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Resource Control Graphs

JEAN-YVES MOYEN
University of Paris 13

Resource Control Graphs can be seen as an abstract representation of programs. Each state of
the program is abstracted as its size, and each instruction is abstracted as the effects it has on
the size whenever it is executed. The Control Flow Graph of the programs gives indications on
how the instructions might be combined during an execution.

Termination proofs usually work by finding a decrease in some well-founded order. Here, the
sizes of states are ordered and such kind of decrease is also found. This allows to build termination
proofs similar to the ones in Size Change Termination.

But the size of states can also be used to represent the space used by the program at each

point. This leads to an alternate characterisation of the Non Size Increasing programs, that is the
ones that can compute without allocating new memory.

This new tool is able to encompass several existing analyses and similarities with other studies
hint that even more might be expressable in this framework thus giving hopes for a generic tool
for studying programs.

Categories and Subject Descriptors: D.2.4 [Software engineering]: Software/Program Verification; F.2.2 [Anal-
ysis of algorithms and problem complexity]: Nonnumerical Algorithms and Problems—Computations on dis-
crete structures; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and reasoning about
Programs; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Abstraction, implicit complexity, non-size increasing, pro-

gram analysis, size change termination, termination

1. INTRODUCTION

1.1 Motivations

The goal of this study is an attempt to predict and control computational resources like
space or time, which are used during the execution of a program. For this, we introduce a
new tool calledResource Control Graphsand focus here on explaining how it can be used
for termination proofs and space complexity management.

We present a data flow analysis of a low-level language sketched by means of Resource
Control Graph, and we think that this is a generic concept from which several program
properties could be checked.

Usual data flow analyses (see Nielson et al. [1999] for a detailed overview) use transfer
functions to express how a given property is modified when following the program’s ex-
ecution. Then, a fixed point algorithm finds for each label a set of all possible values for
the property. For example, one might be interested in which sign a given variable can take
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2 · Jean-Yves Moyen

at each point. The instructions of the program gives constraints on this (from one label to
the next one). Iterating these constraints with a fixed pointalgorithm can find the set of all
possible signs for the variable at each label.

Here, we want to consider each execution separately. So, when iterating the transfer
function and coming back to an already treated label, instead of unifying of the new con-
straint with the old one and use fixed point, we will consider this as a new configuration.
In the end, instead of having one set associated to each label, we will get a set of so called
“walks”, each associating one value to each occurrence of each label. For example, a first
walk can tell that if starting with a positive value at a givenlabel, the variable will stay pos-
itive, but another walk tells that if starting with a negative value, the variable may become
positive (while in such a case, the fixed point algorithm willbuild the set{+,−} for each
label).

Of course, we then need a way to study this set of walks and find common properties on
them that tells something about the program.

The first problem we consider is the one of detecting programsable to compute within a
constant amount of space, that is without performing dynamic memory allocation. These
were dubbedNon Size Increasingby Hofmann [1999].

There are several approaches which try to solve this problem. The first protection mech-
anism is by monitoring computations. However, if the monitor is compiled with the pro-
gram, it could itself cause memory leak or other problems. The second is the testing-based
approach, which is complementary to static analysis. Indeed, testing provides a lower
bound on the memory usage while static analysis gives an upper bound. The gap between
both bounds is of some value in practice. Lastly, the third approach is type checking done
by a bytecode verifier. In an untrusted environment (like embedded systems), the type
protection policy (Java or .Net) does not allow dynamic allocation. Actually, the former
approach relies on a high-level language, which captures and deals with memory allocation
features [Aspinall and Compagnoni 2003]. Our approach guarantees, and even provides,
a proof certificate of upper bound on space computation on a low-level language without
disallowing dynamic memory allocations.

The second problem that we study is termination of programs.This is done by closely
adapting ideas of Lee et al. [2001], Ben-Amram [2006] and Abel and Altenkirch [2002].
The intuition being that a program terminates whenever there is no more resources to con-
sume.

There are long term theoretical motivations. Indeed a lot ofwork have been done in the
last twenty years to provide syntactic characterisations of complexity classes,e.g.by Bel-
lantoni and Cook [1992] or Leivant and Marion [1993]. Those characterisations are the
bare bone of recent research on delineating broad classes ofprograms that run in some
amount of time or space, like Hofmann, but also Niggl and Wunderlich [2006], Amadio
et al. [2004], and Bonfante et al. [2007].

We believe that our Resource Control Graphs will be able to encompass several, or even
all, of these analyses and express them in a common framework. In this sense, Resource
Control Graphs are an attempt to build a generic tool for program analysis.

1.2 Coping with undecidability

All these theoretical frameworks share the common particularity of dealing with behaviours
of programs (like time and space complexity) and not only with the inputs/outputs relation
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Resource Control Graphs · 3

which only depends on the computed function.
Indeed, a given function can be computed by several programswith different behaviours

(in terms of complexity or other). Classical complexity theory deals with functions and
considersextensionalcomplexity. Here, we want to considerintensionalcomplexity, that
is try to understand why a given algorithm is more efficient than another to compute the
same function.

The study of extensional complexity quickly reaches the boundary of Rice’s theorem.
Any extensional property of programs is either trivial or undecidable. Intuition and empir-
ical results point out that intensional properties are evenharder to decide.

However, several very successful works do exist for studying both extensional properties
(like termination) or intensional ones (like time or space complexity). As these works pro-
vide decidable criteria, they must be either incomplete (reject a valid program) or unsound
(accept an invalid program). Of course, the choice is usually to ensure soundness: if the
program is accepted by the criterion, then the property (termination, polynomial bound,. . . )
is guaranteed. This allows the criterion to be seen as a certificate in a proof carrying code
paradigm.

When studying intensional properties, two different kindsof approaches exist. The first
one consists of restricting the syntax of programs so that any program necessarily has
the wanted property. This is in the line of the works on primitive recursive functions
where the recurrence schemata is restricted to only primitive recursion. This approach
gives many satisfactory results, such as the characterisations of PTIME by Cobham [1962]
or Bellantoni and Cook [1992], the works of Leivant and Marion on tiering and predicative
analysis [1993] or the works of Jones on CONS-free programs [2000]. On the logical side,
this leads to explicit management of resources in Linear Logic [Girard 1987].

All these characterisations usually have the very nice property ofextensional complete-
nessin the sense that,e.g., a function is in PTIME if and only if it can be defined by bounded
primitive recursion (Cobham). Unfortunately,intensionalityis not their main concern:
these methods usually do not capture natural algorithms [Colson 1998], and programmers
have to rewrite their programs in a non-natural way.

So, the motto of this first family of methods can be described as leaving the proof bur-
den to the programmer rather than to the analyser. If one can write a program with the
given syntax (which, in some cases, can be a real challenge),then certain properties are
guaranteed. The other family of methods will go in the other way. Let the programmer
write whatever he wants but the analysis is not guaranteed towork.

Since any program cana priori be given to the analysis, decidability is generally achieved
by loosening the semantics during analysis. That is, one will considermore than all the
executions a program can have.This approach is more recent but has already some very
successful results such as the Size Change Termination [Leeet al. 2001] or themwp-
polynomials of Kristiansen and Jones [2005].

This second kind of methods can thus be described as not meddling with the programmer
and let the whole proof burden lay on the analysis. Of course,the analysis being incom-
plete, one usually finds out that certain kinds of programs will not be analysed correctly
and have to be rewritten. But this restriction is donea prosterioriand nota priori and it
can be tricky to find what exactly causes the analysis to fail.

Resource Control Graphs are intended to live within this second kind of analyses. Hence,
the toy language used as an example is Turing-complete and will not be restricted.
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1.3 Outline

Section 2 introduces the stack machines used all along as a simple yet powerful program-
ming language. Section 3 describes the core idea of ResourceControl Graphs that can be
summed up as finding a decidable (recursive) superset of all the executions that still ensure
a given property (such as termination or a complexity bound). Then, Section 4 immediately
shows how this can be used in order to detect Non Size Increasing programs. Section 5
presents Vectors Addition Systems with States which are generalised into Resource Sys-
tems with States in Section 6. They form the backbone of the Resource Control Graphs.
Section 7 present the tool itself and explain how to build a Resource Control Graph for a
program and how it can be used to study the program. Section 8 shows application of RCG
in building termination proofs similar to the Size Change Termination principle. Finally,
Section 9 discuss how matrices multiplication is or could beused in program analyses thus
leading to several possible further developments.

1.4 Notations

In a directed graph1 G = (S, A), will write s
a
→s′ to say thata is an edge betweens and

s′. Similarly, we will write s0
a1→s1

a2→ . . .
an→sn to say thata1 . . . an is a path going through

verticess0, · · · , sn. Or simplys0
w
→sn if w = a1 . . . an. s→ s′ means that there exists an

edgea such thats
a
→s′ and

+
→,

∗
→ are the transitive and reflexive-transitive closures of→.

A partial order≺ is a well partial order if there are no infinite anti-chain, that is for every
infinite sequencex1, · · · , xn, . . . there are indexesi < j such thatxi � xj . This mean that
the order is well-founded (no infinite decreasing sequence)but also that there is no infinite
sequence of pairwise incomparable elements. The order induced by the divisibility relation
on N, for example, is well-founded but is not a well partial ordersince the sequence of all
prime numbers is an infinite sequence of pairwise incomparable elements.

The set of integers (positive and negative) isZ, andN is the set of integers≥ 0, when
working with infinity, Z = Z

⋃
{+∞}, that is we do not need−∞ here. When working

with vectors ofZk,≤ denotes the component-wise partial order. That isa ≤ b if and only
if ai ≤ bi for all 1 ≤ i ≤ k. This is a well partial order onNk.

2. STACK MACHINES

2.1 Syntax

A stack machine consist of a finite number ofregisters, each able to store a letter of an
alphabet, and a finite number ofstacks, that can be seen as lists of letters. Stacks can only
be modified by usualpush andpop operations, while registers can be modified by a given
set of operators each of them assumed to be computed in a single unit of time.

1We will uses ∈ S to designate vertices anda ∈ A to designates edges. The choice of using French ini-
tials (“Sommet” and “Arête”) rather than the usual(V, E) is done to avoid confusion between vertices and the
valuations introduced later.
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Definition 2.1 (Stack machine). Stack machines are defined by the following grammar:

(Alphabet) Σ finite set of symbols
(Programs) p ::= lbl 1 : i1; . . . ; lbl n : in;
(Instructions) I ∋ i ::= if (test) then goto lbl 0 else goto lbl 1 |

r := pop (stk ) | push (r, stk ) |r := op(r1, · · · , rk) | end
(Labels) L ∋ lbl finite set of labels
(Registers) R ∋ r finite set of registers
(Stacks) S ∋ stk finite set of stacks
(Operators) O ∋ op finite set of operators

Each operator has a fixed arityk andn is an integer constant. The syntax of a program
induces a functionnext : L → L such thatnext (lbl i) = lbl i+1 and a mapping
ι : L → I such thatι(lbl k) = ik. Thepop operation removes the top symbol of a stack
and put it in a register. Thepush operation copies the symbol in the register onto the
top of the stack. The if-instruction gives control to eitherlbl 0 or lbl 1 depending on the
outcome of the test. Each operator is interpreted with respect to a given semantics function
JopK.

The precise sets of labels, registers and stacks can be inferred from the program. Hence
if the alphabet is fixed, the machine can be identified with theprogram itself.

The syntaxlbl : if (test) then goto lbl 0 can be used as a shorthand for
lbl : if (test) then goto lbl 0 else goto next (lbl ). Similarly, we can ab-
breviateif true then goto lbl as goto lbl , that is an unconditional jump to a
given label. What kind of tests can be used is not specified here. Of course, tests must be
computables (for obvious reasons) in constant time and space (so that they do not play an
important part when dealing with complexity properties). Comparisons between letters of
the alphabet (e.g.≤ if they are integers) are typical tests that can be used.

