abination or so. Hence,
with a proper size function, one is able not only to check thgiven register (seen as an

5And cannot even model all those programs due to the restricth copying variables.
6Note that thesizefunction used here is in no way related to begthof a state. It plays no role when computing
the space usage of a state and may also be seen as an orderitigecaiphabet.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

28 . Jean-Yves Moyen
integer) is always positive but also that a given registeiigays bigger that another one.
This is similar to Avery’s functional inequalities [2006].

Example7.9. Let us consider the following program, working on irgegj(that is the
alphabet is the seinsigned of 32 bits positive integers):

0:i:=0; 4 :if i<n then goto 2
1:if i>n then goto 5; 5:i:=i+1;
2 i=i+1; end : end;

3 : some instructions modifying neithenorn

This is simply a loogor(i=0;i<n;i++) (in a C-like syntax). If we consider a size
function that simply takes the vector of the registers, thdtIP , o)|| = (i,n), then the
loop will have weight(+1,0) and thus lead to a cycle of positive weight. However, a
clever analysis of the program could detect that insidedbg ve must necessarily have
n —i > 0 and thus suggest the sigdlP , o)|| = n —i. Using this, the loop has weightl
and we can prove uniform termination of the program.

As stated, we do not address here the problem of finding aatosize function for
a given program. This problem is undecidable in general. iBwdriants can often be
automatically generated, usually by looking at the pre-@ost-conditions of the loops.

Notice also that this inequality must hold only in the loopdéed, at labed or after,
we may have > n. Hence using this size function everywhere would causétessince
then||(5, o)|| will not be admissible.

Having different sets of valuations for each labels, tha& isize function operating
differently on each label, can solve this problem. By chogsj(IP ,o)|| = (i,n) for
IP =0,1,5,end and|[{IP ,o)|| = (i,n,n — i) otherwise, we can ensure that the “natu-
ral” sets of admissible valuation®f andN?) indeed correspond to the image of the size
function (or at least a manageable superset of it).

In this case, of course, we need the weight between labaial2 to take into account
the apparition of a new component in the valuation. Herg,¢hn be done using a matrix
multiplication since the new component in the valuation inaar combination of the
existing ones. See Example 9.3 for the complete construofithe RCG.

7.2 Constraints RCG

Constraints RSS can also be used instead of RSS to modedpre@nd build RCG as was
done with the Ackermann’s function of Example 6.15. In thade; the relation required
between weights and sizes is:

for all stated) verifyingp - 0-6', [|0'|| € &(3)(||6]]).

Then, the simulation Lemma and uniform termination Theoagenstill true:

LEMMA 7.10. Letp be a program be its Constraints RCG andt+ 6y — ... —
6,, be an execution with trace There exists an admissible walk, ||6o]) — ... —
(Sn, ||0x]|) with the same trace

PROOF Because|d;|| belongs tas(a)(#;—1) and can thus always be chosen as the new
valuation. [

THEOREM 7.11. Letp be a program and- be its RCG. IfZ is uniformly terminating,
thenp is also uniformly terminating.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 29

8. 0-SIZE CHANGE TERMINATION

We consider here th€Z, min, +) semi-ring and denotesin as® and+ as ®. These
operations are canonically extended to define multiplicatif matrices from\1(Z).

8.1 Matrices and graphs

Definition 8.1 (Sign matrix) Let M be a matrix ofM(Z). Its sign matrix M is the
matrix such that\/; ; is +-oo (resp.0, —1, +1) if M; ; is +o0 (resp.0, < 0, > 0).

Definition 8.2 (Sign-idempotence)Let M be a square matrix aM(Z). It is sign-
idempotentf M = M ® M, thatisM has the same sign ag>.

Matrix M is strongly sign idempoteiitfor all &k > 0, M = M*, thatisM has the same
sign as all its powers.