If the alphabet contains a single letter, then the registersare useless and the stacks can
be seen as unary numbers. The machine then becomes an usual counter machine [Shep-
herdson and Sturgis 1963].

Example2.2. The following program reverses a list in stackl and put the result in stack
l′. It uses registera to store intermediate letters. The empty stack is denoted[].

0 : if l = [] then goto end ; 3 : goto 0;
1 : a := pop (l); end : end ;
2 : push (a, l′);

2.2 Semantics

Definition 2.3 (Stores). A store is a functionσ assigning a symbol (letter of the al-
phabet) to each register and a finite string inΣ∗ to each stack. Store update is denoted
σ{x← v}.

Definition 2.4 (States). Let p be a stack program. Astateof p is a coupleθ = 〈IP , σ〉
where theInstruction PointerIP is a label andσ is a store. LetΘ be set of all states,Θ∗

(Θω) be the set of finite (infinite) sequences of states andΘ∗ω be the union of both.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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i = ι(IP ) = r := op(r1, · · · , rk) σ′ = σ{r← JopK(σ(r1), . . . , σ(rk))}

p ⊢ 〈IP , σ〉
i
→〈next (IP ), σ′〉

ι(IP ) = if (test) then goto lbl 1 else goto lbl 2 (test) is true

p ⊢ 〈IP , σ〉
(test)true→ 〈lbl 1, σ〉

ι(IP ) = if (test) then goto lbl 1 else goto lbl 2 (test) is false

p ⊢ 〈IP , σ〉
(test)false→ 〈lbl 2, σ〉

i = ι(IP ) = r := pop (stk ) σ(stk ) = λ.w σ′ = σ{r← λ, stk ← w}

p ⊢ 〈IP , σ〉
i
→〈next (IP ), σ′〉

i = ι(IP ) = r := pop(stk ) σ(stk ) = ǫ

p ⊢ 〈IP , σ〉
i
→⊥

i = ι(IP ) = push (r, stk ) σ′ = σ{stk ← σ(r).σ(stk )}

p ⊢ 〈IP , σ〉
i
→〈next (IP ), σ′〉

Fig. 1. Small steps semantics

Definition 2.5 (Executions). The operational semantics of Figure 1 defines a relation2

p ⊢ θ
i
→θ′.

An executionof a programp is a sequence (finite or not)p ⊢ θ0
i1→θ1

i2→ . . .
in→θn . . .

An infinite execution is said to benon-terminating. A finite execution isterminating. If
the program admits no infinite execution, then it isuniformly terminating.

We use⊥ to denote runtime error. We may also allow operators to return⊥ if we want to
allow operators generating errors. It is important to notice that⊥ is not a state, and hence,
will not be considered when quantifying over all states.

If the instruction is not specified, we will write simplyp ⊢ θ → θ′ and use
+
→,

∗
→ for the

transitive and reflexive-transitive closures.

Definition 2.6 (Traces). The trace of an executionp ⊢ θ0
i1→θ1

i2→ . . .
in→θn . . . is the

instructions sequencei1 . . . in . . .

Definition 2.7 (Length). Let θ = 〈IP , σ〉 be a state. Itslength |θ| is the sum of the
number of elements in each stack3. That is:

|θ| =
∑

stk ∈S

|stk |

2Notice that the labeli on the edge is technically not an instruction since for testswe also keep the information
of which branch is taken.
3Hence, it should more formally be|〈IP , σ〉| =

P

stk i∈S
|σ(stk i)| . Since explicitly mentioning the store

everywhere would be quite unreadable, we usestk i instead ofσ(stk i) and, similarly,r instead ofσ(r), when
the context is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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Length is the usual notion of space. Since there is a fixed number of registers and each
can only store a finite number of different values, the space need to store all registers is
always bounded. So, we do not take registers into account while computing space usage.

The notion of length allows to define usual time and space complexity classes.

Definition 2.8 (Running time, running space). The time usageof a finite execution is
the number of states in it. Therunning timeof a program is an increasing functionf such
that the time usage of each execution is bounded byf(|θ|) whereθ is the first state of the
execution.

Thespace usageof a finite execution is the maximum length of a state in it. Therunning
spaceof a program is an increasing functionf such that the space usage of each execution
is bounded byf(|θ|) whereθ is the first state of the execution.

Definition 2.9 (Complexity). Letf : N→ N be an increasing function. The classT (f)
is the set of functions which can be computed by a program whose running time is bounded
by f . The classS(f) is the set of function which can be computed by a program whose
running space is bounded byf .

As usual, PTIME denotes the set of all functions computable in polynomial time, that is
the union ofT (P ) for all polynomialsP and so on.

If we want to define classes such as LOGSPACE, then we must, as usual, use some
read-only stacks which can only bepoped but notpush ed and who play no role when
computing the length of a state.

2.3 Turing Machines

Stack machines are Turing complete. We quickly describe here the straightforward way to
simulate a Turing machine by a stack machine.

Simulating a TM with a single tape and alphabetΣ can be done with a stack machine
with the alphabetΣ

⋃
Q (whereQ is the set of states of the TM), two stacks and two reg-

isters. The two stacks and the first register will encode the tape in an usual way (one stack,
reversed, for the left-hand side, the register for the scanned symbol and the other stack for
the right-hand side). Another register will contain the current state of the automaton.

At each step, the program will go through a sequence of tests on the state and scanned
symbol in order to find the right set of instructions to perform and after that jump back to
the beginning of the program. There will be at mostq×m such tests whereq is the number
of states of the TM andm the number of symbols in the alphabet. Then, simulation of a
step is quite easily done by modifying the “scanned symbol” register and then simulating
movement.

Simulating movement first has to check that the correct stackis not empty,push a
“blank symbol” on it if necessary and thenpush the scanned symbol on one stack and
pop the other stack onto it.

Each step of the TM is simulated in a constant number of steps of the stack machine
(depending only on the TM). So that the time complexity of thestack machine will be
the same as the time complexity of the TM (up to a multiplicative constant). Similarly, at
any step of the simulation, the length of the configuration ofthe stack machine will be the
number of non-blank or scanned symbols on the tape (minus onebecause one symbol is
stored into a register). So the space complexity will be the same.
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Fig. 2. Sequences of states, executions and admissible sequences

3. A TASTE OF RCG

This section describes the idea behind Resource Control Graphs in order to get a better
grip on the formal definitions later on.

3.1 Admissible sequences

Consider an execution of a program. It can be described as a sequence of states. Clearly,
not all sequences of states describe an execution. So we havea set of executions,Υ, which
is a subset of the set of all sequences of states (finite or infinite), Θ∗ω.

The undecidability results mean that given a program it is impossible to say if the set of
executions,Υ, andΘω, the set of infinite sequences of states, are disjoint. So, the idea here
is to find a setA of admissiblesequences, which is a superset of the set of all executions,
and whose intersection withΘω can be computed. If this intersection is empty, thena
fortiori , there are no infinite executions of the program, but if the intersection is not empty,
then we cannot decide if this is due to some non-terminating execution of the program or
to some of the sequences added for the sake of the analysis. This means that depending
on the machine considered and the wayA is build, we can be in three different situations
as depicted in Figure 2. We buildA ⊃ Υ such thatA

⋂
Θω is decidable. If it is empty,

then the program uniformly terminates; otherwise, we cannot say anything. Of course, the
undecidability theorem means that if we requireA to be recursive (or at least recursively
separable fromΘω), then there will necessarily be some programs for which thesituation
will be the one in the middle (in Figure 2), that is we falsely suppose that the program does
not uniformly terminate.

One convenient way to represent all the possible executions(and only these), is to build a
state-transition graph. This is a directed graph where each vertex is a state of the program
and there is an edge between two vertices if and only if it is possible to go from one state
to the other with a single step of the operational semantics.Of course, since there are
infinitely many different stores, there are infinitely many possible states and the graph is
infinite.

3.2 The folding trick

Using the state-transition graph to represent executions is not convenient since handling an
infinite graph can be tedious. To circumvent this, we must look into states and decompose
them.

A state is actually a couple of one label and one store. The label corresponds to the
control of the program while the store representsmemory. A first try to get ride of the
infinite state-transition graph is then to only consider thecontrol part of each state.

Thus, there will only be finitely many different nodes in the graph (since there are only
finitely many different labels). By identifying all states bearing the same label, it becomes

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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end 1

0

2

3

l= [] l 6= []

pop

push

goto 0

Fig. 3. CFG of the reverse program.

possible to “fold” the infinite state-transition graph intoa finite graph, called theControl
Flow Graph(CFG) of the program. The CFG is an usual tool for program analyses and
transformations and can directly be built from the program.

Definition 3.1 (Control Flow Graph). Let p be a program. ItsControl Flow Graph
(CFG) is a directed graphG = (S, A) where:

—S = L. There is one vertex for each label.

—If ι(lbl ) = if (test) then goto lbl 1 else goto lbl 2 then there is one
edge fromlbl to lbl 1 labelled (test)true and one fromlbl to lbl 2 labelled (test)false.

—If ι(lbl ) = end then there is no edge going out oflbl .

—Otherwise, there is one edge fromlbl to next (lbl ) labelledι(lbl ).

Vertices and edges are named after, respectively, the labelor instruction4 they represent.
No distinction is made between the vertex and the label or theedge and the instruction as
long as the context is clear.

Example3.2. The CFG of the reverse program is displayed on Figure 3.

With state-transition graphs, there was a one-to-one correspondence between executions
of the program and (maximal) paths in the graph. This is no longer true with Control Flow
Graphs. Now, to each execution corresponds a path (finite or infinite) in the CFG. The
converse, however, is not true. There are paths in the CFG that correspond to no execution.

Let P be the set of paths in the CFG.P is a regular language over the alphabet of
the edges (see Lemma 5.9), henceP is recursive. Since we can associate a path to each
execution, we can say thatP is a superset ofΥ.

This leads to a first try at building a set of admissible sequences by choosingA = P .
However, as soon as the graph contains loops,P will contain infinite sequences. So this

is quite a poor try at building an admissible set of sequences, corresponding exactly to the
trivial analysis “A program without loop uniformly terminates”.

In order to do better, we need to plug back the memory into the CFG.

4Again, since the two branches of tests are separated, some edges do not correspond exactly to an instruction of
the program. We will nonetheless continue to call these “instructions”.
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3.3 Walks

So, in order to take memory into account but still keep the CFG, we will not consider
vertices any more but states again. Clearly, each state is associated to a vertex of the CFG.
Moreover to each instructioni, we can associate a functionJiK such that for all statesθ, θ′

such thatp ⊢ θ = 〈IP , σ〉
i
→〈IP ′, σ′〉 = θ′, we haveσ′ = JiK(σ).

So, instead of considering paths in the graph, we can now consider walks. Walks are
sequences of states following a path where each new store is computed according to the
semantics functionJiK of the edge just followed.

The only case where the CFG has out-degree greater than1 is for tests. In order to
prevent the wrong branch to be taken, the semantics functionJ(test)trueK can be a partial
function only defined for stores where the test is true (and conversely for the false branch
of tests).

But if we do this exactly that way, then there will be a bijection between the executions
and the walks and everything will stay undecidable.

So the idea at this point is to keep both branches of the test possible, that is more or less
replacing a deterministic test by a non-deterministic choice between the two outcomes.
This leads to a set of walks bigger than the set of executions but, hopefully, recursively
separable from the set of infinite sequences of states.