Remark8.3. Signidempotence and strong sign idempotence are nvedent as shown
by the following matrix (remember that we're working in tfi&, min, +) semi-ring and
not in the usualz, +, x) ring):

1 -5 —1 1 —4 -3 —1 —4 -2
M=1]6 1 2 M?=14 1 3 M*=|5 -1 3
2 -1 1 3 -3 1 3 -2 —1

Definition 8.4 (Constraint graph) Let M be a square matrix of dimensien Its con-
straint graphis a weighted directed gragh such that:

—There aren verticesX;, 1 < i < n plus an extra verteX'.
—If M; ; # +o0, there is an edge of weighit; ; betweenX; and.X ;.
—There is an edge of weightbetweeny” and X;, for all .

The coefficienMi’fj is the minimum of the weight of all paths of lengthbetweenX;
and.X; in the constraint graph a¥/.

LEMMA 8.5. Let M be a square matrix. There exigtsc N such thatM* is strongly
sign idempotent.

PROOF This means that there existssuch that for al > 1 and for alli, 5, all Mi‘jf
have the same sign. We will reason here on the constrainhdoaipl/. Notice that since
there is no edge going to verté& it plays no role in the following.

Firstly, if for all i, j, there existg:; ; such that for all: > 1, all Mi‘ff”' have the same
sign, then it is sufficient to chooge= I1k; ; to have the property.

Then, consider thg, ;. If there is a cycle of negative weight frof, to itself, let! be its
length, by choosing; ; = [we can ensure that the sign bf#! will be negative. If there
is no cycle of negative weight but one of weigh¢resp. only cycles of weight 0), then
we can again choodg ; = [(the length of such a cycle) and be sure tméftﬁ is 0 (resp.
strictly positive). If there are no cycles frofj; to itself, thenA/?; is +-oo for all a.

Then, if there is no path betweéefy and.X;, thenM; is +oo for all e andk; ; = 1.

Next, we consider simple paths betweEnand.X; and simple cycles adjacent to them

(that is fromX to X where vertexX belongs to the simple patlX’ may beX; or X;).

(1) If for all simple paths betweeN; andX; there are no cycle adjacent to it, then for
any! > ly greater than the length of the longest path, there is no gdémgth/ between
X, andX;, we can choosg; ; =y andMi‘ffi'j = +oo forall a.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

30 . Jean-Yves Moyen

(2) Ifthere is one cycle of lengthand strictly negative weight adjacent to a simple path
of lengthbl, then forl’ > [y, there exists a path of length’ and negative weight. We can

choose; ; = aly andMi‘ffi’j < 0.
(3) Similarly if the cycle has weigt and the path has weight 0.

(4) If for all simple paths betweeR; and.X; the length of the simple cycles touching
the path have a greatest common divigpthen there can only be path of length + 3
whereg is the length of the simple path. Hencegifis not a multiple ofd, there are no
paths of lengthvd and choosing; ; = d leads toMZ;CM = +o0. Notice that we consider
here each simple path separately since cycles;air X; are also considered. Notice also
that this case encompass the case where there is only ore fybbwever3 is a multiple
of d (among other, ifl = 1, then there exists paths of lengthd whose weight is discussed
below.

In the last case, the path of a given length can be found by &#zout coefficients on
the length of the different cycles involved. Notice thathétlength is large enough, it is
possible to go arbitrarily more times through one cycle ttheiaugh all the others.

Lastly, for the last case, look at the weight for the paths &adier. In each case, we
consider a simple path and the simple cycles next to it. Tingtheof the paths considered
here being always a multiple df we consider without loss of generality that 1.

(1) Ifthere is at least one cycle of negative weight, therif i is large enough, a path
of lengthl has negative weight arld ; = .

(2) If all cycles have weight, then ifl > [, there exists a path of the same weight as
the simple path and we can chodsg = .

(3) If there are cycles of weiglit whose lengths are coprime (and no cycle of strictly
negative weight), then again it is possible to have a path@tame weight as the simple
path.

(4) If all cycles have weight- 1, then fori > [, the path has positive weight and
ki,j = l().

(5) If the simple path has weight 0 and there are no cycles of weight0, then any
path will have weight> 0.

(6) If the simple path has weight there are no cycles of weigkt 0 and the gcd of the
length of the cycles of weighttis ¢ > 1, then any path of length multiple gf must go
through one cycle of weight 0 and has strictly positive weight.

(7) Last but not least, if the simple path has weight 0 and lengthl, there is a cycle
of weight0 and lengthl, (or [y is the gcd of the length of the cycles of weidhtand one
cycle of weight> 0 and length;.

(@) If w+ wy; > 0 then the same reasoning yields to path going through thes afcl
positive weight and with positive weight.

(b) If w+ lpwy < 0, then since it is always possible to go through the secongl lless
thanl, times (otherwise, gé, time through the first cycle), it is always possible to build
paths of strictly negative weight.

(c) Otherwise, lety be the smallest integer such thdt + [is a multiple ofl, (it always
exists becaus) andl; are coprime). Then paths of length, > al; + [must go through
the second cycle at leasttimes and will all have the same weight.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 31

So, for all verticesX; and X, it is possible to find; ; such that the (minimum) weights
of paths of lengthuk; ; betweenX; and.X; have the same sign]

LEMMA 8.6. The systenX < X ® M has a solution if and only if there is no strictly
negative coefficient in the diagonal df*, for all k. In that case, it admits a non-negative
solution.

PROOF. The matrix inequation corresponds to the set of inequatlon< X; + M, ;.

If there is no strictly negative coefficient in the diagonélid”, that means that the
constraints grapli has no cycle of strictly negative weight. In this case, we damose
for X; the value of the shortest path to reach it frdfm This is well defined because
there is no cycle of strictly negative weight and provideslatson for the system because
X; < X; + M, ; by definition of shortest paths.

Conversely, if there is a path of strictly negative weighgen it is easy to see that by
adding the inequations corresponding to the edges in tlisgree will eventually reach an
inequationX; < X; and the system has no solution.

If there is a solution, theX +(1,. .., 1) is also a solution. Hence, there exists a solution
where all values are positived

8.2 Size Change Termination

We explain here how to build RCG in order to perform the sanmel kif analysis as the
Size-Change Termination with difference constrain®gT) of Ben-Amram [2006]. Here,
we use matrices rather than Size Change Graphs thus fojawawork of Abel and Al-
tenkirch [2002] where similar SCT matrices are used (but azvalued set, thus mim-
icking the initial SCT and not the work with difference canagts).

In this whole section, we consider a fixed prograrand for each labdbl , inita fixed
integerk,. LetV, = Z*s andV,;* = N*« be sets of (admissible) valuations associated with
each label and we consider given a size functjan|| such that for each labdél , and
for each store, |[(Ibl ,,0)|| € V.

Definition 8.7 (Size Change Matrix)Let ¢ be an instruction irp corresponding to an
edge betweelbl , andlbl ;in G. TheSize Change Matri¢(SCT matrix) ofi is a matrix
M@ of My, &, (Z) such that for all state, with p = 0,505, ||0s|| < |0a]| @ M@,

This means that if|0,|| = (z1,---, 2k,) and||6s|| = (y1,--- , yx,), We have for each

g y; < ming{zy + M,Ef;} where the coefficients a¥/ (V) can be any integer oroo.

Definition 8.8 (Size Change RCG)TheSize Change RCGCT-RCG) ofp is the Con-
straints RCG forp build with admissible valuation&*=, and valuation&* for vertex
Ibl . The weight for edgeis such thati(i)(v) = {v'|v/ < v® M} whereM @ is the
SCT matrix fori.

As for Constraints VASS, the common shape of constraintsvalito use a weighting
functionw(i) = M@ instead of the weighting relatiad and ask along a walk that <
w(ai)(vi_l) rather thami S @(ai)(vi_l).

The uniform termination Theorem for Constraints RCG (Tleewoi7.11) tells us that if
the SCT-RCG is uniformly terminating then sapis

SCT-RCG are both monotonic and positive, so it will be pdsdibapply Theorem 6.13.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

32 . Jean-Yves Moyen

Fig. 10. A Size Change Termination RCG.