4. MONITORING SPACE USAGE

In order to illustrate the ideas of previous Section, we introduce here the notion of Resource
Control Graph for the specific case of monitoring space usage. In Section 7, this notion
will be fully generalised to define Resource Control Graphs.

4.1 Space Resource Control Graphs

Definition 4.1 (Weight). For each instructioni, we define aweightki as follows:

—The weight of any instruction that is neitherpush norpop is 0.

—The weight of apush instruction is+1.

—The weight of apop instruction is−1.

PROPOSITION 4.2. For all statesθ such thatp ⊢ θ
i
→θ′, we have|θ′| = |θ|+ ki.

It is important here that bothθ andθ′ are states. Indeed, this means that when an error
occurs (⊥), we remove all constraints.

Definition 4.3 (Space Resource Control Graph). Let p be a program. Its Space Re-
source Control Graph (Space-RCG) is a weighted directed graphG such that:

—G is the Control Flow Graph ofp.

—For each edgei, the weightω(i) is ki.

Definition 4.4 (Configurations, walks). A configurationis a coupleθ = (s, v) where
s ∈ S is a vertex andv ∈ Z is thevaluation. A configuration isadmissibleif and only if
v ∈ N.

A walk is a sequence (finite or not) of configurations(s0, v0)
a1→ . . .

an→(sn, vn)
an+1

→ . . .

such thats0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for all i > 0, vi = vi−1 + ω(ai). A walk is
admissibleif all configurations in it are admissible.
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Definition 4.5 (Traces). The trace of a walk is the sequence of all edges followed by
the walk, in order.

PROPOSITION 4.6. Letp be a program,G be its Space-RCG andp ⊢ θ1 = 〈IP1, σ1〉 →
. . .→ θn = 〈IPn, σn〉 be an execution with tracet, then there is an admissible walk inG,
(IP1, |θ1|)→ . . .→ (IPn, |θn|), with the same tracet.

PROOF. By construction of the Space-RCG and induction on the length of the execu-
tion.

4.2 Characterisation of Space usage

THEOREM 4.7. Let f be a total functionN → N. Let p be a program andG be its
Space-RCG.

p ∈ S(f) if and only if for each stateθ0 = 〈IP0, σ0〉 and each executionp ⊢ θ0
∗
→θn, the

trace of the execution is also the trace of an admissible walk(IP0, |θ0|) → (IP1, i1) →
. . .→ (IPn, in) and for eachk, ik ≤ f(|θ0|).

PROOF. Proposition 4.6 tells us thatik = |θk|. Then, both implications hold by defini-
tion of space usage.

Definition 4.8 (Resource awareness). A Space-RCG isf -resource awareif for any
walk (s0, v0)

∗
→(sn, vn), vn ≤ f(v0).

COROLLARY 4.9. Let f : N → N be a total function,p be a program andG be its
Space-RCG.

If G is f -resource aware, thenp ∈ S(f).

Here, the converse is not true because the Space-RCG can haveadmissible walks with
uncontrolled valuations which do not correspond to any realexecution.

4.3 Non Size Increasingness

The study of Non Size Increasing (NSI) functions was introduce by Hofmann [1999]. For-
mer syntactical restrictions for PTIME, such as the safe recurrence of Bellantoni and Cook
[1992], forbid to iterate a function because this can yield to super-polynomial growth.
However, this prevents from using perfectly regular algorithms such as the insertion sort
where the insertion function is iterated. The idea is then that iterating functionswho do not
increase the size of datais harmless.

In order to detect these functions, Hofmann uses a typed functional programming lan-
guage. A special type,3, is added. There are no constructors for this type, meaning
that the only normal forms of type3 are variables. It can be seen as the type of pointers
to free memory. Constructors of other types now require one or more3. Typically, the
usualcons for lists requires a3 in addition to the data and the list and will then be typed
cons : 3×α×L(α)→ L(α). When building a list, the3 must be a variable (no closed
term of type3), similar to a pointer to a free cell in memory where the list can be built.

Whenever a list is destroyed, the3 in thecons is freed (in a variable) and can thus be
later reused to build another list. By ensuring a linear typediscipline, one can be sure that
no3 is ever duplicated. Then, any program that can be typed with this type system can be
computed in a NSI way,e.g.be compiled intoCwithout anymalloc instruction.

Example4.10. Here is the insertion sort “the NSI-way”. Notice how the3s freed by
the pattern matching are then reused when the resulting listis built. With usual chained
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lists in C (struct with a value and a pointer to next cell), this corresponds to the idea
of reusing the same pointers over and over rather than actually freeing memory at pattern
matching before reallocating it afterwards.

insert : 3× α× List (α)→ List (α)

insert (d, a, nil)→cons (d, a, nil)

insert (d, a, cons (d′, b, l))→if a < b

thencons (d, a, cons (d′, b, l))

elsecons (d′, b, insert (d, a, nil))

sort : List (α)→ List (α)

sort (nil)→nil

sort (cons (d, a, l))→insert (d, a, sort (l))

With Space RCG, valuations in a walk play the same role as Hofmann’s diamonds (3).
The higher the value, the more diamonds are needed in the current configuration.push
has positive weight, meaning that it uses diamonds butpop has negative weight, meaning
that it releases diamonds for later use.

Definition 4.11(Non Size Increasing). A program isNon Size Increasing(NSI) if its
space usage is bounded byλx.x + α for some constantα.

NSI is the class of functions which can be computed by Non SizeIncreasing programs.
That is

⋃
α S(λx.x + α).

PROPOSITION 4.12. Let p be a program andG be its Space-RCG. IfG is λx.x + α-
resource aware for some constantα, thenp is NSI.

PROOF. This is a direct consequence of Theorem 4.7.

THEOREM 4.13. Letp be a program andG be its Space-RCG.G is λx.x+α-resource
aware (for someα) if and only if it contains no cycle of strictly positive weight.

PROOF. If there is no cycle of strictly positive weight, then letα be the maximum weight
of any path inG. Since there is no cycle of strictly positive weight, it is well-defined.
Consider a walk(s0, v0)

∗
→(sn, vn) in G. Sinceα is the maximum weight of a path, we

havevn ≤ v0 + α. Hence,G is λx.x + α-resource aware.
Conversely, if there is a cycle of strictly positive weight,the it can be followed infinitely

many time and provides an admissible walk with unbounded valuations.

Building the Space-RCG can be done in linear time in the size of the program. Finding
the maximum weight of a path can be done in polynomial time in the size of the graph
(so in the size of the program) with Bellman-Ford’s algorithm ([Cormen et al. 1990] chap-
ter 25.5). So we can detect NSI programs and find the constantα in polynomial time in
the size of the program.

Example4.14. The Space-RCG of the reverse program (from Example 2.2) is dis-
played on Figure 4. Since it contains no cycle of strictly positive weight, the program
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end 1

0

2

3

0 0

−1

+1

0

Fig. 4. Space-RCG of the reverse program.

is Non Size Increasing. Moreover, since the maximum weight of any path is0, it can be
computed in spaceλx.x, that is the constantα is 0 for this program.

This result, however, lacks an intensionality statement (how much of all NSI programs
are caught?) or even an extensional completeness one (does there exist functions in NSI
that are not captured by such a program?) Of course, the class(of functions) NSI is unde-
cidable and the class of allprogramswhich are Non Size Increasing is also undecidable.
This means that intensionality statements are hard to achieve. However, we can reach an
extensional completeness one.

Without loss of generality, we consider here that in the initial configuration of a TM, the
tape consists in only blank symbols except for aconsecutivesequence of symbols which
areall non-blank. That is, we do not allow input tape to have the shapex ⊔ y wherex and
y are non-blank symbols and⊔ is the blank symbol. This allows to detect the end of input
as the first blank symbol. The head is assumed to scan the leftmost non-blank symbol at
the beginning of computation.

PROPOSITION 4.15 (NORMALISING TMS). LetM be a NSI Turing Machine running
in spaceλx.x + α. There exists a TM̃M , computing the same function, running in space
λx.x + α + 2, proceeding in2 phases:

(1) Firstly, M̃ writes2 # andα B on blank squares of its tape, where both# andB are
new symbols.

(2) Secondly,̃M never scans a blank symbol again.

PROOF. M̃ starts by going one square left and writing# there. Then it goes to the end
of the input, writeα B after it (sinceα is fixed forM and does not depend on the input,
this can be done) and finally another#. Then, it goes back to the beginning of the input
(the symbol immediately after the#) and goes into the second phase.

In the second phase,̃M simulatesM . However,# are never overwritten. WheneverM
request to write over a#, the whole content of the tape is shifted one square left (or right)
and simulation ofM resumes where it stopped. SinceM is NSI, the simulation can be
done entirely between the two#.

Of course, this simulation is rather costly from a time pointof view, but since we are
only concerned with space here, that does not matter. Noticealso that such a normalisation
could be made for a TM running in spacef(x) for any computable functionf . However, in
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Fig. 5. Space-RCG of the simulation of a normalised NSI Turing machine.

that case the simulation would require an additional tape tocomputef(x) from the input
and then allocate sufficiently many new squares. This would be quite tricky to do and
require control over the space used to computef(x). . .

THEOREM 4.16 (EXTENSIONAL COMPLETENESS). Let M be a NSI TM,M̃ be the
corresponding normalised machine andp̃ be the program simulating̃M according to the
simulation of Section 2.3. Let̃G be the Space-RCG of̃p.

G̃ contains no cycle of strictly positive weight.

PROOF. During the second phase of the simulation ofM , M̃ never scan a blank symbol.
Hence, there is no need topush new (blank) symbols on any of the stacks. While moving
the head, eachpush on one stack is immediately followed by apop on the other stack,
thus yielding only paths of weight0.

During the first phase of the simulation,p starts by adding a symbol on a stack (a blank
symbol immediately erased by#, or alternatively directly a# with a slightly smarter
simulation). Then it loops to find the end of the input. Duringthis loop, eachpush is also
followed by apop , thus creating only cycles of weight0. Then it addsα +1 new symbols
(B and#), but sinceα does not depend on the input, this can be done byα + 1 separate
push , thus creating no cycles. And lastly it goes back to the startof the input, again each
push is followed immediately by apop . Figure 5 shows how the Space-RCG ofp̃ looks
like.

This result means that our characterisation of NSI is extensionally complete. Each
function in NSI can be computed by a program which fits into thecharacterisation (that
is, whose Space-RCG isλx.x + α-resource aware). Of course, intentional completeness
(capturing all NSI programs) is far from reached (but is unreachable with a decidable al-
gorithm).

4.4 Linear Space

L INSPACE seems to be closely related to NSI. Indeed, LINSPACE functions can be com-
puted in spaceλx.βx + α and so NSI is a special case of LINSPACE with β = 1. So we
want to adapt our result to detect linear space usage.

The idea is quite easy: since we are allowed to usedβ time more space than what is
initially allocated, it is sufficient to consider that everytime some of the initial data is
freed,β “tokens” (3) are released and can later be used to controlβ different allocations.
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In order to do so, the most convenient way is to design certainstacks of the machine (or
certain tapes of a TM) asinput stacksand the others must be initially empty. Then, apop
operation over an input stack would have weight−β instead of simply−1 to account for
this linear factor. However, doing so we must be careful thatnewly allocated memory (that
is, furtherpush ) will only be counted as1 when freed again (to avoid a cycle of freeing
one slot, allocatingβ, freeing theseβ slots and reallocatingβ2 and so on). In order to do
so, we simply require that the input stacks are read-only in the sense that it is not possible
to perform apush operation on them.

Notice that any program can be turned into such kind of program by having twice as
many stacks (one input and one work for each) and starting by copying all the input stacks
into the corresponding working stacks and then only dealingwith the working stacks.