THEOREM 8.9. Let G be the SCT-RCG of. It is uniformly terminating if and only if
for all cyclese, if the corresponding matrid/ () is strongly sign idempotent, then it has a
strictly negative coefficient on the diagonal. That is:

G uniformly terminating= V cyclec, (M(C) strongly sign idempotent- Ez'/Mi(j) <0)

PROOF First, consider that there exists a cyelsuch that its weighi\/ is strongly
sign idempotent and all coefficients on the diagonalzaré. SinceM is strongly sign
idempotent, non of its power has a strictly negative coefficion the diagonal. Then,
by Lemma 8.6, the systetW > X ® M admits an admissible solution. Hence, there
exists an admissible cyc(e, X)= (s, X ® M) and by Theorem 6.13, the SCT-RCG is not
uniformly terminating.

Conversely, suppose that the SCT-RCG is not uniformly teatimg. In this case, by
Theorem 6.13, there exists a cycle of weiglitis such thatX < X & M has a solution.
Hence, by Lemma 8.6, no power &f has a strictly negative coefficient on the diagonal.
However, by Lemma 8.5, there exigtsuch that\/* is strongly sign idempotent. Sa*
is strongly sign idempotent but has no strictly negativefadent on the diagonal. O

This condition is undecidable in general. However, if thenmas arefan-in free that
is in each column of each SCT matrix, there is at most one-poncoefficient, then the
problemis BPACEcomplete. See [Ben-Amram 2006] for details. Notice thalhis paper,
Ben-Amram uses mostly SCT graphs and not SCT matrices. @&hslation from one to
the other is, however, quite obvious. Similarly we presentldirectly a condition on the
cycles of the SCT-RCG without introducing the multipathshisTis close to the “graph
algorithm” introduced in [Lee et al. 2001].

The simple Size Change Principle of Lee et al. [2001] can be as an approximation of
the JSCT principle where only labels if—1, 0, +oc0} are used. Since this only gives way
to finitely many different SCT matrices, this is decidablganeral (RPACEcomplete).

Example8.10. Consider the following program (adapted from [LeeleR@01] fifth

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 33

example):
0 :if y=0 then goto end ; 5 : goto 0;
1:if x=0 then goto 6; 6 : xX:=Yy;
2 a:=x; Ty =y—1;
3 X:=Y; 8 : goto 0;
4:y:=a—-1; end : end;

It can be proved terminating by choosing the size functiéin = (x,y, a). With this size,
its SCT-RCG is displayed on Figure 10. For convenience regsostruction® — 4, as
well as6 — 7 have been represented as a single edge (with a single mattig allows
to completely forget registex and so us€Xx,y) as size. Similarly, the other SCT matri-
ces are not depicted since they are the identity matrix. éSihe SCT-RCG is uniformly
terminating, so is the program.

9. MORE ON MATRICES
9.1 Matrices Multiplication System with States

If we use vectors as valuations and (usual) matrices migliifibn as weights, we can
define Matrices Multiplication Systems with States (MMS&)ai way similar to VASS.
Admissible valuations will still be the ones N but & is not fixed for the RSS and may
depend on the current vertex.

Definition 9.1 (Matrices Multiplication System with Statesh Matrices Multiplication
System with Stat¢®MSS) is a RSS = (G, V, VT, W, w) where:

—V; = 7%, V;t = NF for some constant; (depending on the vertex).
—Weights are matrices with integer coefficients.
—3=® = X.

Using this, it is quite easy to model copy instructions of meus machinesx(:= vy)
simply by using the correct permutation matrix as a weight. r@present increment or
decrement of a counter, an operation which was quite natitlalVASS, we now need a
small trick known asiomogeneous coordinatesSimply represent the counters as a+ 1
components vector whose first component is alwiaybhen, increment or decrement of a
variable just becomes a linear combination of componeritsofector which can perfectly
be done with matrices multiplication. For example, hereaw lone can model the copy
(x :=y) and the incremenk(:= x + 1).

100 110
(Laz,y)x |000} =1yy (Lzyx|010|=(1z+1y)
011 001

Example9.2. Using homogeneous coordinates, the program of ExadpEhas the
MMSS depicted on Figure 11. Here, matrices multiplicatidane on the usuék, +, x)
ring and not on thé¢Z, min, +) semi-ring as for SCT-RCG.

"Homogeneous coordinates were originally introduced by.Ad&bius. There are used, among other, in com-
puter graphics for exactly the same purposes as we do hatés ttepresenting a translation by means of matrix
multiplication.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

34 . Jean-Yves Moyen

Fig. 11. MMSS as a RCG.

Example9.3. Similarly, use of homogeneous coordinates allows tl BUMMSS to
prove uniform termination of the program of Example 7.9sltiepicted on the left part of
Figure 12 (where labe] has been omitted). The interesting thing here is the useatbre
of different lengths at different labels, thus allowing tidethe constraint — i > 0 only
inside the loop. This example shows both the use of disj@t# af valuations and how to
work with the functional inequalities of Avery [2006].

But there is even more. VASS are able to forbid & 0 branch of a test being taken in an
admissible walk ifr is 0 simply by decrementing and then incrementing it immediately
after. The net effect is null but i is 0, the intermediate valuation is not admissible.
This can still be done with MMSS. VASS, like Petri nets, arevheer not able to test if a
component is empty, that is forbid the= 0 branch of a test to be takenuifis not0.

With MMSS, we can perform this test o It is indeed sufficient to multiply the correct
component of the valuation by1. If it was different from0, then the resulting valuation
will not be admissible.

So, using these tricks it is possible to perfectly model antens machine by a MMSS:
each execution of the machine will correspond to exactlyammissible walk in the MMSS
and each admissible walk in the MMSS will correspond to dyamte execution of the
machine.

This leads to the following theorem:

THEOREM 9.4. Uniform termination of MMSS is not decidable.

Example9.5. Consider the following program, performing additionuinary (that is,
repeatedly decrementingand incrementing until x is 0).

0 :if x=0 then goto end ; 3 : goto O;
1:x:=x-1; end : end;
2:y:=y+1;

Right side of Figure 12 depicts a MMSS for this program suctt there is a one-to-one
correspondence between executions of the program and sidlaisalks of the MMSS.
The size used i§1, x,y), the 1 being here because of homogeneous coordinates. Notice
that we need to add an intermediate label for xhet 0 branch of the test in order to

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 35

Fig. 12. MMSS for loop and unary addition.

generate the temporary valuation containing 1, only used to force admissible walks
with x = 0 to take the other branch.

Since such a construction can be done for any counter ma¢thiaeunary addition
program uses all possible instructions for counter maa)iaad since counter machines
are Turing-complete, this shows why uniform terminationMi¥1SS is not decidable in
general.

This simulation of programs by matrices multiplicatiorses a surprising question. In-
deed, matrices multiplications are only able to perfornedinoperations on data. While
obviously some programs can perform non-linear operations

This apparent contradiction is solved when we think morsedpon how RSS work.
Each walk in a MMSS corresponds to a matrix multiplicatioadhusev is a morphism),
hence to a linear transformation on data. However, two iffewalks give rise to two
different matrices, hence two different linear transfotioas.

When simulating a program, each different data will go tigtoa different (admissible)
walk in the MMSS. Hence, each different value will pass tlgioa different linear trans-
formation. Of course, the other walks (that is, the othegdintransformations) also exist
and are considered on this data when looking at the set ofswhlikt non-admissibility
allows to dismiss them and only keep one.

So, from a transformation point of view, we can look at MMSSa®t of linear trans-
formations and the admissibility mechanism selects thpgrtransformation to apply on
each piece of data.

For example, if we consider a program performing multiglma of two integers: and
y, it will likely be a loop onz, addingy to the result each time. The corresponding MMSS

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

36 . Jean-Yves Moyen

will have several paths (infinitely many) that can each belmate for a walk once actual
data is provided. Different paths correspond to following koop1,2,3, ..., k, ... times.
Then, the walk corresponding to each of these paths wilbperthe linear transformation
(1,z,y) — (1, — k, ky) representable by the matrix:

1 -k0
010
0 0 k

However, when performing all these transformations onalatata, only those witk < x
have an admissible result and only the one wvkita = has all its intermediate valuations
admissible. So, the admissibility mechanism selects tit tinear transformation to ap-
ply.