With these programs, the invariant will not be the length of states, but something slightly
more complicated, namelyβ times the length of input stacks plus the length of work stacks.
We will call this measuresize. Globally, we will use size to denote some kind of measure
on states that is used by the RCG for analysis. The terminology is close from the one of the
Size Change Termination [Lee et al. 2001] where values are assumed to have some (well-
founded) “size ordering” which is not specified and not necessarily related to the actual
space usage of the data. Typically, termination of a programworking over positive integers
can be proved using the usual ordering onN as size ordering, even if the integers are all32
bits integers, thus taking exactly the same space in memory.

Definition 4.17(Extended stack machines). An extended stack machineis a stack ma-
chine with the following modification:

There are two disjoint sets of stacks,Si is the set ofinput stacksandSw is the set
of working stacks. There are two instructionspop i andpop w depending on whether an
input or working stack is considered but only onepush = push w instruction, that is it is
impossible topush anything on an input stack.

The β-sizeof a state isβ times the length of input stacks plus the length of working
stacks, that is:

||θ||β = β
∑

stk i∈Si

|stk i|+
∑

stk w∈Sw

|stk w|

Theweightof pop i is −β, the weight ofpopw is −1, the weight ofpush is +1. the
weight of other instructions is0.

Theβ-Space RCG is build as the Space-RCG: the underlying graph isthe control flow
graph and the weight of each edge is the weight of the corresponding instruction.

Proposition 4.6 becomes:

PROPOSITION 4.18. Let p be a program,Gβ be its β-Space RCG andp ⊢ θ1 =
〈IP1, σ1〉 → . . . → θn = 〈IPn, σn〉 be an execution with tracet, then there is an ad-
missible walk(IP1, ||θ1||β)→ . . .→ (IPn, ||θn||β) with the same tracet.

Then, adapting Theorem 4.7 and Theorem 4.13, we have:

PROPOSITION 4.19. Letp be a program andGβ be itsβ-Space RCG. IfGβ is λx.x +
α-resource aware for some constantα, thenS(p) ≤ λx.βx + α .

THEOREM 4.20. Let p be a program andGβ be itsβ-Space RCG.Gβ is λx.x + α-
resource aware (for someα) if and only if it contains no cycle of strictly positive weight.
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Fig. 6. β-Space RCG of the double-reverse program.

COROLLARY 4.21. Let p be a program. If there existsβ such that itsβ-Space RCG
contains no cycle of strictly positive weight, thenp is in L INSPACE.

This can be checked in NPTIME sinceβ is polynomially bounded in the size of the
program.

For LINSPACE also, the normalisation process of Turing Machine can quiteeasily be
performed, typically by using an input (read-only) tape anda working tape where space
usage is counted. The first phase of the normalised TM consistin repeatedly copy one
symbol from the input tape to the right of the working tape andaddβ − 1 B at the left of
the working tape, then putting the two# on the working tape. This means that here also
the characterisation is extensionally complete: for each LINSPACE function, there exists
one program computing it that fits into the characterisation.

Example4.22. The following program “double-reverses” a list. It issimilar to the
reverse program but each element is present twice in the result. The list l is an input stack
(and hence cannot bepush ed) whilel′ is a working stack.

0 : if l = [] then goto end ; 3 : push w(a, l′);
1 : a := pop i(l); 4 : goto 0;
2 : push w(a, l′); end : end ;

Its β-Space RCG is displayed on Figure 6. Since it contains no cycle of strictly positive
weight if β ≥ 2, the program is in LINSPACE, more precisely, it can be computed in space
λx.2x

5. VECTOR ADDITION SYSTEM WITH STATES

This section describes Vectors Addition Systems with States (VASS). Resources Con-
trol Graphs are a generalisation of VASS. VASS are known to beequivalent to Petri
Nets [Reutenauer 1989].

5.1 Definitions

Definition 5.1 (VASS, configurations, walks). A Vector Addition System with Statesis
a directed graphG = (S, A) together with aweighting functionω : A→ Z

k wherek is a
fixed integer.
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A configurationis a coupleθ = (s, v) wheres ∈ S is a vertex andv ∈ Z
k is the

valuation. A configuration isadmissibleif and only if v ∈ N
k.

A walk is a sequence (finite or not) of configurations(s0, v0)
a1→ . . .

an→(sn, vn) such that
s0

a1→s1
a2→ . . .

an→sn and for all i > 0, vi = vi−1 + ω(ai). A walk is admissibleif all
configurations in it are admissible.

We say that patha1 . . . an is theunderlying pathof the walk and the walkfollows this
path. Similarly,G is theunderlying graphfor the VASS.

As for graphs and paths, we will writeθ → θ′ if there exists an edgea such thatθ
a
→θ′

and
+
→,

∗
→ for the closures.

Definition 5.2 (Weight of a path). Let V be a VASS anda1 . . . an be a path in it. The
weight of edges is extended to paths canonically:ω(a1 . . . an) =

∑
ω(ai). This means

thatω is a morphism between(A, ·) (the free monoid generated by the edges) and(Zk, +).

LEMMA 5.3. LetV be a VASS anda1 . . . an be a finite path in it. There exists a valu-
ationv0 such that for0 ≤ i ≤ n, v0 + ω(a1 . . . ai) ∈ N

k.

This means that every finite path is the underlying path of an admissible walk.

PROOF. Because the path is finite, thejth component ofω(a1 . . . ai) is bounded from
below by someαj (of course, this bound is not necessarily reached with the same i for
all components, but nonetheless such a bound exists for eachcomponent separately). By
puttingβj = max(0,−αj) (that is0 if αj is positive), thenv0 = (β1, · · · , βk) verifies the
property.

LEMMA 5.4. Let (s0, v0) → . . . → (sn, vn) be an admissible walk in a VASS. Then,
for all v′0 ≥ v0 (component-wise comparison),(s0, v

′
0)→ . . .→ (sn, v′n) is an admissible

walk (following the same path).

PROOF. By monotonicity of the addition.

Definition 5.5 (Uniform termination). A VASS is said to beuniformly terminatingif it
admits no infinite admissible walk. That is, every walk is either finite or reaches a non-
admissible configuration.

THEOREM 5.6. A VASS isnot uniformly terminating if and only if there exists a cycle
whose weight is inNk (that is, is non-negative with respect to each component).

PROOF. If such a cycle exists, starting and ending at vertexs, then by Lemma 5.3 there
existsv0 such that the walk starting at(s, v0) and following it is admissible. After follow-
ing the cycle once, the configuration(s, v1) is reached. Since the weight of the cycle is
non-negative,v1 ≥ v0. Then, by Lemma 5.4 the walk can follow the cycle one more time,
reaching(s, v2), and still be admissible. By iterating this process, it is possible to build an
infinite admissible walk.

Conversely, let(s0, v0) → . . . → (sn, vn) → . . . be an infinite admissible walk. Since
there are only finitely many vertices, there exists at least one vertexs′ appearing infinitely
many times in it. Let(s′l, v

′
l) be the occurrences of the corresponding configurations in the

walk. Since the component-wise order over vectors ofN
k is a well partial order, there exists

i, j such thatv′i ≤ v′j . The cycle followed betweens′i ands′j has a positive weight.
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5.2 Decidability of the uniform termination

Definition 5.7 (Linear parts, semi-linear parts). Let(M, +) be a commutative monoid.
A linear partof M is a subset of the formv + V ∗ wherev ∈M andV is a finite subset of
M . That is, ifV = {v1, · · · , vp}, a linear part can be expressed as:

{
v +

i=p∑

i=1

nivi|ni ∈ N

}

A semi-linear partof M is a finite union of linear parts.

LEMMA 5.8. In a commutative monoid, rational parts are exactly the semi-linear parts.

Recall that rational parts are build from+, union and Kleene’s star∗. When dealing with
words (that is the free monoid generated by a finite alphabet), + is word concatenation (not
commutative) and so rational parts are exactly the regular languages.

PROOF. Semi-linear parts are expressed as rational parts.
Conversely, it is sufficient to show that the set of semi-linear parts contains all finite parts

and is closed by union, sum and∗. The hard point being the closure under∗ which is a
consequence of commutativity. It holds because(v+V ∗)∗ = (v+({v}

⋃
V )∗)

⋃
{0} (the

key idea being that(a(b∗))∗ = a∗b∗ in a commutative monoid). See [Reutenauer 1989]
(Proposition 3.5) for details.

LEMMA 5.9. The set of cycles in a graph is a rational part (of the free monoid gener-
ated by the edges).

PROOF. Consider the graph as an automaton with each edge labelled by a separate label.
The set of paths between two given vertices is a regular language (accepted by the automa-
ton with the proper input and accepting nodes). So is the set of cycles as finite union of
regular languages.

COROLLARY 5.10. The set of weights of cycles in a VASS is a semi-linear part ofZ
k.

PROOF. Since the weighting functionω is a morphism between(A, ·) and(Zk, +), it
preserves rational parts. Hence, the set of weights of cycles is a rational part ofZk. Since
+ is commutative, it is also a semi-linear part.

Notice that the proofs are constructive. Hence the semi-linear part can effectively be
built.

THEOREM 5.11. Uniform termination of VASS is decidable.

PROOF. By Theorem 5.6, a VASS isnot uniformly terminating if and only if there is a
cycle whose weight is inNk. Since the set of weights of cycles is a semi-linear part ofZ

k,
it is sufficient to be able to decide whether a linear part ofZ

k intersectsNk (and try this for
each linear part of the union).

Let U = {u1, · · · , up} andu + U∗ be a linear part ofZk. It intersectsNk if and only if
there existsn1, · · · , np ∈ N such thatu +

∑
niui ≥ 0.

This can be solved in polynomial time using usual linear programming techniques.

Since VASS and Petri nets are equivalent, this also shows that uniform termination of
Petri nets is decidable. Without going through the equivalence, a direct and simpler proof
can be made for Petri nets. Such a proof can be found in [Moyen 2003], (theorem60, page
83).
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Fig. 7. Two VASS

Example5.12. Figure 7 displays two VASS. More formally, the first oneshould be
described as a graphG = (S, A) with:

—S = {a, b, c, d}

—A = {a
a1→b, a

a2→c, b
a3→c, c

a4→d, d
a5→a}

—ω(a1) = (0,−1, +1), ω(a2) = (−1, 0, 0), ω(a3) = (0, +1,−2), ω(a4) = (0, 0, +1),
ω(a5) = (0, 0,−1).

LetA = (((a1a3)|a2)a4a5)
∗ be a regular expression describing cycles froma toa. Then

the set of all cycles in these VASS is the language recognisedby the regular expression:

A|(a3a4a5Aa1)|(a4a5A(a1a3|a2))|(a5A(a1a3|a2)a4)

This corresponds to the semi-linear set{(a1a3a4a5), (a2a4a5)}
∗

The set of weights of cycles in the first VASS is obtained from the set of cycles by
applying the weighting function (which is a morphism). Thus, we obtain:

{(ω(a1)+ω(a3)+ω(a4)+ω(a5)), (ω(a2)+ω(a4)+ω(a5))}
∗ = {(−l, 0,−k)|k, l ∈ N}

Obviously, this set does not intersectsN
3 (apart from the trivial0 solution), hence the

VASS is uniformly terminating.
For the second VASS, we obtain the set{(3l−k, k−l, k−2l)|k, l,∈ N}. It intersectsN3,

for example withk = 2, l = 1, corresponding to the cycle(a1a3a4a5)
2(a2a4a5) whose

weight is(1, 1, 0). Hence, the VASS is not uniformly terminating.
However, any infinite walk starting from the configuration(a, (0, 14, 0)) is not admissi-

ble. Deciding whether a given configuration leads to an infinite admissible walk or not is a
different problem than uniform termination.

It is worth noticing that in the second case, the cycle detected isnot a simple cycle. So
the problem is different from the one of detecting simple cycles in graphs and requires a
specific solution.

5.3 VASS as Resource Control Graphs

Before the formal definition of Resource Control Graphs, we show here how VASS can be
used to build proofs of uniform termination of programs.

In the rest of this section, we consider the following size function:

||〈IP , σ〉|| = (|stk 1|, . . . , |stk s|)stk i∈S
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end 1

0

2

3

(0, 0) (0, 0)

(−1, 0)

(0,+1)

(0, 0)

Fig. 8. The Resource Control VASS for the reverse program

that is, the vector whose components are the length of the different stacks of a given pro-
gram. Moreover, we use(ei) to denote the canonical basis ofZ

k, that isei is the vector
whosejth component isδi,j .

Definition 5.13(Weights). To each instruction, we assign the followingweight:

—ω(r := pop (stk i)) = −ei

—ω(push (r, stk i)) = ei

—ω(i) = 0 for all other instructions.

Definition 5.14(Resource Control VASS). Let p be a program. ItsResource Control
VASSis a VASS whose underlying graph is the Control Flow Graph ofp and edgei has
weightω(i) as defined above.

PROPOSITION 5.15. Let p be a program andG be its Resource Control VASS. Ifθ0 =
〈IP0, σ0〉

∗
→〈IPn, σn〉 = θn is an execution ofp, then(IP0, ||θ0||)

∗
→(IPn, ||θn||) is an

admissible walk ofG with the same trace.

PROOF. By induction on the length of the execution. Notice that executions leading to
errors (⊥) are not taken into account here.

THEOREM 5.16. Let p be a program andG be its Resource Control VASS. IfG is
uniformly terminating, thenp is uniformly terminating.

PROOF. Otherwise, there would exist an infinitely long execution that can be mapped
onto an infinite admissible walk by the previous Proposition.

Since uniform termination of VASS is decidable, this allowsto decide uniform termi-
nation of a broad class of programs. Of course, the converse is not true since uniform
termination of programs is not decidable.

Example5.17. The Resource Control VASS of the reverse program is displayed on
Figure 8. Since it is uniformly terminating, so is the reverse program.

Weighted graphs, as used in Section 4 to prove Non-Size Increasingness of programs are
also a special case of VASS with only one dimension.
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6. RESOURCE SYSTEMS WITH STATES

Resource Systems with States (RSS) are a generalisation of VASS seen in the previous
Section. In VASS, the only information kept is a vector of integers, and only addition of
vectors can be performed. When modelling programs, this is not sufficient. Indeed, if
one wants to closely represent the memory of a stack machine,a vector is not sufficient.
Moreover, vector addition is not powerful enough to represent usual operations such as
copy of a variable (x := y).

Hence, we will now relax the constraints on valuations and weights and basically allow
valuations to be drawn from any set and weights to be any kind of functions (between
valuations). Notice that for VASS, the addition of a vectorv could be represented as the
functionλx.x + v.

In order to be a bit more general, we will even allow the sets ofvaluations to be different
for each vertex. This may seem strange, but a typical use of that is to have vectors with
different numbers of components as valuations (that is the set of valuations for vertexsi

would beZ
ki ) and matrix multiplications as weights (where the matriceshave the correct

number of rows and columns). Of course, it is always possibleto take the (disjoint) union
of these sets, but it usually clutters needlessly the notations. See Example 9.3 for more
details.

6.1 Graphs and States

Definition 6.1 (RSS, configurations, walks). A Resource System with States(RSS) is a
tuple(G, V, V +, W, ω) where

—G = (S, A) is a directed graph,S = {s1, · · · , sn} is the set of vertices andA =
{a1, · · · , am} is the set of edges.

—V1, · · · , Vn are the sets ofvaluations. V is the union of all of them.
—V +

i ⊂ Vi are the sets ofadmissible valuations. V + is the union of them.
—Wi,j : Vi → Vj are the sets ofweights. W is the union of them.

—ω : A→W is theweighting functionsuch thatω(a) ∈Wi,j if si
a
→sj .

When both the valuations and weights sets are clear, we will name the RSS after the un-
derlying graphG.

A configurationis a coupleθ = (s, v) wheres = si ∈ S is a vertex of the graph and
v ∈ Vi is a valuation. A configuration isadmissibleis v ∈ V +

i is admissible.

A walk is a sequence (finite or not) of configurations(s0, v0)
a1→ . . .

an→(sn, vn)
an+1

→ . . .

such thats0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for alli > 0, vi = ω(ai)(vi−1). A walk is admis-
sible if all configurations in it are admissible.

The walkfollowspathp which is called eitherunderlying pathor traceof the walk.

As earlier, we writeθ → θ′ if the relation holds for an unspecified edge and
+
→,

∗
→ for

the transitive and reflexive-transitive closures.

The idea behind having both valuations and admissible valuations is that this allowsV
to have some nice algebraic properties not shared byV +. Moreover, this also allows the set
of valuations to be the closure of the admissible valuationsunder the weighting functions,
thus removing the deadlock problem of reaching something that would not be a valuation
(and replacing it by the more semantical problem of detecting non admissible valuations).
Typically with VASS,V is Z

k, thus being a ring, andV + is N
k. Since weights can add
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any vector, with positive or negative components, to a valuation,V is the closure ofV + by
this operation. Moreover, VASS do not suffer from the deadlock problems that appear in
Petri nets (but this is done by introducing the problem of deciding if a walk is admissible).

Notice that either unions (forV , V + or W ) can be considered to be a disjoint union
without loss of generality.

Definition 6.2 (Weight of a path). LetG be a RSS. The weighting function can be canon-
ically extended over all paths inG by choosingω(ab) = ω(b) ◦ ω(a).

(W, ◦) is a magma. It is not a monoid because the identity is not unique. There is a finite
set of neutral elements, the identities over eachVi.

Notice that we do not actually need the wholeW . Only the part generated by the indi-
vidual weights of edges is necessary to handle a RSS. We will overload the notation and
call it W as well.

In practise, it is often more convenient to describeW as a set together with some right-
action onV . That is, there is an operation⊛ : V ×W → V such thatv⊛ω(a) = ω(a)(v).
In this case, the function composition becomes an internal law of W , # : W ×W → W
such thatω(a) #ω(b) = ω(b)◦ω(a). This turnsω in a morphism between(A, ·) and(W, #).

This notation is much more convenient when composing weights along a path. Indeed,
sinceω is a morphism,ω(ab) = ω(a) # ω(b), that is the weights are composed in the same
order as the edges along the path while using functional composition we hadω(ab) =
ω(b) ◦ω(a), needing to reverse the order of edges along the path. Moreover, since weights
usually have some common shape,(W, #) is usually a well known algebraic structure.

Example6.3. For the VASS of previous Section, we haveVi = Z
k andV +

i = N
k for

all i, andω(ai) = λx.x + ui for some vectorui ∈ Z
k. Or, we could describe VASS by

saying thatV = W = Z
k, V + = N

k and⊛ = # = +.
The notation with⊛ and# is much more convenient, especially to handle easily weights

of paths such as done in the lemmas and theorems of the previous Section.
Moreover, the fact that weights (as functions) all have the same shape (namely,λx.x+α)

allows to identify each weight with the vectorα, thus giving a more convenient definition.

Of course, If we considerVi as objects andω ∈ W as arrows, we have a category.
Indeed, identity exists for eachVi and composition of two arrows is properly defined.

6.2 Properties of RSS

6.2.1 Order

Definition 6.4 (Ordered RSS). An ordered RSSis an RSSG = (G, V, V +, W, ω) to-
gether with a partial ordering≺ over valuations such that the restriction of≺ overV + is a
well partial order.

For VASS, the component-wise order on vectors of the same length is the well partial
order (overV + = N

k) that was used in the previous Section.

Definition 6.5 (Monotonicity, positivity). Let (G, V, V +, W, ω) be an ordered RSS. We
say that it ismonotonicif all weighting functionsω(ai) are increasing with respect to≺.
Since the composition of increasing functions is still increasing, the weighting function of
any path will be increasing.

We say that(G, V, V +, W, ω) is positiveif for eachv ∈ V + andv′ ∈ V , v ≺ v′ implies
v′ ∈ V +.
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VASS are both monotonic and positive. Monotonicity is the key of Lemma 5.4 while
positivity is implicitly used in the proof of Theorem 5.6 to say that the valuation reached
after one cycle is still admissible.

Definition 6.6 (Resource awareness). Let G be an ordered RSS andf : V → V be a
function.G is f -resource awareif for any walk (s0, v0)

∗
→(sn, vn) we havevn � f(v0)

6.2.2 Uniform termination

Definition 6.7 (Uniform termination). Let G be a RSS.G is uniformly terminatingif
there is no infinite admissible walk inG.

Notice that if a RSS is not uniformly terminating, then thereexists an infinite admissble
walk that stay entirely within one strongly connected component of the underlying graph.
In the following, when dealing with infinite walks we supposewithout loss of generality
that the RSS is strongly connected.

Theorem 5.6 can be generalised to RSS:

THEOREM 6.8. If G doesnot uniformly terminates, then there is an admissible cycle

(s, v)
+
→(s, u) with v � u. If G is monotonic and positive, then this is an equivalence.

PROOF. If an infinite admissible walk exists, then we can extract from it an infinite se-
quence of admissible configurations(s′, vk) since there is only a finite number of vertices.
Since the order is a well partial order onV +, there exists ai < j with vi � vj , thus leading
to the cycle.

If the cycle exists, then it is sufficient to follow it infinitely many time to have an infinite
admissible walk. Monotonicity is needed to ensure that every time one follows the cycle,
the valuation does indeed increase. Positivity is needed toensure that when going through
always increasing valuations one will never leaveV +.

PROPOSITION 6.9. LetG = (G, V, V +, W, ω) be a RSS.

(1) If V is finite, thenW is finite.
(2) If V is finite, then uniform termination ofG is decidable.
(3) If both V andW are enumerable, then it is semi-decidable to know ifG is not uni-

formly terminating.

PROOF.

(1) Because the set of functionsF(V, V ) is finite and containsW .
(2) Since bothV andW are finite, it is possible to computes all the valuesv ⊛ ω(a) and

check whether one is both increasing (with respect to≺) and corresponds to a cycle.
(3) By enumeratingV ×W .

Corollary 5.10 can be generalised:

PROPOSITION 6.10. If (W, #) is commutative, then the set of weights of cycles of a RSS
is semi-linear.

This will allow to easily find candidates for a generalisation of Theorem 5.11 if the set
of “positive” weights is easily expressible (as it was the case for VASS). Among other, if it
is itself semi-linear, then uniform termination is decidable (intersection of two semi-linear
parts being decidable).
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6.3 Equational versus constraint based approach

Up to now, the only weights we have considered are functions,meaning that ifs
a
→s′, for

each valuationv there is only one valuationv′ such that(s, v)
a
→(s′, v′). Sometimes, it

is more convenient to have several possible results becauseapproximations done on the
values leads to a lost of knowledge. In this case, the weightsconsidered will be relations
rather than functions and we requirev′ ∈ ω̂(a)(v) rather thanv′ = ω(a)(v).

6.3.1 Constraints RSS

Definition 6.11(RSS, configurations, walks).
A Constraints RSSis a tuple(G, V, V +, W, ω) where

—G = (S, A) is a directed graph.

—V +
i ⊂ Vi are the sets of admissible valuations and valuations.

—Wi,j : Vi → P(Vj) are the sets ofweights.

—ω̂ : A→W is theweighting functionsuch that̂ω(a) ∈Wi,j if si
a
→sj .

Configurations and admissible configurations are defined as earlier.
A walk is a sequence (finite or not) of configurations(s0, v0)

a1→ . . .
an→(sn, vn)

an+1

→ . . .

such thats0
a1→s1

a2→ . . .
an→sn

an+1

→ . . . and for alli > 0, vi ∈ ω̂(ai)(vi−1). A walk is admis-
sible if all configurations in it are admissible.

It is important to notice that even if weighting functions return sets (that is, they are
relations rather than functions), each walk has to choose one element from this set as a
new valuation. That is, we do not consider configurations with sets as valuations, but
rather introduce some kind of non-determinism in the RSS. The main use for this will be
when some valuations are in no way related to the previous ones and can be anything (e.g.
if a value is provided via some external mechanism such as ascanf instruction).

Definition 6.12(Weight of a path). Let G be a RSS. The weighting function can be
canonically extended over all paths inG by choosingω̂(ab)(x) = ω̂(b)(ω̂(a)(x)) =
{ω̂(b)(y)|y ∈ ω̂(a)(x)}.

As earlier, uniform termination means that there exists no infinite admissible walk. How-
ever, monotonicity becomesx � y ⇒ ∀x′ ∈ ω̂(x), ∃y′ ∈ ω̂(y)/x′ � y′.

Then, Theorem 6.8 becomes:

THEOREM 6.13. Let G be a positive monotonic Constraints RSS.G is not uniformly

terminating if and only if there is an admissible cycle(s, v0)
+
→(s, v1) such thatv0 � v1.

PROOF. If an admissible infinite walk exists, then we can extract from it an admissible
cycle in exactly the same way as in Theorem 6.8.

Conversely, if an admissible cyclec exists, let(s, v0)
a
→(s′, v′0)

∗
→(s, v1) be the firsts and

last configurations when following the cycle. By hypothesis, v0 � v1.
Then, there existsv′1 ∈ ω̂(a)(v1) such that(s, v1)

a
→(s′, v′1) andv′0 � v′1. By positivity

of the VASS,v′1 is still admissible.
By iterating this process, we build the admissible cycle(s, v1)

c
→(s, v2) with v1 � v2.

Then, this can be donead infinitumthus leading to an admissible infinite walk.
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Ack

(−1,+1)

(−1,+∞) (0,−1)

Fig. 9. Constraints VASS for Ackermann’s function

6.3.2 Constraints VASS.
Let us show how this concept apply to VASS and why it can be useful when studying

programs.

Definition 6.14(Constraints VASS). A Constraints VASSis a directed graphG = (S, A)

together with aweighting functionω : A→ Z
k

wherek is a fixed integer.
A configurationis a coupleθ = (s, v) wheres ∈ S andv ∈ Z

k. It is admissibleif
v ∈ N

k.
A walk is a sequence (finite or not) of configurations(s0, v0)

a1→ . . .
an→(sn, vn) such that

s0
a1→s1

a2→ . . .
an→sn and for all i > 0, vi ≤ vi−1 + ω(ai). A walk is admissibleif all

configurations in it are admissible.

To express a Constraints VASS as a Constraints RSS, we shouldconsider the weighting
functionω̂(a) : Z

k → P(Zk) such that̂ω(a)(v) = {v′|v′ ≤ v + ω(a)}. Then, the relation
between valuations in a walk will be the generalvi ∈ ω̂(ai)(vi−1). Since, all constraints
have the same shape, we can express this in a more readable way. Constraints VASS are
positive and monotonic. When there is no+∞ in the weights, it is always “best” to choose
the greatest possible valuation, that is use the (regular) VASS with the same underlying
graph and weighting function.

Example6.15. Consider the following functional program computingAckermann’s
function:

Ack (0, n)→n + 1

Ack (m + 1, 0)→Ack (m, 1)

Ack (m + 1, n + 1)→Ack (m, Ack (m + 1, n))

For functional programs, an equivalent of the CFG can be thecalls graph. there is one
vertex for each function symbol (here only one) and one edge for each call (here,3). Since
there are two positive integers in the program, it is naturalto choose(m, n) as valuation.

However, when considering the outer call in the last line thesecond argument isAck (m+
1, n) which cannot be related to the parametern in any easy way. So, using a regular VASS,
this call would not be representable, while,e.g., the call in the second line corresponds to
adding the vector(−1, +1) to the valuation.

With a Constraints VASS, we can represent this last call. Indeed, not knowing anything
on the result simply means that we can relax all constraints on it which will be represented
by the vector(−1, +∞). The constraints VASS for Ackermann’s function is displayed on
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Figure 9.
Since this Constraints VASS is uniformly terminating, so isAckermann’s function.
This both illustrates why Constraints VASS can be useful as well as hints how to apply

the ideas behind RCG to functional programs.

7. RESOURCES CONTROL GRAPHS

Instead of the weighted graphs or VASS used before, we will now use any RSS to model
programs. A set of admissible valuations will be given to each state and weighting func-
tions simulate the corresponding instruction.

Since we can now have any approximation of the memory (the stores) for valuations,
we cannot simply use the length of a state. Instead, we consider given asize functionthat
associates to each state (or to each store) some size. The size function is unspecified in
general. Of course, when using RCG to model programs, the first thing to do is usually to
determine a suitable size function (according to the studied property). Notice that depend-
ing on the size function, weights of instructions can or cannot be defined properly (that is,
some sizes are either too restrictive or too loose and no function can accurately reproduce
on the size the effect of a given instruction on actual data).In this case, the RCG cannot be
defined and another size function has to be considered.

7.1 Resources Control Graphs

Definition 7.1 (RCG). Let p be a program andG be its control flow graph. LetV + be
a set of admissible valuations (and≺ be a well partial order on it). Let|| • || : Θ → V +

be a size function from states to valuations andV +
lbl be the image by|| • || of all states

〈lbl , σ〉 for all storesσ.

For eachi edge ofG, letω(i) be a function such that for all statesθ verifying p ⊢ θ
i
→θ′,

ω(i)(||θ||) = ||θ′||. Let V be the closure ofV + by all the weighting functionsω(i).
TheResource Control Graph(RCG) ofp is the RSS build onG with weightsω(i) for

each edgei, valuationsV and admissible valuationsV + (ordered by≺). V +
lbl being the

admissible valuations for vertexlbl .

As stated before, we will writev ⊛ ω(i) instead ofω(i)(v) andω(i) # ω(j) instead of
ω(j) ◦ ω(i).

LEMMA 7.2. Let p be a program,G be its RCG andp ⊢ θ0 → . . . → θn be an
execution with tracet. There exists an admissible walk(s0, ||θ0||) → . . . → (sn, ||θn||)
with the same tracet.

THEOREM 7.3. Let p be a program andG be its RCG. IfG is uniformly terminating,
thenp is also uniformly terminating.

Example7.4. A Space-RCG as defined in Section 4 is a special case of general RCG.
In this case,||θ|| = |θ|, this leads toV +

lbl = V + = N for each labellbl . Similarly,
ω(i) = λx.x + ki with ki as in definition 4.1. Sincek ∈ Z, the closure ofV + by the
weighting functions isV = Z.

In this case, resource awareness of the Space-RCG (orβ-Space-RCG) guarantees a re-
source bound on the program execution.

Example7.5. For a better representation of programs, the size can bethe vector where
each component is the length of a stack:||〈IP , σ〉|| = (|stk 1|, . . . , |stk s|)stk i∈S . This
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corresponds exactly to what is done with the Resource Control VASS of Section 5.3. As
shown, this allows to decide uniform termination of severalprograms.

This termination analysis is close to the Size Change Termination [Lee et al. 2001] in
the sense that the size of data is monitored and a well ordering on it ensure that it can-
not decrease forever. It is sufficient to prove uniform termination of most common lists
programs such as reversing a list or insertion sort. It is also, in some way, slightly more
efficient than the original SCT because it can take into account not only the decreasing in
size, but also the increasing. In this way, a program that would loop on something like
pop pop push (2 pops and1 push ) is not caught by SCT but is proved uniformly ter-
minating with this analysis. In this sense, it is closer to the SCT with difference constraints
(δSCT) [Ben-Amram 2006].

This method is in PTIME, as we have shown, uniform termination of VASS is in PTIME.
The original SCT, as well asδSCT, is PSPACE-complete. However, this simple method
does not allow for data duplication or copy. Lee, Jones and Ben-Amram already claimed
in the original SCT that there exists a poly-time algorithm for SCT dealing with “programs
whose size-change graphs have in- and out-degrees bounded by 1”. It is easy to check that
VASS can only model such kind of programs accurately5, hence the poly-time bound is
not a big surprise.

Moreover, this method has a fixed definition of size and hence will not detect termination
of programs whose termination argument does not depend on the decrease of the length of
a list. Among other, any program working solely on integers (represented as letters of the
alphabet) will not be analysed correctly.

Example7.6. However, even this representation can be improved. Typically, using
Resource Control VASS it is impossible to detect anything happening to registers. If we
have a suitable size function|| • || : Σ → N for registers6, we can choose||〈IP , σ〉|| =
(||r1||, . . . , ||rr||)ri∈R. In this case, depending on the operators, weight could be either
vectors addition or matrices multiplication (to allow the copy of a register).

Remark7.7. Taking exactly the image of|| • || as the set of admissible valuationsV +

might be a bit too harsh. Indeed, this set might have any shapeand is probably not really
easy to handle. So, it is sometimes more convenient to consider a superset of it in order
to easily decide if a valuation is admissible or not. The convex hull (in V ) of the image
of || • || is typically such a superset. Notice that it is very similar to the idea of trying to
find an admissible set of sequences of states which will be more manageable than the set of
executions. Here, we try to find an admissible set of valuations which is more manageable
than the actual set of sizes. For more details on how to build and manage such a superset,
see the work of Avery [2006].

Remark7.8. The size function is not specified and may depend on the property one
wants to study. We do not address here the problem of finding a suitable size function for a
given program. As hinted, it might be a simple vector of functions over stacks and registers
but it can also be a more complicated function such as a linearcombination or so. Hence,
with a proper size function, one is able not only to check thata given register (seen as an

5And cannot even model all those programs due to the restriction on copying variables.
6Note that thesizefunction used here is in no way related to thelengthof a state. It plays no role when computing
the space usage of a state and may also be seen as an ordering over the alphabet.
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integer) is always positive but also that a given register isalways bigger that another one.
This is similar to Avery’s functional inequalities [2006].

Example7.9. Let us consider the following program, working on integers (that is the
alphabet is the setunsigned of 32 bits positive integers):

0 : i := 0; 4 : if i < n then goto 2;
1 : if i ≥ n then goto 5; 5 : i := i + 1;
2 : i := i + 1; end : end ;
3 : some instructions modifying neitheri nor n

This is simply a loopfor(i=0;i<n;i++) (in a C-like syntax). If we consider a size
function that simply takes the vector of the registers, thatis ||〈IP , σ〉|| = (i, n), then the
loop will have weight(+1, 0) and thus lead to a cycle of positive weight. However, a
clever analysis of the program could detect that inside the loop we must necessarily have
n− i > 0 and thus suggest the size||〈IP , σ〉|| = n− i. Using this, the loop has weight−1
and we can prove uniform termination of the program.

As stated, we do not address here the problem of finding a correct size function for
a given program. This problem is undecidable in general. Butinvariants can often be
automatically generated, usually by looking at the pre- andpost-conditions of the loops.

Notice also that this inequality must hold only in the loop. Indeed, at label5 or after,
we may havei > n. Hence using this size function everywhere would cause troubles since
then||(5, σ)|| will not be admissible.

Having different sets of valuations for each labels, that isa size function operating
differently on each label, can solve this problem. By choosing ||〈IP , σ〉|| = (i, n) for
IP = 0, 1, 5, end and||〈IP , σ〉|| = (i, n, n − i) otherwise, we can ensure that the “natu-
ral” sets of admissible valuations (N

2 andN
3) indeed correspond to the image of the size

function (or at least a manageable superset of it).
In this case, of course, we need the weight between labels1 and2 to take into account

the apparition of a new component in the valuation. Here, this can be done using a matrix
multiplication since the new component in the valuation is alinear combination of the
existing ones. See Example 9.3 for the complete construction of the RCG.

7.2 Constraints RCG

Constraints RSS can also be used instead of RSS to model programs and build RCG as was
done with the Ackermann’s function of Example 6.15. In that case, the relation required
between weights and sizes is:

for all statesθ verifying p ⊢ θ
i
→θ′, ||θ′|| ∈ ω̂(i)(||θ||).

Then, the simulation Lemma and uniform termination Theoremare still true:

LEMMA 7.10. Let p be a program,G be its Constraints RCG andp ⊢ θ0 → . . . →
θn be an execution with tracet. There exists an admissible walk(s0, ||θ0||) → . . . →
(sn, ||θn||) with the same tracet.

PROOF. Because||θi|| belongs tôω(a)(θi−1) and can thus always be chosen as the new
valuation.

THEOREM 7.11. Letp be a program andG be its RCG. IfG is uniformly terminating,
thenp is also uniformly terminating.
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8. δ-SIZE CHANGE TERMINATION

We consider here the(Z, min, +) semi-ring and denotesmin as⊕ and+ as⊗. These
operations are canonically extended to define multiplication of matrices fromM(Z).

8.1 Matrices and graphs

Definition 8.1 (Sign matrix). Let M be a matrix ofM(Z). Its sign matrix, M is the
matrix such thatM i,j is +∞ (resp.0,−1, +1) if Mi,j is +∞ (resp.0, < 0, > 0).

Definition 8.2 (Sign-idempotence). Let M be a square matrix ofM(Z). It is sign-
idempotentif M = M ⊗M , that isM has the same sign asM2.

Matrix M is strongly sign idempotentif for all k > 0, M = Mk, that isM has the same
sign as all its powers.

Remark8.3. Sign idempotence and strong sign idempotence are not equivalent as shown
by the following matrix (remember that we’re working in the(Z, min, +) semi-ring and
not in the usual(Z, +,×) ring):

M =




1 −5 −1
6 1 2
2 −1 1


 M2 =




1 −4 −3
4 1 3
3 −3 1


 M3 =



−1 −4 −2
5 −1 3
3 −2 −1




Definition 8.4 (Constraint graph). Let M be a square matrix of dimensionn. Its con-
straint graphis a weighted directed graphG such that:

—There aren verticesXi, 1 ≤ i ≤ n plus an extra vertexY .
—If Mi,j 6= +∞, there is an edge of weightMi,j betweenXi andXj .
—There is an edge of weight0 betweenY andXi, for all i.

The coefficientMk
i,j is the minimum of the weight of all paths of lengthk betweenXi

andXj in the constraint graph ofM .

LEMMA 8.5. Let M be a square matrix. There existsk ∈ N such thatMk is strongly
sign idempotent.

PROOF. This means that there existsk such that for alla ≥ 1 and for alli, j, all Mak
i,j

have the same sign. We will reason here on the constraint graph for M . Notice that since
there is no edge going to vertexY , it plays no role in the following.

Firstly, if for all i, j, there existski,j such that for alla ≥ 1, all Maki,j

i,j have the same
sign, then it is sufficient to choosek = Πki,j to have the property.

Then, consider theki,i. If there is a cycle of negative weight fromXi to itself, letl be its
length, by choosingki,i = l we can ensure that the sign ofMal

i,i will be negative. If there
is no cycle of negative weight but one of weight0 (resp. only cycles of weight> 0), then
we can again chooseki,i = l (the length of such a cycle) and be sure thatMal

i,i is 0 (resp.
strictly positive). If there are no cycles fromXi to itself, thenMa

i,i is +∞ for all a.
Then, if there is no path betweenXi andXj , thenMa

i,j is +∞ for all a andki,j = 1.
Next, we consider simple paths betweenXi andXj and simple cycles adjacent to them

(that is fromX to X where vertexX belongs to the simple path,X may beXi or Xj).

(1) If for all simple paths betweenXi andXj there are no cycle adjacent to it, then for
any l ≥ l0 greater than the length of the longest path, there is no path of lengthl between
Xi andXj , we can chooseki,j = l0 andM

aki,j

i,j = +∞ for all a.
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(2) If there is one cycle of lengthl and strictly negative weight adjacent to a simple path
of lengthbl, then forl′ ≥ l0, there exists a path of lengthαl′ and negative weight. We can
chooseki,j = αl0 andM

aki,j

i,j < 0.

(3) Similarly if the cycle has weight0 and the path has weight< 0.

(4) If for all simple paths betweenXi andXj the length of the simple cycles touching
the path have a greatest common divisord, then there can only be path of lengthαd + β
whereβ is the length of the simple path. Hence, ifβ is not a multiple ofd, there are no
paths of lengthαd and choosingki,j = d leads toMaki,j

i,j = +∞. Notice that we consider
here each simple path separately since cycles atXi or Xj are also considered. Notice also
that this case encompass the case where there is only one cycle. If, however,β is a multiple
of d (among other, ifd = 1, then there exists paths of lengthαd whose weight is discussed
below.

In the last case, the path of a given length can be found by using Bézout coefficients on
the length of the different cycles involved. Notice that if the length is large enough, it is
possible to go arbitrarily more times through one cycle thanthrough all the others.

Lastly, for the last case, look at the weight for the paths findearlier. In each case, we
consider a simple path and the simple cycles next to it. The length of the paths considered
here being always a multiple ofd, we consider without loss of generality thatd = 1.

(1) If there is at least one cycle of negative weight, then ifl ≥ l0 is large enough, a path
of lengthl has negative weight andki,j = l0.

(2) If all cycles have weight0, then if l ≥ l0, there exists a path of the same weight as
the simple path and we can chooseki,j = l0.

(3) If there are cycles of weight0 whose lengths are coprime (and no cycle of strictly
negative weight), then again it is possible to have a path of the same weight as the simple
path.

(4) If all cycles have weight> 1, then for l ≥ l0 the path has positive weight and
ki,j = l0.

(5) If the simple path has weight> 0 and there are no cycles of weight< 0, then any
path will have weight> 0.

(6) If the simple path has weight0, there are no cycles of weight< 0 and the gcd of the
length of the cycles of weight0 is g > 1, then any path of length multiple ofg must go
through one cycle of weight> 0 and has strictly positive weight.

(7) Last but not least, if the simple path has weightw < 0 and lengthl, there is a cycle
of weight0 and lengthl0 (or l0 is the gcd of the length of the cycles of weight0) and one
cycle of weight> 0 and lengthl1.
(a) If w + w1 > 0 then the same reasoning yields to path going through the cycle of
positive weight and with positive weight.
(b) If w + l0w1 < 0, then since it is always possible to go through the second loop less
thanl0 times (otherwise, gol1 time through the first cycle), it is always possible to build
paths of strictly negative weight.
(c) Otherwise, letα be the smallest integer such thatαl1 + l is a multiple ofl0 (it always
exists becausel0 andl1 are coprime). Then paths of lengthβl0 > αl1 + l must go through
the second cycle at leastα times and will all have the same weight.
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So, for all verticesXi andXj, it is possible to findki,j such that the (minimum) weights
of paths of lengthaki,j betweenXi andXj have the same sign.

LEMMA 8.6. The systemX ≤ X ⊗M has a solution if and only if there is no strictly
negative coefficient in the diagonal ofMk, for all k. In that case, it admits a non-negative
solution.

PROOF. The matrix inequation corresponds to the set of inequationsXj ≤ Xi + Mi,j.
If there is no strictly negative coefficient in the diagonal of Mk, that means that the

constraints graphG has no cycle of strictly negative weight. In this case, we canchoose
for Xi the value of the shortest path to reach it fromY . This is well defined because
there is no cycle of strictly negative weight and provides a solution for the system because
Xj ≤ Xi + Mi,j by definition of shortest paths.

Conversely, if there is a path of strictly negative weight, then it is easy to see that by
adding the inequations corresponding to the edges in this path one will eventually reach an
inequationXi < Xi and the system has no solution.

If there is a solution, thenX+(1, . . . , 1) is also a solution. Hence, there exists a solution
where all values are positive.

8.2 Size Change Termination

We explain here how to build RCG in order to perform the same kind of analysis as the
Size-Change Termination with difference constraints (δSCT) of Ben-Amram [2006]. Here,
we use matrices rather than Size Change Graphs thus following the work of Abel and Al-
tenkirch [2002] where similar SCT matrices are used (but over a 3-valued set, thus mim-
icking the initial SCT and not the work with difference constraints).

In this whole section, we consider a fixed programp, and for each labellbl a in it a fixed
integerka. LetVa = Z

ka andV +
a = N

ka be sets of (admissible) valuations associated with
each label and we consider given a size function|| • || such that for each labellbl a and
for each storeσ, ||〈lbl a, σ〉|| ∈ V +

a .

Definition 8.7 (Size Change Matrix). Let i be an instruction inp corresponding to an
edge betweenlbl a andlbl b in G. TheSize Change Matrix(SCT matrix) ofi is a matrix

M (i) ofMka,kb
(Z) such that for all statesθa with p ⊢ θa

i
→θb, ||θb|| ≤ ||θa|| ⊗M (i).

This means that if||θa|| = (x1, · · · , xka
) and||θb|| = (y1, · · · , ykb

), we have for each

j: yj ≤ mink{xk + M
(i)
k,j} where the coefficients ofM (i) can be any integer or+∞.

Definition 8.8 (Size Change RCG). TheSize Change RCG(SCT-RCG) ofp is the Con-
straints RCG forp build with admissible valuationsNka , and valuationsZka for vertex
lbl a. The weight for edgei is such that̂ω(i)(v) = {v′|v′ ≤ v⊗M (i)} whereM (i) is the
SCT matrix fori.

As for Constraints VASS, the common shape of constraints allows to use a weighting
functionω(i) = M (i) instead of the weighting relation̂ω and ask along a walk thatvi ≤
ω(ai)(vi−1) rather thanvi ∈ ω̂(ai)(vi−1).

The uniform termination Theorem for Constraints RCG (Theorem 7.11) tells us that if
the SCT-RCG is uniformly terminating then so isp.

SCT-RCG are both monotonic and positive, so it will be possible to apply Theorem 6.13.
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Fig. 10. A Size Change Termination RCG.

THEOREM 8.9. Let G be the SCT-RCG ofp. It is uniformly terminating if and only if
for all cyclesc, if the corresponding matrixM (c) is strongly sign idempotent, then it has a
strictly negative coefficient on the diagonal. That is:

G uniformly terminating⇔ ∀ cyclec, (M (c) strongly sign idempotent⇒ ∃i/M (c)
i,i < 0)

PROOF. First, consider that there exists a cyclec such that its weightM is strongly
sign idempotent and all coefficients on the diagonal are≥ 0. SinceM is strongly sign
idempotent, non of its power has a strictly negative coefficient on the diagonal. Then,
by Lemma 8.6, the systemX ≥ X ⊗ M admits an admissible solution. Hence, there
exists an admissible cycle(s, X)

c
→(s, X⊗M) and by Theorem 6.13, the SCT-RCG is not

uniformly terminating.
Conversely, suppose that the SCT-RCG is not uniformly terminating. In this case, by

Theorem 6.13, there exists a cycle of weightM is such thatX ≤ X ⊗M has a solution.
Hence, by Lemma 8.6, no power ofM has a strictly negative coefficient on the diagonal.
However, by Lemma 8.5, there existsk such thatMk is strongly sign idempotent. SoMk

is strongly sign idempotent but has no strictly negative coefficient on the diagonal.

This condition is undecidable in general. However, if the matrices arefan-in free, that
is in each column of each SCT matrix, there is at most one non-+∞ coefficient, then the
problem is PSPACE-complete. See [Ben-Amram 2006] for details. Notice that inthis paper,
Ben-Amram uses mostly SCT graphs and not SCT matrices. The translation from one to
the other is, however, quite obvious. Similarly we present here directly a condition on the
cycles of the SCT-RCG without introducing the multipaths. This is close to the “graph
algorithm” introduced in [Lee et al. 2001].

The simple Size Change Principle of Lee et al. [2001] can be seen as an approximation of
theδSCT principle where only labels in{−1, 0, +∞} are used. Since this only gives way
to finitely many different SCT matrices, this is decidable ingeneral (PSPACE-complete).

Example8.10. Consider the following program (adapted from [Lee et al. 2001] fifth
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example):

0 : if y = 0 then goto end ; 5 : goto 0;
1 : if x = 0 then goto 6; 6 : x := y;
2 : a := x; 7 : y := y− 1;
3 : x := y; 8 : goto 0;
4 : y := a− 1; end : end ;

It can be proved terminating by choosing the size function||θ|| = (x, y, a). With this size,
its SCT-RCG is displayed on Figure 10. For convenience reasons, instructions2 − 4, as
well as6 − 7 have been represented as a single edge (with a single matrix). This allows
to completely forget registera and so use(x, y) as size. Similarly, the other SCT matri-
ces are not depicted since they are the identity matrix. Since the SCT-RCG is uniformly
terminating, so is the program.

9. MORE ON MATRICES

9.1 Matrices Multiplication System with States

If we use vectors as valuations and (usual) matrices multiplication as weights, we can
define Matrices Multiplication Systems with States (MMSS) in a way similar to VASS.
Admissible valuations will still be the ones inNk but k is not fixed for the RSS and may
depend on the current vertex.

Definition 9.1 (Matrices Multiplication System with States). A Matrices Multiplication
System with States(MMSS) is a RSSG = (G, V, V +, W, ω) where:

—Vi = Z
ki , V +

i = N
ki for some constantki (depending on the vertexsi).

—Weights are matrices with integer coefficients.

—# = ⊛ = ×.

Using this, it is quite easy to model copy instructions of counters machines (x := y)
simply by using the correct permutation matrix as a weight. To represent increment or
decrement of a counter, an operation which was quite naturalwith VASS, we now need a
small trick known ashomogeneous coordinates7. Simply represent then counters as an+1
components vector whose first component is always1. Then, increment or decrement of a
variable just becomes a linear combination of components ofthe vector which can perfectly
be done with matrices multiplication. For example, here is how one can model the copy
(x := y) and the increment (x := x + 1).

(1, x, y)×




1 0 0
0 0 0
0 1 1


 = (1, y, y) (1, x, y)×




1 1 0
0 1 0
0 0 1


 = (1, x + 1, y)

Example9.2. Using homogeneous coordinates, the program of Example8.10 has the
MMSS depicted on Figure 11. Here, matrices multiplication is done on the usual(Z, +,×)
ring and not on the(Z, min, +) semi-ring as for SCT-RCG.

7Homogeneous coordinates were originally introduced by A. F. Möbius. There are used, among other, in com-
puter graphics for exactly the same purposes as we do here, that is representing a translation by means of matrix
multiplication.
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Fig. 11. MMSS as a RCG.

Example9.3. Similarly, use of homogeneous coordinates allows to build a MMSS to
prove uniform termination of the program of Example 7.9. It is depicted on the left part of
Figure 12 (where label3 has been omitted). The interesting thing here is the use of vectors
of different lengths at different labels, thus allowing to add the constraintn − i ≥ 0 only
inside the loop. This example shows both the use of disjoint sets of valuations and how to
work with the functional inequalities of Avery [2006].

But there is even more. VASS are able to forbid ax 6= 0 branch of a test being taken in an
admissible walk ifx is 0 simply by decrementingx and then incrementing it immediately
after. The net effect is null but ifx is 0, the intermediate valuation is not admissible.
This can still be done with MMSS. VASS, like Petri nets, are however not able to test if a
component is empty, that is forbid thex = 0 branch of a test to be taken ifx is not0.

With MMSS, we can perform this test to0. It is indeed sufficient to multiply the correct
component of the valuation by−1. If it was different from0, then the resulting valuation
will not be admissible.

So, using these tricks it is possible to perfectly model a counters machine by a MMSS:
each execution of the machine will correspond to exactly oneadmissible walk in the MMSS
and each admissible walk in the MMSS will correspond to exactly one execution of the
machine.

This leads to the following theorem:

THEOREM 9.4. Uniform termination of MMSS is not decidable.

Example9.5. Consider the following program, performing addition in unary (that is,
repeatedly decrementingx and incrementingy until x is 0).

0 : if x = 0 then goto end ; 3 : goto 0;
1 : x := x− 1; end : end ;
2 : y := y + 1;

Right side of Figure 12 depicts a MMSS for this program such that there is a one-to-one
correspondence between executions of the program and admissible walks of the MMSS.
The size used is(1, x, y), the1 being here because of homogeneous coordinates. Notice
that we need to add an intermediate label for thex 6= 0 branch of the test in order to
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(1, i,n)

(1, 0,n)

(1, i,n,n− i)

(1, i,n,n− i)

(1, i,n)

(1, i,n)




1 0 0
0 0 0
0 0 1







1 0 0 0
0 1 0 −1
0 0 1 1







1 1 0 −1
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0
0 1 0
0 0 1
0 0 0







1 1 0
0 1 0
0 0 1




0

1

2

3

end 


1 −1 0
0 1 0
0 0 1







1 0 1
0 1 0
0 0 1







1 0 0
0 −1 0
0 0 1







1 −1 0
0 1 0
0 0 1







1 1 0
0 1 0
0 0 1




Fig. 12. MMSS for loop and unary addition.

generate the temporary valuation containingx − 1, only used to force admissible walks
with x = 0 to take the other branch.

Since such a construction can be done for any counter machine(the unary addition
program uses all possible instructions for counter machines) and since counter machines
are Turing-complete, this shows why uniform termination ofMMSS is not decidable in
general.

This simulation of programs by matrices multiplications rises a surprising question. In-
deed, matrices multiplications are only able to perform linear operations on data. While
obviously some programs can perform non-linear operations.

This apparent contradiction is solved when we think more closely on how RSS work.
Each walk in a MMSS corresponds to a matrix multiplication (becauseω is a morphism),
hence to a linear transformation on data. However, two different walks give rise to two
different matrices, hence two different linear transformations.

When simulating a program, each different data will go through a different (admissible)
walk in the MMSS. Hence, each different value will pass through a different linear trans-
formation. Of course, the other walks (that is, the other linear transformations) also exist
and are considered on this data when looking at the set of walks, but non-admissibility
allows to dismiss them and only keep one.

So, from a transformation point of view, we can look at MMSS asa set of linear trans-
formations and the admissibility mechanism selects the proper transformation to apply on
each piece of data.

For example, if we consider a program performing multiplication of two integersx and
y, it will likely be a loop onx, addingy to the result each time. The corresponding MMSS
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will have several paths (infinitely many) that can each be candidate for a walk once actual
data is provided. Different paths correspond to following the loop1, 2, 3, . . . , k, . . . times.
Then, the walk corresponding to each of these paths will perform the linear transformation
(1, x, y) 7→ (1, x− k, ky) representable by the matrix:




1 −k 0
0 1 0
0 0 k




However, when performing all these transformations on actual data, only those withk ≤ x
have an admissible result and only the one withk = x has all its intermediate valuations
admissible. So, the admissibility mechanism selects the right linear transformation to ap-
ply.

That means that when simulating a program computing a (non-linear) function by a
MMSS, the simulation actually consider the function as being piecewise linear, computes
the result of all the possible linear transformations implied and selects the one correspond-
ing to current data. In general, it is possible that each linear transformation is only valid
for a single value.

9.2 Tensors

Moreover, the study can go further. Indeed, using matrices of matrices (that is, tensors)
we can represent the adjacency graph of a MMSS (a matrix wherecomponent(i, j) is the
coefficient of the edge between verticesi andj). That is, a first order program can be rep-
resented as such kind of tensors. However, it would then be possible to uses these tensors
(and tensors multiplication) in order to study second-order programs. In turn, the second
order programs would probably be representable by a tensor (with more dimensions) and
so one.

This would lead to a tensor algebra representing high order programs.

Example9.6. Here is a tensor representing the MMSS of the unary addition. This is
simply the connectivity matrix of the graph where each edge is itself weighted by a matrix.




0




1 −1 0
0 1 0
0 0 1


 0 0 0




1 0 0
0 −1 0
0 0 1




0 0




1 1 0
0 1 0
0 0 1


 0 0 0

0 0 0




1 −1 0
0 1 0
0 0 1


 0 0

0 0 0 0




1 0 1
0 1 0
0 0 1


 0




1 0 0
0 1 0
0 0 1


 0 0 0 0 0

0 0 0 0 0 0
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9.3 Polynomial time

Another interesting approach of program analysis using matrices is the one done by Niggl
and Wunderlich [2006] and Kristiansen and Jones [2005]. Theprograms they study are
similar to our stack machines except that the (conditional)jump is replaced by a fixed
iteration structure (loop ) where the number of iterations is bounded by the length of a
given stack. It is quite easy to see that both models are very similar and can simulate one
another without major trouble.

Then, they assign to each basic instruction a matrix, calleda certificatewhich contains
information on how to polynomially bound the size of the registers (or stacks) after the
instruction by their size before executing the instruction. It appears that when sequencing
instructions, the certificate for the sequence turns out to be the product of the certificates
for each instruction. Certificates for loops are some kind ofmultiplicative closure of the
certificate for the body and certificate forif statements are the least upper bound of the
two branches.

Building the certificate of a program thus leads to a polynomial bound on the result
depending on the inputs which can then be turned into a polynomial bound on the running
time (depending on the shape of the loops).

So, these certificates can very well be expressed in a MMSS where the valuation would
give information on the size of registers (depending on the size of the inputs of the pro-
gram) and the weights of instructions will be these certificates. This will exactly be a
Resources Control Graph for the program. If the program is certified, then this RCG will
be polynomially resource aware.

10. CONCLUSION

We have introduced a new generic framework for studying programs. This framework is
highly adaptable via the size function and can thus study several properties of programs
with the same global tool. Analyses apparently quite different such as the study of Non
Size Increasing programs or the Size Change Termination canquite naturally be expressed
in terms of Resource Control Graphs, thus showing the adaptability of the tool.

Moreover, other analyses look like they can also be expressed in this way, thus giving
hopes for a truly generic tool to express and study programs properties such as termination
or complexity. It is even likely that high order could be studied that way, thus giving
insights for a better comprehension of high order complexity.

Theory of algorithms is not well established. This work is really on the study of pro-
grams and not of functions. Further works in this direction will shed some light on the very
nature of algorithms and hopefully give one day rise to a theoretical framework as solid
as our knowledge of functions. Here, the study of MMSS and thetensors multiplication
hints that a tensors algebra might be used as a mathematical background for a theory of
algorithms and must then be pursued.
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