That means that when simulating a program computing a (im&aul) function by a
MMSS, the simulation actually consider the function as bgiiecewise linearcomputes
the result of all the possible linear transformations iregland selects the one correspond-
ing to current data. In general, it is possible that eachalinensformation is only valid
for a single value.

9.2 Tensors

Moreover, the study can go further. Indeed, using matri¢enairices (that is, tensors)
we can represent the adjacency graph of a MMSS (a matrix wdoengonents, ;) is the
coefficient of the edge between vertigeandj). That is, a first order program can be rep-
resented as such kind of tensors. However, it would then bsilple to uses these tensors
(and tensors multiplication) in order to study second-opmtegrams. In turn, the second
order programs would probably be representable by a temsthr ihore dimensions) and
SO one.

This would lead to a tensor algebra representing high ondeyrams.

Example9.6. Here is a tensor representing the MMSS of the unary iaddifT his is
simply the connectivity matrix of the graph where each edgeself weighted by a matrix.

1-10 100
0 010 0 0 0 0-10
00 1 001
110
0 0 010 0 0 0
001
1-10
0 0 0 010 0 0
001
101
0 0 0 0 010 0
001
100
010 0 0 0 0 0
001
0 0 0 0 o]

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

Resource Control Graphs . 37

9.3 Polynomial time

Another interesting approach of program analysis usingioest is the one done by Niggl
and Wunderlich [2006] and Kristiansen and Jones [2005]. drograms they study are
similar to our stack machines except that the (conditiojpuaf)p is replaced by a fixed
iteration structurel¢op) where the number of iterations is bounded by the length of a
given stack. It is quite easy to see that both models are weiijas and can simulate one
another without major trouble.

Then, they assign to each basic instruction a matrix, callesttificatewhich contains
information on how to polynomially bound the size of the stgis (or stacks) after the
instruction by their size before executing the instructidrappears that when sequencing
instructions, the certificate for the sequence turns outtthk product of the certificates
for each instruction. Certificates for loops are some kindhatftiplicative closure of the
certificate for the body and certificate fibr statements are the least upper bound of the
two branches.

Building the certificate of a program thus leads to a polyradrhbund on the result
depending on the inputs which can then be turned into a palyaldound on the running
time (depending on the shape of the loops).

So, these certificates can very well be expressed in a MMS$&avthe valuation would
give information on the size of registers (depending on the sf the inputs of the pro-
gram) and the weights of instructions will be these certiisa This will exactly be a
Resources Control Graph for the program. If the programrisfieel, then this RCG wiill
be polynomially resource aware.

10. CONCLUSION

We have introduced a new generic framework for studying @omg. This framework is
highly adaptable via the size function and can thus studgrséproperties of programs
with the same global tool. Analyses apparently quite différsuch as the study of Non
Size Increasing programs or the Size Change Terminatioquidéenaturally be expressed
in terms of Resource Control Graphs, thus showing the ad#iptaf the tool.

Moreover, other analyses look like they can also be expdessthis way, thus giving
hopes for a truly generic tool to express and study prograoysgpties such as termination
or complexity. It is even likely that high order could be dedithat way, thus giving
insights for a better comprehension of high order compjexit

Theory of algorithms is not well established. This work iallg on the study of pro-
grams and not of functions. Further works in this directidthshed some light on the very
nature of algorithms and hopefully give one day rise to a rtbteal framework as solid
as our knowledge of functions. Here, the study of MMSS andéehsors multiplication
hints that a tensors algebra might be used as a mathemaditkedtound for a theory of
algorithms and must then be pursued.

Acknowledgements

Many thanks to A. Ben-Amram for pointing out critical flawsan earlier version of the
proof of Theorem 5.11. Thanks also to M. Hofmann for pointing the name “homoge-
neous coordinates” and its use in computer graphics.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

38 . Jean-Yves Moyen

REFERENCES

ABEL, A. AND ALTENKIRCH, T. 2002. A Predicative Analysis of Structural Recursidournal of Functional
Programming 121 (Jan.), 1-41.

AMADIO, R., COUPEFGRIMAL, S., ZILI0, S. D.,AND JAKUBIEC, L. 2004. A functional scenario for bytecode
verification of resource bounds. @omputer Science Logic, 12th International Workshop, G&LSpringer,
265-279.

ASPINALL, D. AND COMPAGNONI, A. 2003. Heap Bounded Assembly Languag#ournal of Automated
Reasoning (Special Issue on Proof-Carrying Code)Z&ll-302.

AVERY, J. 2006. Size-change termination and bound analysisFuhttional and Logic Programming: 8th
International Symposium, FLOPS 2Q08. Hagiya and P. Wadler, Eds. Lecture Notes in Computerrigeie
vol. 3945. Springer.

BELLANTONI, S.AND COOK, S. 1992. A new recursion-theoretic characterization efgbly-time functions.
Computational Complexity, ®7-110.

BEN-AMRAM, A. 2006. Size-Change Termination with Difference Coristsa Tech. rep. To appear in ACM

TOPLAS, accessiblattp://www2.mta.ac.il/ ~amirben/downloadable/delta_sct.pdf
BONFANTE, G., MARION, J.-Y., AND MOYEN, J.-Y. 2007. Quasi-interpretation: a way to control re-
sources. Theoretical Computer Sciencélo appear, accessibletp://www.loria.fr/ ~marionjy/

Research/Publications/Articles/TCS.pdf

COBHAM, A. 1962. The intrinsic computational difficulty of functis. InProceedings of the International
Conference on Logic, Methodology, and Philosophy of Sejen®ar-Hillel, Ed. North-Holland, Amsterdam,
24-30.

CoOLSON, L. 1998. Functions versus Algorithm&ATCS Bulletin 6598-117. The logic in computer science
column.

CORMEN, T., LEISERSON C.,AND RIVEST, R. 1990.Introduction to AlgorithmsMIT Press.

GIRARD, J.-Y. 1987. Linear logicTheoretical Computer Science,30-102.

HOFMANN, M. 1999. Linear types and Non-Size Increasing polynoniaétcomputation. IfProceedings of
the Fourteenth IEEE Symposium on Logic in Computer Scidr@S(99). 464—473.

JONES, N. 2000. The expressive power of higher order types orMifihout cons. Journal of Functional
Programming 111, 55-94.

KRISTIANSEN, L. AND JONES, N. D. 2005. The flow of data and the complexity of algorithimsCiE’05:New
Computational ParadigmsCooper, Lwe, and Torenvliet, Eds. Lecture Notes in CompBitéence, vol. 3526.
Springer, 263-274.

LEE, C. S., DNES, N. D.,AND BEN-AMRAM, A. M. 2001. The Size-Change Principle for Program Termina-
tion. In Symposium on Principles of Programming Languades 28. ACM press, 81-92.

LEIVANT, D. AND MARION, J.-Y. 1993. Lambda Calculus Characterizations of Polpeli Fundamenta
Informaticae 191,2 (Sept.), 167-184.

MOYEN, J.-Y. 2003. Analyse de la complexité et transformatiorpdEyrammes. Ph.D. thesis, University of
Nancy 2.

NIELSON, F., NIELSON, H. R.,AND HANKIN, C. 1999.Principles of Program AnalysisSpringer.

NIGGL, K.-H. AND WUNDERLICH, H. 2006. Certifying polynomial time and linear/polynomipace for
imperative programsSIAM Journal on Computing 35,(Mar.), 1122-1147. published electronically.

REUTENAUER, C. 1989.Aspects mathématiques des réseaux de.Rdaisson.

SHEPHERDSON J.AND STURGIS, H. 1963. Computability of recursive functiongournal of the ACM 102,
217-255.

Received September 2006; revised May 2006; accepted Higpedmeday

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY

