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Resource Control Graphs

JEAN-YVES MOYEN
University of Paris 13

Resource Control Graphs can be seen as an abstract representation of programs. Each state of
the program is abstracted as its size, and each instruction is abstracted as the effects it has on
the size whenever it is executed. The Control Flow Graph of the programs gives indications on
how the instructions might be combined during an execution.

Termination proofs usually work by finding a decrease in some well-founded order. Here, the
sizes of states are ordered and such kind of decrease is also found. This allows to build termination
proofs similar to the ones in Size Change Termination.

But the size of states can also be used to represent the space used by the program at each

point. This leads to an alternate characterisation of the Non Size Increasing programs, that is the
ones that can compute without allocating new memory.

This new tool is able to encompass several existing analysis and similarities with other studies
hint that even more analysis might be expressable in this framework thus giving hopes for a generic
tool for studying programs.

Categories and Subject Descriptors: D.2.4 [Software engineering]: Software/Program Verification; F.2.2 [Anal-
ysis of algorithms and problem complexity]: Nonnumerical Algorithms and Problems—Computations on dis-
crete structures; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and reasoning about
Programs; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Abstraction, implicit complexity, non-size increasing, pro-

gram analysis, size change termination, termination

1. INTRODUCTION

1.1 Motivations

The goal of this study is an attempt to predict and control computational resources like
space or time, which are used during the execution of a program. For this, we introduce a
new tool calledResource Control Graphsand focus here on explaining how it can be used
for termination proofs and space complexity management.

We present a data flow analysis of the low-level language sketched by means of Resource
Control Graph, and we think that this is a generic concept from which several programs
properties could be checked.

The first problem we consider is the one of detecting programsable to compute within a
constant amount of space, that is without performing dynamic memory allocation. These
were dubbedNon Size Increasingby Hofmann [2000].

There are several approaches which are trying to solve this problem. The first protection
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2 · Jean-Yves Moyen

mechanism is by monitoring computations. However, if the monitor is compiled with the
program, it could crash unpredictably by memory leak. The second is the testing-based
approach, which is complementary to static analysis. Indeed, testing provides a lower
bound on the memory while static analysis gives an upper bound. The gap between both
bounds is of some value in practical. Lastly, the third approach is type checking done
by a bytecode verifier. In an untrusted environment (like embedded systems), the type
protection policy (Java or .Net) does not allow dynamic allocation. Actually, the former
approach relies on a high-level language, which captures and deals with memory allocation
features [Aspinall and Compagnoni 2003]. Our approach guarantees, and even provides,
a proof certificate of upper bound on space computation on a low-level language without
disallowing dynamic memory allocations.

The second problem that we study is termination of programs.This is done by closely
adapting ideas of Lee et al. [2001], Ben-Amram [2006] and Abel and Altenkirch [2002].
The intuition being that a program terminates whenever there is no more resources to con-
sume.

There are long term theoretical motivations. Indeed a lot ofworks have been done
in the last twenty years to provide syntactic characterisations of complexity classes,e.g.
by Bellantoni and Cook [1992] or Leivant and Marion [1993]. Those characterisations are
the bare bone of recent research on delineating broad classes of programs that run in some
amount of time or space, like Hofmann, but also Niggl and Wunderlich [2006], Amadio
et al. [2004], and Bonfante et al. [2004].

We believe that our Resource Control Graphs will be able to encompass several or even
all of these analysis and express them in a similar way. In this sense, Resource Control
Graphs are an attempt to build a generic tool for program analysis.

1.2 Coping with undecidability

All these theoretical frameworks share the common particularity of dealing with behaviours
of programs (like time and space complexity) and not only with the inputs/outputs relation
which only depends on the computed function.

Indeed, a given function can be computed by several programswith different behaviours
(in terms of complexity or other). Classical complexity theory deals with functions and
computesextensionalcomplexity. Here, we want to computeintensionalor implicit com-
plexity, that is try to understand why a given algorithm is more efficient than another to
compute the same function.

The study of extensional complexity quickly reaches the boundary of Rice’s theorem.
Any extensional property of programs is either trivial or undecidable. Intuition and empir-
ical results point out that intensional properties are evenharder to decide. Section 3 will
formalise this impression.

However, several very successful works do exist for studying both extensional properties
(like termination) or intensional ones (like time or space complexity). As these works pro-
vide decidable criteria, they must be either incomplete (reject a valid program) or unsound
(accept an invalid program). Of course, the choice is usually to ensure soundness: if the
program is accepted by the criterion then the property (termination, polynomial bound,. . . )
is guaranteed. This allows the criterion to be seen as a certificate in a proof carrying code
paradigm.

When studying intensional properties, two different kindsof approaches exist. The first
one consist of restricting the syntax of programs so that anyprogram written necessarily
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has the wanted property. This is in the line of the works on primitive recursive functions
where the recurrence schemata is restricted to only primitive recursion. This approach
gives many satisfactory results, such as the characterisations of PTIME by Cobham [1962]
or Bellantoni and Cook [1992], the works of Leivant and Marion on tiering and predicative
analysis [1993] or the works of Jones on CONS-free programs [2000]. On the logical side,
this leads to explicit management of resources in Linear Logic [Girard 1987].

All these characterisations usually have the very nice property ofextensional complete-
nessin the sense that,e.g., every polynomial time computable function can be computed
by a bounded recursive function (Cobham). Unfortunately, they’re usually very poor on the
intensional completeness, meaning that very few programs fit in the characterisation [Col-
son 1998] and programmers have to rewrite their programs in anon-natural way.

So, the motto of this first family of methods can be described as leaving the proof bur-
den to the programmer rather than to the analyser. If you can write a program with the
given syntax (which, in some cases, can be a real challenge),then certain properties are
guaranteed. The other family of methods will go in the other way. Let the programmer
write whatever he wants but the analysis is not guaranteed towork.

Since syntax is not hampered in these methods, decidabilityis generally achieved by
loosening the semantics during analysis. That is, one will considermorethat all the exe-
cutions a program can have. A trivial example of this idea would be “a program without
loop uniformly terminates”. The reason we consider loops asbad is because we assume it
is always possible to go through the loop infinitely many time. That is, the control of the
loop is completely forgotten by this “analysis”.

A more serious example of this kind of characterisation is the Size Change Termina-
tion [Lee et al. 2001]. The setFLOWω that is build during the analysis contains all
“well-formed call sequences”. Every execution of the program can be mapped to a well-
formed call sequence but several (most) of the call sequences do not correspond to any
execution of the program. Then, properties (termination) of call sequences inFLOWω

are necessarily shared by all execution of the program.
However, the methods sometimes fails – which is normal sinceit’s a decidable method

for partly solving an undecidable problem – becauseFLOWω does contain well formed
call sequences which correspond to no execution of the program but nonetheless do not
have the wanted property (i.e. are infinite).

This second kind of methods can thus be described as not meddling with the programmer
and let the whole proof burden lay on the analysis. Of course,the analysis being incom-
plete, one usually finds out that certain kinds of programs wont be analysed correctly and
have to be rewritten. But this restriction is donea prosterioriand nota priori and it can be
tricky to find what exactly causes the analysis to fail.

This work was greatly inspired by the Size Change Principle (see Section 9 for more on
this issue) and is so strongly intended to live within the second kind of analysis.

Section 3 deals with global decidability issues of properties of programs, establishing the
fact that the set of poly-time programs isΣ2-complete and Section 4 will describe the core
idea of Resource Control Graphs that can be summed up as finding a decidable (recursive)
superset of all the executions that still ensure a given property (such as termination or a
complexity bound). Then, Section 5 presents Vectors Addition Systems with States which
are generalised into Resource Systems with States in Section 6. They form the backbone
of the Resource Control graphs. Section 8 present the tool itself and explain how to build
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a Resource Control Graph for a program and how it can be used tostudy the program.
Sections 7 and 9 shows applications of RCG in detecting Non Size Increasing programs or
building termination proofs similar to the Size Change Termination principle.

2. STACKS MACHINES

2.1 Syntax

A stacks machine consist of a finite number ofregisters, each able to store a letter of an
alphabet, and a finite number ofstacks, that can be seen as lists of letters. Stacks can only
be modified by usualpush andpop operations, while registers can be modified by a given
set of operators each of them assumed to be computed in a single unit of time.

Definition 2.1 (Stacks machine). Stacks machines are defined by the following gram-
mar:

(Alphabet) Σ finite set of symbols
(Programs) p ::= lbl1 : i1; . . .lbln : in;
(Instructions) I ∋ i ::= if (test) then goto lbl0 else goto lbl1 |

r := pop(stk) |push(r,stk) |r := op(r1, · · · , rk) |end
(Labels) L ∋ lbl finite set of labels
(Registers) R ∋ r finite set of registers
(Stacks) S ∋ stk finite set of stacks
(Operators) O ∋ op finite set of operators

Each operator has a fixed arityk andn is an integer constant. The syntax of a program
induces a functionnext : L → L such thatnext(lbli) = lbli+1 and a mapping
ι : L → I such thatι(lblk) = ik. Thepop operation removes the top symbol of a stack
and put it in a register. Thepush operation copy the symbol in the register onto the top
of the stack. The if instruction giving control to eitherlbl0 or lbl1 depending on the
outcome of the test. Each operator is interpreted with respect to a given semantics function
JopK.

The precise sets of labels, registers and stacks can be infered from the program. Hence
if the alphabet is fixed, the machine can be identified with theprogram itself.

The syntaxif (test) then goto lbl0 can be used as a shorthand if the second
label is the next one. Similarly,gotolbl is a macro forif true then goto lbl,
that is an unconditional jump to a given label.

If the alphabet contains a single letter, then the registersare useless and the stacks can
be seen as unary numbers. The machine then becomes an usual counters machine [Shep-
herdson and Sturgis 1963].

Example2.2. The following program reverses a list in stackl and put the result in stack
l′. It uses registera to store intermediate letters. The empty stack is denoted[].

0 : if l = [] then goto end; 3 : goto 0;
1 : a := pop(l); end : end;
2 : push(a, l′);

2.2 Semantics

Definition 2.3 (Stores). A storeis a functionσ assigning to each register of a program
a symbol (letter of the alphabet) and to each stack a finite string in Σ∗. Store update is
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i = ι(IP) = r := op(r1, · · · , rk) σ′ = σ{r← JopK(σ(r1), . . . , σ(rk))}

p ⊢ 〈IP, σ〉
i
→〈next(IP), σ′〉

ι(IP) = if (test) then goto lbl1 else goto lbl2 (test) is true

p ⊢ 〈IP, σ〉
(test)true→ 〈lbl1, σ〉

ι(IP) = if (test) then goto lbl1 else goto lbl2 (test) is false

p ⊢ 〈IP, σ〉
(test)false→ 〈lbl2, σ〉

i = ι(IP) = r := pop(stk) σ(stk) = λ.w σ′ = σ{r← λ,stk← w}

p ⊢ 〈IP, σ〉
i
→〈next(IP), σ′〉

i = ι(IP) = r := pop(stk) σ(stk) = ǫ

p ⊢ 〈IP, σ〉
i
→⊥

i = ι(IP) = push(r, stk) σ′ = σ{stk← σ(r).σ(stk)}

p ⊢ 〈IP, σ〉
i
→〈next(IP), σ′〉

Fig. 1. Small steps semantics

denotedσ{x← v}.

Definition 2.4 (States). Let p be a stack program. Astateof p is a coupleθ = 〈IP, σ〉
where theInstruction PointerIP is a label andσ is a store. LetΘ be set of all states,Θ∗

(Θω) be the set of finite (infinite) sequences of states andΘ∗ω be the union of both.

Definition 2.5 (Executions). The operational semantics of Figure 1 defines a relation

p ⊢ θ
i
→θ′.

An executionof a programp is a sequence (finite or not)p ⊢ θ0

i1→θ1

i2→ . . .
in→θn . . .

An infinite execution is said to benon-terminating. A finite execution withn states in it
is terminating. If the program admits no infinite execution, then it isuniformly terminating.

We use⊥ to denote runtime error. We may also allow operators to return⊥ if we want
to allow operators to generate errors. It is important to notice that⊥ is not a state and hence
won’t be considered when quantifying over all states.

If the instruction is not specified, we will write simplyp ⊢ θ → θ′ and use
+
→,

∗
→ for the

transitive and reflexive-transitive closures.

Definition 2.6 (Traces). Let p ⊢ θ0

i1→θ1

i2→ . . .
in→θn . . . be an execution. Itstrace is the

sequence of all instructionsi1 . . . in . . .

Definition 2.7 (Length). Let θ = 〈IP, σ〉 be a state. Itslength |θ| is the sum of the
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number of elements in each stack1. That is:

|θ| =
∑

stk∈S

|stk|

Length is the usual notion of space. Since there is a fixed number of registers and each
can only store a bounded number of different values, the space need to actually store all
registers is always bounded. So, we do not take registers into account while computing
space usage.

The notion of length allows to define usual time and space complexity classes.

Definition 2.8 (Running time, running space). The time usageof a finite execution is
the number of states in it. Therunning timeof a program is an increasing functionf such
that the time usage of each execution starting atθ is bounded byf(|θ|).

Thespace usageof a finite execution is the maximum length of a state in it. Therunning
spaceof a program is an increasing functionf such that the space usage of each execution
starting atθ is bounded byf(|θ|).

Definition 2.9 (Complexity). Letf : N→ N be an increasing function. The classT (f)
is the set of functions which can be computed by a program whose running time is bounded
by f . The classS(f) is the set of function which can be computed by a program whose
running space is bounded byf .

As usual, PTIME denotes the set of all functions computable in polynomial time, that is
the union ofT (P ) for all polynomialsP and so on.

If we want to define classes such as LOGSPACE, then we must, as usual, use some
read only stacks which can only bepoped but notpushed and who play no role when
computing the length of a state.

2.3 Turing Machines

Stacks machines are Turing complete. We quickly describe here the straightforward way
to simulate a Turing machine by a stack machine.

Simulating a TM with a single tape and alphabetΣ can be done with a stack machine
with the alphabetΣ

⋃
Q (whereQ is the set of states of the TM), two stacks and two reg-

isters. The two stacks and the first register will encode the tape in an usual way (one stack,
reversed, for the left-hand side, the register for the scanned symbol and the other stack for
the right-hand side). Another register will contains the current state of the automaton.

At each step, the program will go through a sequence of tests on the state in order to
find the right set of instructions to perform and after that jump back to the beginning of the
program. There will be at mostq such tests whereq is the number of states of the TM (a
more clever binary search can reduce this tolog(q)). Then, simulation of a step is quite
easily done by modifying the “scanned symbol” register and then simulating movement.

Simulating movement first has to check that the correct stackis not empty,push a
“blank symbol” on it if necessary and thenpush the scanned symbol on one stack and
pop the other stack onto it.

1Hence, it should more formally be||〈IP, σ〉|| = (|σ(stk1)|, . . . , |σ(stks)|)stki∈S . Since explicitly men-
tioning the store everywhere would be quite unreadable, we usestki instead ofσ(stki) and, similarly,r instead
of σ(r), when the context is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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Each step of the TM is simulated in a constant number of steps of the stack machine
(depending only on the TM). So that the time complexity of thestack machine will be
the same as the time complexity of the TM (up to a multiplicative constant). Similarly, at
any step of the simulation, the length of the configuration ofthe stack machine will be the
number of non-blank or scanned symbols on the tape (minus onebecause one symbol is
stored into a register). So the space complexity will be the same.

Notice that the simulation of TM by stack machine preserve space complexity very
tightly.

3. SOME DECIDABILITY ISSUES

In this section, we hint that intensional properties are more undecidable than extensional
ones by proving this result for polynomial time.

Rice’s theorem [Rice 1953] states that anyextensionalproperty of Turing Machines (or
programs) is either trivial or undecidable. An extensionalproperty is one that depends only
of the inputs and the output of the machine,i.e. that depends only of the function computed
by the machine.

However, the polytime property that is often studied is stronger. When studying func-
tion, the class PTIME corresponds to those functions whocan becomputed in polynomial
time (in the given model). However, there also exist some algorithms (or programs) that
do compute the correct function but take much more than polynomial time in order to do
so. This is because a single function is computed by several algorithms and some of them
can be inefficient.

Typically, in order to compute the Fibonacci’s numbers, onecan either use the straight-
forward recursive algorithm that run in exponential time oruse some kind of dynamic
programming in order to get a polynomial time algorithm. Thefunction computed by
both these algorithms is the same and belongs to PTIME, but there still exists algorithms
computing it in exponential (or more) time.

However, we want here to study algorithms rather than functions. The polynomial bound
that we’re looking for should be established on a program by program basis. That is,
we’re studying here intensional properties of programs, depending on the algorithm used,
and not extensional properties depending only on the computed function (that is on the
inputs/outputs relation).

Empirically, intensional properties seem even harder to decide that extensional ones.
This can be formalised a bit by the following theorem.

THEOREM 3.1 (MARION 00, TERUI 06). Let p be a program. The question ”doesp
computes in polynomial time” is undecidableeven if we know thatp uniformly terminates.

PROOF (MARION AND MOYEN [2006]). Letq be a program and consider the program
p that works as follows:

—p answers0 if its input is0.

—On inputx 6= 0, p simulatesq(0) for x steps.
—If q(0) halts withinx steps, thenp answers0.
—Else,p loops for2x (or any other large value depending onx) steps and then answers

0.

Obviously,p uniformly terminates. Is it polynomial-time?

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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Let Tq(n) be the time (number of steps) needed to computeq(n) (may be infinite ifq(n)
does not terminate).

If q(0) terminates, then there existsN ∈ N such thatTq(0) = N . The timeTp(x)
needed to computep(x) is bounded byN + 2N , that is a constant value (N only depends
onq). Indeed, ifx < N , thenp will run for x steps simulatingq and then for an additional
2x steps looping. This leads to a total ofx + 2x < N + 2N . On the other hand, if
x ≥ N thenp will run for N steps simulatingq and then immediately return0. So, if q(0)
terminates, thenp(x) runs in constant timeN + 2N for all x.

Notice that there might be some simulation overhead (that issimulatingq for N steps
might require more thanN steps ofp) but this overhead is depending only onN and not
onx, so that the reasoning is still true.

If q(0) does not terminates, thenp(x) runs forx + 2x steps (x for the simulation (plus
an eventual overhead) and2x for the final loop), that is exponential time with respect tox.

So,p runs in polynomial time if and only ifq(0) terminates. Since the halting problem
is not decidable, so is polytime computability of programs.

Uniform termination of programs, in itself, is a non semi-recursive property. So even
with an oracle powerful enough to solve (some) non semi-recursive problems, the inten-
sional property of running in polynomial time is still undecidable! Intensional properties
are, indeed, much harder than extensional ones.

Notice that this proof can be easily adapted to show the undecidability of any complexity
class (of programs). It is sufficient to change the function computed byp if q(0) does not
terminates. Notice also thatp does computes the constant function0 which, as a function,
certainly belongs to PTIME. It is really important to separate the extensional property (the
function can be computed by some program in polynomial time)from the intensional one
(the program we’re considering is polytime).

Remark3.2. A similar proof, for the undecidability of running in polynomial time,
based on Hilbert’s tenth problem [Matiyasevich 1993] (p(x + 1) = 0 if some polynomial
P has a rootx, 2 × p(x) otherwise) was presented as the Geocal ICC workshop in Feb.
2006 by K. Terui. This work has been done independently from a similar result presented
by J.-Y. Marion in March2000 at a seminar in ENS Lyon. This is kind of a folklore result
but is nonetheless worth mentioning because lot of confusion is done on the subject.

The above result can be improved. Indeed, the set of programsthat run in polynomial
time isΣ2-complete (in the arithmetical hierarchy). Recall, that a typicalΣ2-complete set
is the set of partial computable functions.

In order to establish the fact that polytime programs is aΣ2-complete set, we take a class
C of computable functions which contains all constant functions. Assume also that there
is a computable set of function codesC̃ which enumerates all functions inC. The set of
linear functions{x + b | ∀b ∈ N} satisfies the above hypothesis. Another example is the
set of polynomials or the set of affine functions (a · x + b).

Next, letJpK be the function computed by the programp with respect to an acceptable
enumeration of programs. We refer to Rogers’ textbook [1967] for background. Say that
Tp(x) is the number of steps to execute the programp on inputx with respect to some
universal (Turing) machine.

Now, define the set of programs whose runtime is uniformly bounded by functions inC:

AT = {p | ∃e ∈ C̃ ∀x, Tp(x) < JeK(|x|)}

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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THEOREM 3.3 (MARION 00). The setAT is Σ2-complete.

PROOF (MARION AND MOYEN [2006]). It is clear that the statement which defines
AT is aΣ2 statement.

Let B be anyΣ2 set defined as follows:

B = {q | ∃y∀x, R(q, y, x)} R is a computable predicate

We prove thatB is reducible toAT .
For this, we construct a binary predicateQ as follows. Q(q, t) tests duringt steps

whether there is ay with respect to some canonical ordering such that∀x, R(q, y, x) holds.
If it holds, Q(q, t) also holds. Here, the predicateQ is computable with a completeΠ1 set
as oracle.

Using the s-m-n theorem, there is a programq′ such thatJq′K(t) = Q(q, t).

(1) Suppose thatq ∈ B. We know that there is any such that∀x, R(q, y, x). It follows
that the witnessy will be found byQ aftert steps. Since the constant functionλz.t is
in C, we conclude thatq′ is in AT .

(2) Conversly, suppose thatq′ is in AT . This means thatQ(q′, t) holds for somet, which
yields any verifying∀x, R(q, y, x)

Notice that we may change time by space in the above proof, which leads to the follow-
ing consequence:

COROLLARY 3.4. Let

AS = {p | ∃e ∈ C̃ ∀x, Sp(x) < JeK(|x|)}

whereSp(x) is the space use byp onx. The setAS is Σ2-complete.

Depending on the choice of the set of functionsC, this proves theΣ2-completeness of
the following sets:

—The set of programs running in polynomial time (for polynomials functions andAT ).

—The set of programs running in exponential time.
—The set of programs running in logarithmic space or in polynomial space.

—Almost any set of program defined by a space or time bound.

Since the arithmetical hierarchy is separated, this means that all these problems are
strictly harder than the halting problem.

4. A TASTE OF RCG

This section describes the idea behind Resource Control Graph in order to get a better grip
on the more formal definitions later on.

4.1 Control and memory

The undecidability results means that given a program it is impossible to say if the set of
executions,Υ, andΘω, the set of infinite sequences of states, are disjoint. So, the idea here
is to find a setA of admissiblesequences, which is a superset of the set of all executions,
and whose intersection withΘω can be computed. If this intersection is empty, thena
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Fig. 2. Sequences of states, executions and admissible sequences

fortiori , there is no infinite executions but if the intersection is not empty, then we cannot
say if this is due to some non-termination of the program or ifsome of the sequences added
for the analysis caused trouble. This means that depending on the machine considered and
the wayA is build, we can be in three different situations as described in Figure 2. We
build A ⊃ Υ such thatA

⋂
Θω is recursive. If its empty, then the program uniformly

terminates. else, we cannot say anything. Of course, the undecidability theorem means
that if we requireA (or at leastA

⋂
Θω) to be recursive, then there will necessarily be

some programs for which the situation will be the one in the middle (in Figure2), that is
we falsely suppose that the program does not uniformly terminate.

Clearly, states can be split up into a control part, namely the label, and a memory part,
namely the store. This two parts interact in both directions: the control can change the
memory via assignments of a new value to a register or stack and the memory part changes
the behaviour of the control when tests are performed.

By analogy to Turing machines, the interaction of the control over the memory cor-
responds towriting while the interaction of the memory over the control corresponds to
reading. Figure 3 describes this situation. On Turing machines, thecontrol part will be the
automaton while the memory part is the tapes. OnC or any other imperative programming
language, the control part is the program itself and the memory is the content of the heap
and stack. For functional programming, we can see the current function as the control part
and the values of its parameters as memory.

The control part is completely finite because there are only finitely many labels. On the
other hand, the memory part is infinite because there are infinitely many different strings.
So, the first idea will be to really split states in two in orderto have a finite representation
of the control part that can then, in a more or less dynamical way, be completed by the
memory.

4.2 The folding trick

The first try at building such an admissible set of executionswill be to completely forget
the memory part and only keep the control part. So we study elements ofL∗ω which are
build over a finite alphabet (L) while executions are build over an infinite one (since there
are infinitely many stores).

Given a word over labels, we can “fold” it by identifying all identical labels in it into
a single vertex of a graph and then adding edges between two vertices if and only if they
appear in sequence somewhere in the word. Because of the syntax of the program, not all
edges will appear in such a graph and, even more, this foldingtrick can be applied to all
possible executions (only keeping the labels) yielding to asingle graph called the Control
Flow Graph of the program.
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Fig. 3. Control and memory interactions.

Definition 4.1 (Control Flow Graph). Let p be a program. ItsControl Flow Graph
(CFG) is a directed graphG = (S, A) where:

—S = L. There is one vertex for each label.

—If ι(lbl) = if (test) then goto lbl1 else goto lbl2 then there is one
edge fromlbl to lbl1 labelled (test)true and one fromlbl to lbl2 labelled (test)false.

—If ι(lbl) = end then there is no edge going out oflbl.

—Otherwise, there is one edge fromlbl to next(lbl) labelledι(lbl).

Both vertices and edges are named after the label or instruction they represent. No
distinction are made between the vertex and the label or the edge and the instruction as
long as the context is clear.

Example4.2. The CFG of the reverse program is displayed on Figure 4.

Now, to each execution corresponds a path (finite or not) in the CFG. The converse,
however, is not true. There are paths in the CFG that correspond to no executions.

Let P be the set of paths in the CFG.P is a regular language over the alphabet of the
edges (see Lemma 6.19), henceP is recursive. Since we can associate a path to each
execution, we can say thatP is a superset ofΥ2. So, we can chooseA = P and have a
first try at an admissible set of sequences of executions.

However, as soon as the graph contains loops,P will contain infinite sequences. So this
is quite a poor try at building an admissible set of sequences, corresponding exactly to the
trivial analysis “A program without loop uniformly terminates”.

In order to do better, we need to plug back the memory into the CFG.

4.3 Walks

So, in order to take memory into account but still keep the CFG, we will not consider
vertices any more but states again. Clearly, each state is associated to a vertex of the CFG.
Moreover to each instructioni, we can associate a functionJiK such that for all statesθ, θ′

such thatp ⊢ θ = 〈IP, σ〉
i
→〈IP′, σ′〉 = θ′, we haveσ′ = JiK(σ).

So, instead of considering paths in the graph, we can now consider walks. Walks are
sequences of states following a path where each new store is computed according to the
semantics functionJiK of the edge just followed.

2 in some loose sense of “superset” that can be tolerated in this informal description.
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end 1

0

2

3

l= [] l 6= []

pop

push

goto 0

Fig. 4. CFG of the reverse program.

But if we do this exactly that way, then there will be a bijection between the executions
and the walks and nothing can be studied.

Paths can be seen as removing both interaction of control andmemory. Indeed, a path
only looks at the control part of a program and is completely oblivious of its memory.
When trying to plug back memory, if we keep both interaction (reading and writing) then
we only manage to describe again the executions (in terms of walks). So we need to find
something that lay between the two.

The idea at this point is to keep both branches of a test as possible whenever a test is
encountered. With the CFG, when there is a vertex with out-degree≥ 2, both paths are
considered. So we will now relax the constraints on walks in order to do the same. That is,
replaceJiK with the identity for tests. This can be seen as removing the reading part of the
program and keeping only the writing part.

This yield to a bigger set of walks. However, in certain cases(depending on the shape of
the semantics functions for instructions, hence on the set of operators of the program), this
set will be decidable. Often, in order to achieve decidability, it is necessarily to consider
not stores (and states) but only approximations of such (e.g., only the total size of each
store).

5. VECTOR ADDITION SYSTEM WITH STATES

This section describes Vectors Addition Systems with States (VASS). Resources Con-
trol Graphs are a generalisation of VASS. VASS are known to beequivalent to Petri
Nets [Reutenauer 1989].

In a directed graph3 G = (S, A), will write s
a
→r to say thata is an edge betweens and

r. Similarly, we will write s0

a1→s1

a2→ . . .
an→sn to say thata1 . . . an is a path going through

verticess0, · · · , sn. Or simplys0

w
→sn if w = a1 . . . an. s→ s′ means that there exists an

edgea such thats
a
→s′ and

+
→,

∗
→ are the transitive and reflexive-transitive closures of→.

Definition 5.1 (VASS, configurations, walks). A Vector Addition System with Statesis
a directed graphG = (S, A) together with aweighting functionω : A→ Z

k wherek is a
fixed integer.

3We will uses ∈ S to designate vertices anda ∈ A to designates edges. The choice of using french initials
(“Sommet” and “Arête”) rather than the usual(V, E) is done to avoid confusion between vertices and valuations.
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A configurationis a coupleθ = (s, v) wheres ∈ S is a vertex andv ∈ Z
k is the

valuation. A configuration isadmissibleif and only if v ∈ N
k.

A walk is a sequence (finite or not) of configurations(s0, v0)
a1→ . . .

an→(sn, vn) such that
s0

a1→s1

a2→ . . .
an→sn and for all i ∈ N

∗, vi = vi−1 + ω(ai). A walk is admissibleif all
configurations in it are admissible.

We say that patha1 . . . an is theunderlying pathof the walk and the walkfollows this
path. Similarly,G is theunderlying graphfor the VASS.

As for graphs and paths, we will writeθ → θ′ if there exists an edgea such thatθ
a
→θ′

and
+
→,

∗
→ for the closures.

Definition 5.2 (Weight of a path). Let V be a VASS anda1 . . . an be a path in it. The
weight of edges is extended to paths canonically:ω(a1 . . . an) =

∑
ω(ai).

LEMMA 5.3. LetV be a VASS anda1 . . . an be a finite path in it. There exists a valu-
ationv0 such that for0 ≤ i ≤ n, v0 + ω(a1 . . . ai) ∈ N

k.

This means that every finite path is the underlying path of an admissible walk.

PROOF. Because the path is finite, thejth component ofω(a1 . . . ai) is bounded from
below byαj (of course, this bound is not necessarily reached with the samei for all com-
ponents, but nonetheless such a bound exists for each component separately). By putting
βj = max(0,−αj) (that is0 if αj is positive), thenv0 = (β1, · · · , βk) verifies the prop-
erty.

LEMMA 5.4. Let (s0, v0) → . . . → (sn, vn) be an admissible walk in a VASS. Then,
for all v′0 ≥ v0 (component-wise comparison),(s0, v

′
0)→ . . .→ (sn, v′n) is an admissible

walk (following the same path).

PROOF. By monotonicity of the addition.

Definition 5.5 (Uniform termination). A VASS is said to beuniformly terminatingif it
admits no infinite admissible walk. That is, every walk is either finite or reaches a non-
admissible configuration.

THEOREM 5.6. A VASS isnot uniformly terminating if and only if there exists a cycle
whose weight is inNk (that is, is positive with respect to each component).

PROOF. If such a cycle exists, starting and ending at vertexs, then by Lemma 5.3 there
existsv0 such that the walk starting at(s, v0) and following it is admissible. After fol-
lowing the cycle once, the configuration(s, v1) is reached. Since the weight of the cycle
is positive,v1 ≥ v0. Then, by Lemma 5.4 the walk can follow the cycle one more time,
reaching(s, v2), and still be admissible. By iterating this process, it is possible to build an
infinite admissible walk.

Conversely, let(s0, v0) → . . . → (sn, vn) . . . be an infinite admissible walk. Since
there are only finitely many vertices, there exists at least one vertexs′ appearing infinitely
many times in it. Let(s′k, v′k) be the occurrences of the corresponding configurations in
the walk. Since the component-wise order over vectors is a well partial order, there exists
i, j such thatv′i ≤ v′j . The cycle followed betweens′i ands′j has a positive weight.

Definition 5.7 (Characteristic matrix, Parikh vector). Let V be a VASS and consider a
given enumerationa1, · · · , an of the edges. Itscharacteristic matrixΓ is thek× n matrix
whoseith column isω(ai).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



14 · Jean-Yves Moyen

a

b

c

d

(0,−1,+1)

(−1, 0, 0)

(0,+1,−2) (0, 0,+1)

(0, 0,−1)

a

b

c

d

(0,+2,+1)

(+3, 0,−1)

(0, 0,+1) (0,−1, 0)

(−1, 0,−1)

Fig. 5. Two VASS

Given an enumerations1, · · · , sm of the vertices ofV , its connectivity matrixΓ′ is the
m× n matrix where:

—Γ′
i,j = −1 if si

aj

→s′ for some vertexs′

—Γ′
i,j = 1 if s′

aj

→si for some vertexs′.

—Γ′
i,j = 0 otherwise.

Let p = a1 . . . aq be a path. ItsParikh vectortp is a vector inNn whoseith component
is the number of occurrences ofai in p.

LEMMA 5.8. The weight of a pathp is Γ× tp.

This is due to the commutativity of the addition.

THEOREM 5.9. A VASS with characteristic matrixΓ and connectivity matrixΓ′ is not
uniformly terminating if and only if the system:

X > O
Γ′ ·X = 0
Γ ·X ≥ 0

admits a solution. This can be checked in polynomial time.

PROOF. X is the Parikh vector of a cycle whose weight is positive, hence the VASS is
not uniformly terminating due to Theorem 5.6.

The first inequation ensure thatX is the Parikh vector of a non-empty walk. The equa-
tion ensure that it is the Parikh vector of a cycle and the second inequation ensure that the
weight of this cycle is positive.

Since the set of solutions is a cone (that is ifX is a solution then so isα × X for all
α), the existence of a real solution ensure the existence of aninteger one. Since we’re only
concerned with the existence of a solution, this can be solved in polynomial time by usual
Linear Programming techniques.

Since VASS and Petri nets are equivalent, this also shows that uniform termination of
Petri nets is decidable. Without going through the equivalence, a direct and very similar
proof can be made for Petri nets (characteristic matrix and Parikh vectors also exist, and
there is no need for connectivity matrix). Such a proof an be found in [Moyen 2003],
(theorem60, page83).

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



Resource Control Graphs · 15

Example5.10. Figure 5 display two VASS. More formally, the first one should be de-
scribed as a graphG = (S, A) with:

—S = {a, b, c, d}

—A = {a
a1→b, a

a2→c, b
a3→c, c

a4→d, d
a5→a}

—ω(a1) = (0,−1, +1), ω(a2) = (−1, 0, 0), ω(a3) = (0, +1,−2), ω(a4) = (0, 0, +1),
ω(a5) = (0, 0,−1).

Its characteristic matrixΓ1 and connectivity matrixΓ′
1 are:

Γ1 =
0 −1 0 0 0
−1 0 +1 0 0
+1 0 −2 +1 −1

Γ′
1 =

−1 −1 0 0 +1
+1 0 −1 0 0
0 +1 +1 −1 0
0 0 0 +1 −1

If we putX = (u, v, x, y, z), the system of Theorem 5.9 becomes:

u ≥ 0, v ≥ 0, x ≥ 0, y ≥ 0, z ≥ 0
u + v + x + y + z ≥ 1 u + v = z

−v ≥ 0 u = x
x ≥ u v + x = y

u + y ≥ z + 2x y = z

Since this system admits no solution, the VASS is uniformly terminating.
For the second VASS, which is build on the same underlying graph (hence, the connec-

tivity matrix is the same), the characteristic matrixΓ2 is:

Γ2 =
0 +3 0 0 −1

+2 0 0 −1 0
−1 −1 +1 0 −1

And so the system is:

u ≥ 0, v ≥ 0, x ≥ 0, y ≥ 0, z ≥ 0
u + v + x + y + z ≥ 1 u + v = z

3v ≥ z u = x
2u ≥ y v + x = y
x ≥ u + v + z y = z

This system admits solutions with:u = x = 2v andy = z = 3v, among other, there is the
integer solution(2, 1, 2, 3, 3) which is the Parikh vector of a cycle with positive weight and
so, for example, the walk:(a, (5, 6, 2))→ (b, (5, 8, 3))→ (c, (5, 8, 4))→ (d, (5, 7, 4))→

(a, (4, 7, 3))→ (c, (7, 7, 2))
+
→(a, (6, 6, 1))→ (b, (6, 8, 2))

+
→(a, (5, 7, 2)). Since(5, 7, 2) ≥

(5, 6, 2), this walk can then be repeated infinitely and leads to an infinite admissible walk.
It is worth noticing that in the second case, the cycle detected isnot a simple cycle. So

the problem is different from the one of detecting simple cycles in graphs and require a
specific solution.

6. RESOURCE SYSTEMS WITH STATES

Resource Systems with States (RSS) are a generalisation of VASS seen in the previous
section. In VASS, the only information kept if a vector of integers and only additions
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of vectors can be performed on them. When modelling programs, this is not sufficient.
Indeed, if one want to closely represent the memory of a stackmachine, a vector is not
sufficient. Moreover, vector addition is not powerful enough to represent usual operations
such as copy of a variable (x := y).

Hence, we will now relax the constraints on valuations and weights and basically allow
any set to be the set of valuations and any kind of functions (between valuations) to be
a weight. Notice that for VASS, the addition of a vectorv could be represented as the
functionλx.x + v.

In order to be a bit more general, we will even allow the sets ofvaluations to be different
for each vertex. This may seems strange, but a typical use of that is to have vectors with
different numbers of components as valuations (that is the set of valuations for vertexsi

would beZ
ki ) and matrix multiplications as weights (where the matriceshave the correct

number of rows and columns). Of course, it is always possibleto take the (disjoint) union
of these sets, but it usually clutters needlessly the notations. In section 9, we’ll use RSS
with separate sets of valuations and discuss this a bit further.

6.1 Graphs and States

Definition 6.1 (RSS). A Resource System with States(RSS) is a tuple(G, V, V +, W, ω)
where

—G = (S, A) is a directed graph,S = {s1, · · · , sn} is the set of vertices andA =
{a1, · · · , am} is the set of edges.

—V1, · · · , Vn are the sets ofvaluations. V is the union of all of them.

—V +

i ⊂ Vi are the sets ofadmissible valuations. V + is the union of them.

—Wi,j : Vi → Vj are the sets ofweights. W is the union of them.

—ω : A→W is theweighting functionsuch thatω(a) : A→Wi,j if si
a
→sj .

When both the valuations and weights sets are clear, we will name the RSS after the un-
derlying graphG.

The idea behind having both valuations and admissible valuations is that this allowsV
to have some nice algebraic properties not shared byV +. Moreover, this also allows the set
of valuations to be the closure of the admissible valuationsunder the weighting functions,
thus removing the deadlock problem of reaching something that would not be a valuation
(and replacing it by the more semantical problem of detecting non admissible valuations).
Typically with VASS,V is Z

k, thus being a ring, andV + is N
k. Since weights can add

any vector, with positive or negative components, to a valuation,V is the closure ofV + by
this operation. Moreover, VASS do not suffer from the deadlock problems that appear in
Petri nets (but this is done by introducing the problem of deciding if a walk is admissible).

Notice that either unions (forV , V + or W ) can be considered to be a disjoint union
without loss of generality.

Definition 6.2 (Walk). Let (G, V, V +, W, ω) be a RSS. Aconfigurationin G is a pair
θ = (s, v) wheres = si ∈ S is a vertex of the graph andv ∈ Vi is a valuation. A
configuration isadmissibleis v ∈ V +

i is admissible.
A walk is a sequence of states(s0, v0)

a1→ . . .
an→(sn, vn) such thatp = a1 . . . an is a path

in G andvi = ω(ai)(vi−1). A walk is admissibleif every configuration in it is admissible.
The walkfollowspathp which is called eitherunderlying pathor traceof the walk.
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As earlier, we writeθ → θ′ if the relation holds for an unspecified edge and
+
→,

∗
→ for

the transitive and reflexive-transitive closures.

Definition 6.3 (Weight). Let G be a RSS. The weighting function can be canonically
extended over all paths inG by choosingω(ab) = ω(b) ◦ ω(a).

(W, ◦) is a magma. It is not a monoid because the identity is not unique. There is a finite
set of neutral elements, the identities over eachVi.

Of course, If we considerVi as dots andω ∈ W as arrows, we have a category. Indeed,
identity exists for eachVi and composition of two arrows is properly defined.

Notice that we do not actually need the wholeW . Only the part generated by the indi-
vidual weights of edges is necessary to handle a RSS. We will often overload the notation
and call itW as well.

In practise, it is often more convenient to describeW as a set together with some right-
action onV . That is, there is an operation⊛ : V ×W → V such thatv⊛ω(a) = ω(a)(v).
In this case, the function composition becomes an internal law of W , # : W ×W → W
such thatω(a) # ω(b) = ω(b) ◦ ω(a).

This notation is a much more convenient when composing weights along a path. Indeed,
we haveω(ab) = ω(a) # ω(b), that is the weights are composed in the same order as the
edges along the path while using functional composition we had ω(ab) = ω(b) ◦ ω(a),
needing to reverse the order of edges along the path. Moreover, since weight usually have
some common shape,(W, #) is often a well known algebraic structure.

Example6.4. For the VASS of previous section, we haveVi = Z
k andV +

i = N
k for

all i, andω(a) = λx.x+α for some vectorα ∈ Z
k. Or we could describe VASS by saying

thatV = W = Z
k, V + = N

k and⊛ = # = +.
The notation with⊛ and# is much more convenient, especially to handle easily weights

of paths such as done in the lemmas and theorems of the previous section.
Moreover, the fact that weights (as functions) all have the same shape (namely,λx.x+α)

allows to identify each weight with the vectorα, thus giving a more convenient definition.

6.2 Properties of RSS

6.2.1 Order

Definition 6.5 (Ordered RSS). An ordered RSSis an RSSG = (G, V, V +, W, ω) to-
gether with a partial ordering≺ over valuations such that the restriction of≺ overV + is a
well partial order.

Remember that a partial order≺ is a well partial order if there are no infinite anti-chain,
that is for every infinite sequencex1, · · · , xn, . . . there are indexesi < j such thatxi � xj .
This mean that the order is well-founded (no infinite decreasing sequence) but also that
there is no infinite sequence of pairwise incomparable elements. The order induced by the
divisibility relation onN, for example, is not a well partial order since the sequence of all
prime numbers is an infinite sequence of pairwise incomparable elements.

For VASS, the component-wise order on vectors of the same length is the well partial
order (overV + = N

k) that was used in the previous section.
In the following, we will not always explicitly mention if a RSS is ordered.
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Definition 6.6 (Monotonicity, positivity). Let (G, V, V +, W, ω) be an ordered RSS. We
say that it ismonotonicif all weighting functionω(ai) are increasing with respect to≺.
Since the composition of increasing functions is still increasing, the weighting function of
any path will be increasing.

We say that(G, V, V +, W, ω) is positiveif ≺ is such that for eachv ∈ V + andv′ ∈ V ,
v ≺ v′ impliesv′ ∈ V +.

VASS are both monotonic and positive. Monotonicity is the key of Lemma 5.4 while
positivity is implicitly used in the proof of Theorem 5.6 to say that the valuation reached
after one cycle is still admissible.

Definition 6.7 (Resource awareness). Let G be an ordered RSS andf : V → V be a
function.G is f -resource awareif for all walk (s0, v0)

∗
→(sn, vn) we havevn � f(v0)

6.2.2 Uniform termination

Definition 6.8 (Uniform termination). Let G be a RSS.G is uniformly terminatingif
there is no infinite admissible walk inG.

Notice that if a RSS is not uniformly terminating, then thereexists an infinite admiss-
ble walk that stay entirely within one strongly connected component of the underlying
graph. In the following, when dealing with infinite walks we may suppose without loss of
generality that the RSS is strongly connected.

For VASS, uniform termination is decidable as stated in Theorem 5.9. It is worth notic-
ing that it does only depends on the underlying graph and the weights and not on the
valuations. Indeed, since uniform termination is a global property that must hold for all
valuations, this will often be the case.

THEOREM 6.9. If G doesnot uniformly terminates then there is an admissible cycle

(s, v)
+
→(s, u) with v � u. If G is monotonic and positive, then this is an equivalence.

PROOF. If an infinite admissible walk exists, then we can extract from it an infinite
sequence of admissible states(s′, vk) since there is only a finite number of vertices. Since
the order is a well partial order onV +, there exists ai < j with vi � vj , thus leading to
the cycle.

If the cycle exists, then it is sufficient to follow it infinitely many time to have an infinite
admissible walk. Monotonicity is needed to ensure that every time one follows the cycle,
the valuation does indeed increase. Positivity is needed toensure than when going through
always increasing valuations one will never leaveV +.

Of course, this is simply the generalisation of Theorem 5.6.

PROPOSITION 6.10.

(1) If V is finite, thenW is finite.

(2) If V is finite, then uniform termination ofG is decidable.

(3) If both V andW are enumerable, then it is semi-decidable to know if a RSS is not
uniformly terminating.

PROOF.

(1) Because the set of functionsF(V, V ) is finite and containsW .
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(2) Since bothV andW are finite, it is possible to computes all the valuesv ⊛ ω(a) and
check whether one is both increasing (with respect to≺) and corresponds to a cycle.

(3) By enumeratingV ×W .

6.2.3 Grounded RSS

Definition 6.11(Grounded RSS). An ordered RSSG = (G, V, V +, W, ω) is grounded
if there is a set̂V ⊂ V + of grounded valuationssuch that:

—Each finite subset of ground valuations has a ground valuation as a least upper bound
(that is,(V̂ ,�) is a join-semi lattice).

—V + is build fromV̂ by adding a least upper bound for each infinite subset (if it does not
already exist).

Non-grounded valuations are used to represent “unknown” values. For example, we
could allow+∞ to appear in weights as well as valuations in VASS. In this case,+∞ in
a valuation would mean that nothing is known about this component of the vector but we
keep it admissible by default. However, we keep grounded valuations as a reminder that at
some point something should be known before we are allowed tosay anything.

In the following, non-admissible valuations are considered to be ground valuations, but
V̂ only designates the ground and admissible valuations.

If G is positive, then every non-ground valuation is admissible. Even more, non-ground
valuations are the maximal elements ofV +:

LEMMA 6.12 (POSITIVITY ). If v ∈ V + \ V̂ is a non ground valuation andv ≺ u,
thenu /∈ V̂ .

PROOF. Becausev has been added a the join of an infinite subset ofV̂ and if u ∈ V̂ ,
this would not have been necessary becauseu would already have been a join for this
subset.

Definition 6.13(Grounding walks). Let G be a grounded RSS, Consider a walk (finite

or not)w = (s0, v0)
i1→ . . .

in→(sn, vn) . . . and let(v̂)N be a sequence of ground admissible
valuations. Letθj = (sj , vj).

We say that(v̂)N is anoraclefor w if the following properties hold:

—If v0 ∈ V̂ thenv̂0 = v0 elsev̂0 � v0.

—For eachj > 0, we have(sj−1, v̂j−1)
i
→(sj , v

′
j). If v′j is a ground valuation, then

v̂j = v′j elsev̂j � v′j .

Thegrounded walkŵ is θ0  θ̂0 → θ1  θ̂1 → . . .→ θn  θ̂n whereθ̂j = (sj , v̂j).
 denotes the replacement of a non-ground valuation by the corresponding one from the
oracle. We may simply write the grounded walk asθ̂0 → . . .→ θ̂n.

A walk is ground-admissibleif there exists an oracle for it.

The idea is that as soon as a non-ground valuation is reached,it is replaced by a ground
one (which is provided by the oracle) and the walk resumes following the same path.
Using grounded RSS and grounding walks can be seen as introducing some kind of non
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a b c

(+∞, 0)

(0,+∞)

(−1, 0)

Fig. 6. A grounded VASS

determinism into RSS. Sometimes, when the valuation cannotbe completely specified (that
is, is non-ground), a random valuation can be chosen.

Notice that whenever the valuation reached by using the regular rules of RSS is ground,
then the oracle is not allowed to change it. That is, we don’t need to ask anything to the
oracle as long as everything can be computed. However, as soon as something “unknown”
is reached, then we ask the oracle what this should be and go onalong the walk.

Definition 6.14(Uniform termination). A grounded RSS isuniformly terminatingif it
admits no infinite ground-admissible walk.

This goes with the idea of “unknown” as stated above. Indeed,unknown spreads faster
than knowledge and this definition of uniform termination for grounded RSS prevents
things such as a prefix of the walk setting the valuation to “unknown” and then there is
a cycle looping infinitely with unknown valuations, but the same cycle could no be fol-
lowed infinitely with known valuations.

If we consider again VASS with+∞ allowed, then we could have a prefix of the walk
setting the valuation to(+∞, . . . , +∞) and then a loop with a negative weight that could
be taken infinitely many times just because+∞ stays+∞ (no knowledge is gained). This
definition of uniform termination could be stated as allowing the RSS to forget (part of) the
valuation but still remind what it is suppose to represent. The replacement of a valuation
in the infinite walk means that something can be unknown but wemust remember that this
actually represent a ground valuation and should be able to set it so any time.

With grounded RSS, Theorem 6.9 becomes:

THEOREM 6.15. LetG be a positive monotonic grounded RSS. It isnot uniformly ter-

minating if and only if there is a ground-admissible cycle(s, v0)
+
→(s, v′n) with oracle

(v̂)0..n such that̂v0 � v̂n.

PROOF. If a ground-admissible infinite walk exists, then we can extract from it a ground-
admissible cycle in exactly the same way as in Theorem 6.9.

Conversely, if a ground-admissible cycle exists, it can be followed infinitely many time
(the oracle being build from the repetition of the oracle forthe cycle).

Example6.16. Figure 6 displays a grounded VASS, that is a VASS where+∞ is al-
lowed in weights as well as valuation. The ground valuationsare those where no compo-
nent is+∞. Here, the non-ground valuations can be seen as a lack of information: if a
component is+∞, it means that nothing is known on the real value which shouldbe here.
Typically, this might arise if the operation one want to represent cannot be described as the
addition of a vector (e.g., it would need a multiplication).
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The notion of oracle for walks is important. Indeed, withoutthis notion of grounded
walks, we could consider the walk(a, (0, 0)) → (b, (+∞, 0)) → (c, (+∞, +∞)) which
can then loop forever with the valuation(+∞, +∞). This walk can be seen as first for-
getting everything (including the fact that we should be working over integers) and then
looping forever in blissful ignorance. However, the loop itself has weight−1 on the first
component and so should not really be taken infinitely many times.

So, we need an oracle who knows everything and is able to give the lost knowledge back.
Since no oracle leads to an infinite ground-admissible walk,we say that this grounded
VASS is uniformly terminating.

Notice also the importance of the conditionv̂i � v′i. Indeed, without it the oracle could
be use to reset the first component of the valuation whenever it is interrogated, thus leading
to things like: (c, (1, 0)) → (b, (0, 0)) → (c, (0, +∞))  (c, (1, 0)). So this condition
v̂i � v′i can here be seen as tightly keeping all that is still known. Allowing to take a smaller
valuation is harmless for two reasons. Firstly, when considering only uniform termination,
smaller things mean faster termination and secondly since results are usually quantified
over all ground-admissible walks, the ones with bigger things also get considered.

6.3 Semi-linearity

Definition 6.17(Linear parts, semi-linear parts). Let(M, +) be a commutative monoid.
A linear part of M is a subset of the formu + U∗ whereu ∈ M andU is a finite part of
M . That is, ifU = {u1, · · · , up}, a linear part can be expressed as:

{u +

i=p∑

i=1

nivi|ni ∈ N}

A semi-linear partof M is a finite union of linear parts.

LEMMA 6.18. In a commutative monoid, rational parts are exactly the semi-linear
parts.

Recall that rational parts are build from+, union and Kleene’s star∗. When dealing with
words (that is the free monoid generated by a finite alphabet), the+ is word concatenation
(not commutative) and so rational parts are exactly the regular languages.

PROOF. Semi-linear parts are clearly expressed as rational parts.
Conversely, it is sufficient to show that the set of semi-linear parts contains all finite

parts and is closed by union, sum and∗. The hard point being the closure under∗ which is
a consequence of commutativity. See [Reutenauer 1989] (Proposition 3.5) for details.

LEMMA 6.19. The set of cycles in a graph is a rational part (of the free monoid gen-
erated by the edges).

PROOF. Consider the graph as an automaton with each edge labelled by a separate label.
The set of paths between two given vertices is a regular language (accepted by the automa-
ton with the proper input and accepting nodes). So is the set of cycles as finite union of
regular languages.

COROLLARY 6.20. The set of weights of cycles in a RSS is a rational part ofW .

PROOF. Because the weighting function is a morphism between the free monoid gener-
ated by the edges and(W, #).
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THEOREM 6.21. If (W, #) is commutative, then the set of weights of cycles is a semi-
linear part of it.

This allows to easily find candidates for Theorem 6.9. Indeed, we need to find a valuation
v and a cycle of weightw such thatv ⊛ w � v. Since the construction of the semi-linear
part is effective, it is possible to have a concise representation of weights of cycles.

This hints that commutativity of# plays an important role in decidability of uniform
termination. It is however not a necessary condition (as shown by δSCT [Ben-Amram
2006]) and maybe not a sufficient one.

7. MONITORING SPACE USAGE

In this section, we introduce the notion of Resource ControlGraph for the very special
case of monitoring space usage. In Section 8, this notion will be fully generalised to define
Resource Control Graphs.

7.1 Space Resource Control Graphs

Definition 7.1 (Weight). For each instructioni, we define aweightki as follows:

—The weight of any instruction that is neitherpush norpop is 0.
—The weight of apush instruction is+1.
—The weight of apop instruction is−1.

PROPOSITION 7.2. For all storesσ such thatp ⊢ θ = 〈IP, σ〉
i
→θ′, we have|θ′| =

|θ|+ ki.

It is important here that bothθ andθ′ are states. Indeed, this means that when an error
occurs (⊥), we remove all constraints.

Definition 7.3 (Space Resource Control Graph). Let p be a program. Its Space Re-
source Control Graph (Space-RCG) is a RSSG = (G, V, V +, W, ω) where:

—G is the Control Flow Graph ofp.
—V = Z, V + = N.
—For each edgei, The weighting functionω(i) is λx.x + ki.

Of course, since all weights have the same shape, they can simply be identified by the
constantki. In this case, we’ll haveω(i) = ki, ⊛ = # = +. That is, the Space Resource
Control Graph can be seen as an usual weighted graph.

PROPOSITION 7.4. Letp be a program,G be its Space-RCG andp ⊢ θ1 = 〈IP1, σ1〉 →
. . . → θn = 〈IPn, σn〉 be an execution with tracet, then there is an admissible walk
(IP1, |θ1|)→ . . .→ (IPn, |θn|) with the same tracet.

PROOF. By construction of the RCG and induction on the length of theexecution.

7.2 Characterisation of Space usage

THEOREM 7.5. Let f be a total functionN → N. Let p be a program andG be its
Space-RCG.

p ∈ S(f) if and only if for each stateθ0 = 〈IP0, σ0〉 and each executionp ⊢ θ0

∗
→θn, the

trace of the execution is also the trace of an admissible walk(IP0, |θ0|) → (IP1, i1) →
. . .→ (IPn, in) and for eachk, ik ≤ f(|θ0|).
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PROOF. Proposition 7.4 tells us thatik = |θk|. Then, both implications hold by defini-
tion of space usage.

COROLLARY 7.6. Let f : N → N be a total function,p be a program andG be its
Space-RCG.

If G is f -resource aware, thenp ∈ S(f).

Here, the converse is not true because the Space-RCG can haveadmissible walks with
uncontrolled valuations but who do not correspond to any real execution.

7.3 Non Size Increasingness

The study of Non Size Increasing (NSI) functions was introduce by Hofmann [1999]. For-
mers syntactical restrictions for PTIME, such as the safe recurrence of Bellantoni and Cook
[1992], forbid to iterate a function because this can yield to super-polynomial growth.
However, this prevents from using perfectly regular algorithms such as the insertion sort
where the insertion function is iterated. The idea is then that iterating functionswho do not
increase the size of datais harmless.

In order to detect these functions, Hofmann uses a typed functional programming lan-
guage. A special type,3, is added. This type has no closed terms (that is, no constructors),
and can only be used in variables. It can be seen as pointers tofree memory. Constructors
of other types now require one of more3. Typically, the usualcons for lists require a3
in addition to the data and the list and will then be typedcons : 3× α× L(α)→ L(α).

Whenever a list is destroyed, the3 in thecons is freed (in a variable) and can thus be
later reused to build another list. By ensuring a linear typediscipline, one can be sure that
no3 is ever duplicated. Then, any program that can be typed with this type system can be
computed in a NSI way,e.g.be compiled intoC without anymalloc instruction.

With Space RCG, valuations in a walk play exactly the same role as Hofmann’s dia-
monds (3). The higher the value, the more diamonds are needed in the current config-
uration. push has positive weight, meaning that it uses diamonds butpop has negative
weight, meaning that it releases diamonds for later use.

Definition 7.7 (Non Size Increasing). A program isNon Size Increasing(NSI) if its
space usage is bounded byλx.x + α for some constantα.

NSI is the class of functions which can be computed by Non SizeIncreasing programs.
That is

⋃
α S(λx.x + α).

PROPOSITION 7.8. Let p be a program andG be its Space-RCG. IfG is λx.x + α-
resource aware for some constantα, thenp is NSI.

PROOF. This is a direct consequence of Theorem 7.5.

THEOREM 7.9. Letp be a program andG be its Space-RCG.G is λx.x + α-resource
aware (for someα) if and only if it contains no cycle of strictly positive weight.

PROOF. If there is no cycle of strictly positive weight, then letα be the maximum weight
of any path inG. Since there is no cycle of strictly positive weight, it is well-defined.
Consider a walk(s0, v0)

∗
→(sn, vn) in G. Sinceα is the maximum weight of a path, we

havevn ≤ v0 + α. Hence,G is λx.x + α-resource aware.
Conversely, if there is a cycle of strictly positive weight,the it can be followed infinitely

many time and provides an admissible walk with unbounded valuations.
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Fig. 7. Space-RCG of the reverse program.

Building the Space-RCG can be done in linear time in the size of the program. Finding
the maximum weight of a path can be done in polynomial time in the size of the graph
(so in the size of the program) with Bellman-Ford’s algorithm ([Cormen et al. 1990] chap-
ter 25.5). So we can detect NSI programs and find the constantα in polynomial time in
the size of the program.

Example7.10. The Space-RCG of the reverse program (from Example 2.2) is dis-
played on Figure 7. Since it contains no cycle of strictly positive weight, the program
is Non Size Increasing. Moreover, since the maximum weight of any path is0, it can be
computed in spaceλx.x, that is the constantα is 0 for this program.

This result, however, lacks an intentionality statement (how much of all NSI programs
are caught?) or even an extensional completeness one (does there exist functions in NSI
that are not captured by such a program?) Of course, the classNSI is undecidable and the
class of allprogramswhich are NSI isΣ2-complete according to Theorem 3.3. This means
that intentionality statements are hard to achieve. However, we can reach an extensional
completeness one.

Without loss of generality, we consider here that in the initial configuration of a TM, the
tape consists in only blank symbols except for aconsecutivesequence of symbols which
areall non-blank. That is, we do not allow input tape to have the shapex ⊔ y wherex and
y are non-blank symbols and⊔ is the blank symbol. This allows to detect the end of input
as the first non-blank symbol. The head is assumed to scan the first non-blank symbol at
the beginning of computation.

PROPOSITION 7.11 (NORMALISING TMS). LetM be a NSI Turing Machine running
in spaceλx.x + α. There exists a TM̃M , computing the same function, running in space
λx.x + α + 2, proceeding in2 phases:

(1) Firstly, M̃ writes2 # andα B on blank squares of its tape, where both# andB are
new symbols.

(2) Secondly,̃M never scan any blank symbol again.

PROOF. M̃ starts by going one square left and writing# there. Then it goes to the end
of the input, writeα B after it (sinceα is fixed forM and does not depend on the input,
this is doable) and lastly another#. Then, it goes back to the beginning of the input (the
symbol immediately after the#) and goes into the second phase.
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Fig. 8. Space-RCG of the simulation of a normalised NSI Turing machine.

In the second phase,̃M simulatesM . However,# are never overwritten. WheneverM
request to write over a#, the whole content of the tape is shifted one square left (or right)
and simulation ofM resumes where it stopped. SinceM is NSI, the simulation can be
done entirely between the two#.

Of course, this simulation is rather costly from a time pointof view, but since we’re only
controlling space here, that does not matter. Notice also that such a normalisation could
be made for a TM running in spacef(x) for any computable functionf . However, in that
case the simulation would require an additional tape to computef(x) from the input and
then allocate sufficiently many new squares. This would be quite tricky to do and require
control over the space used to computef(x). . .

THEOREM 7.12 (EXTENSIONAL COMPLETENESS). Let M be a NSI TM,M̃ be the
corresponding normalised machine andp̃ be the program simulating̃M according to the
simulation of Section 2.3. Let̃G be the Space-RCG of̃p.

G̃ contains no cycle of strictly positive weight.

PROOF. During the second phase of the simulation ofM , M̃ never scan a blank symbol.
Hence, there is no need topush new (blank) symbol on any of the stacks. While moving
the head, eachpush on one stack is immediately followed by apop and the other, thus
yielding only paths of weight0.

During the first phase of the simulation,p starts by adding a symbol on a stack (a blank
symbol immediately erased by#, or alternatively directly a# with a slightly smarter
simulation). Then it loops to find the end of the input. Duringthis loops, eachpush is
also followed by apop, thus creating only cycles of weight0. Then it addsα + 1 new
symbols (B and#), but sinceα does not depend on the input, this can be done byα + 1
separatepush, thus creating no cycle. And lastly it goes back to the start of the input,
again eachpush is followed immediately by apop. Figure 8 shows how the Space-RCG
of p̃ looks like.

This result means that our characterisation of NSI is extensionally complete. Each func-
tion in NSI can be computed by a program which fit into the characterisation (that is, whose
Space-RCG isλx.x + α-resource aware). Of course, intentional completeness (capturing
all NSI programs) is far from reached (but is unreachable with a decidable algorithm).
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7.4 Linear Space

L INSPACE seems to be closely related to NSI. Indeed, LINSPACE functions can be com-
puted in spaceλx.βx + α and so NSI is a special case of LINSPACE with β = 1. So we
want to adapt our result to detect linear space usage.

The idea is quite easy: since we’re allowed to usedβ time more space than what is
initially allocated, it is sufficient to consider that everytime some of the initial data is
freed,β “tokens” (3) are released and can later be used to controlβ different allocations.

In order to do so, the most convenient way is to design certainstacks of the machine (or
certain tapes of a TM) asinput stacksand the others must be initially empty. Then, apop
operation over an input stack would have weight−β instead of simply−1 to account for
this linear factor. However, doing so we must be careful thatnewly allocated memory (that
is, furtherpush) will only be counted as1 when freed again (to avoid a cycle of freeing
one slot, allocatingβ, freeing theseβ slots and reallocatingβ2 and so on). In order to do
so, we simply require that the input stacks are read-only in the sense that it is not possible
to perform apush operation on them.

Notice that any program can be turned into such kind of program by having twice more
stacks (one input and one work for each) and starting by copying all the input stacks into
the corresponding working stacks and then only deal with theworking stacks.

With these programs, the invariant will not be the length of states, but something slightly
more complicated, namelyβ times the length of input stacks plus the length of work stacks.
We will call this measuresize. Globally, we’ll use size to denote some kind of measure on
states that is used by the RCG for analysis. The terminology is close from the one of the
Size Change Termination [Lee et al. 2001] where values are assumed to have some (well-
founded) “size ordering” which is not specified and not necessarily related to the actual
space usage of the data. Typically, termination of a programworking over positive integers
can be proved using usual ordering ofN as size ordering, even if the integers are all32 bits
integers, thus taking exactly the same space in memory.

Definition 7.13. The set of stacks is now partitioned in two.Si is the set ofinput
stacksandSw is the set ofworking stacks. There are two instructionspopi andpopw

depending on whether an input or working stack is consideredbut only onepush =
pushw instruction, that is it is impossible topush anything on an input stack.

The β-sizeof a state isβ times the length of input stacks plus the length of working
stacks, that is:

||〈IP, σ〉||β = β
∑

stki∈Si

|stki|+
∑

stkw∈Sw

|stkw|

Theweightof popi is −β, the weight ofpopw is −1, the weight ofpush is +1. the
weight of other instructions is0.

Theβ-Space RCG is build as the Space-RCG: the underlying graph isthe control flow
graph and the weighting function of each edge isλx.x + ki whereki is the weight of
the corresponding instruction. Alternatively, we can identify weighting functions with the
constantki.

Proposition 7.4 becomes:

PROPOSITION 7.14. Let p be a program,Gβ be its β-Space RCG andp ⊢ θ1 =
〈IP1, σ1〉 → . . . → θn = 〈IPn, σn〉 be an execution with tracet, then there is an ad-
missible walk(IP1, ||θ1||β)→ . . .→ (IPn, ||θn||β) with the same tracet.
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Then, adapting Theorem 7.5 and Theorem 7.9, we have:

PROPOSITION 7.15. Letp be a program andGβ be itsβ-Space RCG. IfGβ is λx.x +
α-resource aware for some constantα, thenS(p) ≤ λx.βx + α .

THEOREM 7.16. Let p be a program andGβ be itsβ-Space RCG.Gβ is λx.x + α-
resource aware (for someα) if and only if it contains no cycle of strictly positive weight.

COROLLARY 7.17. Let p be a program. If there existsβ such that itsβ-Space RCG
contains no cycle of strictly positive weight, thenp is in L INSPACE.

This can be checked in NPTIME sinceβ is clearly polynomially bounded in the size of
the program.

For LINSPACE also, the normalisation process of Turing Machine can quiteeasily be
performed, typically by using an input (read-only) tape anda working tape were space
usage is counted. The first phase of the normalised TM consistof repeatedly copy one
symbol from the input tape to the right of the working tape andaddβ − 1 B at the left of
the working tape, then putting the two# on the working tape. This means that here also
the characterisation is extensionally complete: for each LINSPACE function, there exists
one program computing it that fits into the characterisation.

8. RESOURCES CONTROL GRAPHS

Instead of the simple weighted graphs used for Space-RCG, wewill now use any RSS to
modelise programs. A set of admissible valuations will be given to each state and weighting
functions simulate the corresponding instruction.

Since we can now have any approximation of the memory (the stores) for valuations,
we cannot simply use the length of a state. Instead, we consider given asize function
that associate to each state (or to each store) some size. Thesize function is unspecified
in general. Of course, when using RCG to modelise programs, the first thing to do is
usually to determine a suitable size function (according tothe studied property). Notice that
depending on the size function, weights of instructions canor cannot be defined properly
(that is, some sizes are either too restrictive or too loose and no function can accurately
reproduce on the size the effect of a given instruction on actual data). In this case, the RCG
cannot be defined and another size function has to be considered.

8.1 Resources Control Graphs

Definition 8.1 (RCG). Let p be a program andG be its control flow graph. LetV + be
a set of admissible valuations (and≺ be a well partial order on it). Let|| • || : Θ → V +

be a size function from states to valuations andV +
lbl be the image by|| • || of all states

〈lbl, σ〉 for all storesσ.
For eachi edge ofG, let ω(i) be a function such that for all storesσ verifying p ⊢

〈IP, σ〉 = θ
i
→θ′, ω(i)(||θ||) = ||θ′||. Let V be the closure ofV + by all the weighting

functionsω(i).
TheResource Control Graph(RCG) ofp is the RSS build onG with weightsω(i) for

each edgei, valuationsV and admissible valuationV + (ordered by≺). V +
lbl being the

admissible valuations for vertexlbl.

Example8.2.
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(1) Of course, a Space-RCG as defined earlier is a special caseof general RCG. In
this case,||θ|| = |θ|, this leads toV +

lbl = V + = N for each labellbl. Similarly,
ω(i) = λx.x + ki with ki as in definition 7.1. Sincek ∈ Z, the closure ofV + by the
weighting functions isV = Z.

(2) For a more accurate representation of programs, we couldchoose||〈IP, σ〉|| =
(|stk1|, . . . , |stks|)stki∈S , the vector where each component is the length of a stack
(given an enumeration of the stacks). This would leads toV +

lbl = V + = N
s wheres is

the number of stacks for each labellbl,≺ being the component-wise partial order. In this
case,ω(i) = λx.x + z wherez ∈ Z

s. This leads toV = Z
s. That is, in this case, RCG are

VASS.
(3) However, even this representation can be improved. Typically, using these VASS it

is impossible to detect anything happening to registers. Ifwe have a suitable size function
|| • || : Σ → N for registers, we can choose||〈IP, σ〉|| = (||r1||, . . . , ||rr||)ri∈R. In
this case, depending on the operators, weight could be either vectors addition or matrices
multiplication (to allows copy of a register).

As stated before, we will writev ⊛ ω(i) instead ofω(i)(v) andω(i) # ω(j) instead of
ω(j) ◦ ω(i).

LEMMA 8.3. Let p be a program,G be its RCG andp ⊢ θ0 → . . . → θn be an
execution with tracet. There exists an admissible walk(s0, ||θ0||) → . . . → (sn, ||θn||)
with the same tracet.

COROLLARY 8.4. Letp be a program andG be its RCG. IfG is uniformly terminating,
thenp is also uniformly terminating.

Remark8.5. Taking exactly the image of|| • || as the set of admissible valuationsV +

might be a bit too harsh. Indeed, this set might have any shapeand is probably not really
easy to handle. So, it is sometimes more convenient to consider a superset of it in order
to easily decide if a valuation is admissible or not. The convex hull (in V ) of the image
of || • || is typically such a superset. Notice that it is very similar to the idea of trying to
find an admissible set of sequences of states which will be more manageable than the set of
executions. Here, we try to find an admissible set of valuations which is more manageable
than the actual set of sizes. For more details on how to build and manage such a convex
superset, see the work of Avery [2006].

Remark8.6. The size function is not specified and may depend on the property one
want to study. We do not address here the problem of finding a suitable size function for a
given program. As hinted, it might be a simple vector of functions over stacks and register
but it can also be a more complicated function such as a linearcombination or so. Hence,
with a proper size function, one is able not only to check thata given register (seen as an
integer) is always positive but also that a given register isalways bigger that another one.
This is similar to Avery’s functional inequalities [2006].

Using ||〈IP, σ〉|| = (|stk1|, . . . , |stks|)stki∈S as a size measure, that is VASS as
RCG, we can already achieve a good termination analysis. Indeed, as previously seen,
uniform termination of VASS is decidable and uniform termination of the RCG induce
uniform termination of the program.

This kind of RCG has weight(0, . . . , 0,−1, 0, . . . , 0) (resp. (0, . . . , 0, +1, 0, . . . , 0))
for thepop (resp.push) instruction, where the non-0 component correspond to the stack
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Fig. 9. A RCG for the reverse program

poped (resp.pushed). Other instructions have weight0.

Example8.7.

(1) If we apply this to the reverse program, that leads to||〈IP, σ〉|| = (|σ(l)|, |σ(l′)|).
The resulting RCG (which is a VASS), is displayed on Figure 9.Since this VASS is uni-
formly terminating (there is no cycle of positive weight), the reverse program is also uni-
formly terminating.

(2) Let us consider the following program, working on integers (that is the alphabet is
the set of32 bits positive integers):

0 : if i = n then goto end 3 : goto 0
1 : i := i + 1 end : end
2 : some instructions modifying neitheri norn

This is simply a loopfor(; i < n; i++) (in aC-like syntax). If we consider a size function
that simply takes the vector of the registers, that is||〈IP, σ〉|| = (i, n), then the loop will
have weight(+1, 0) and thus lead to a cycle of positive weight. However, a cleveranalysis
of the program could detect that inside the loop we must necessarily haven − i > 0 and
thus suggest the size||〈IP, σ〉|| = n − i. Using this, the loop has weight−1 and we can
prove uniform termination of the program.
As stated, we do not address here the problem of finding a correct size function for a given
program. This problem is undecidable in general. But invariants can often be automatically
generated, usually by looking at the pre- and post-conditions of the loops.
Notice also that since this inequality must hold only in the loop (i andn could be reused
outside), it can be useful to have a different size function out of the loop, hence different
sets of valuations for each vertex.

This first termination analysis is close to the Size Change Termination [Lee et al. 2001]
in the sense that the size of data is monitored and a well ordering on it ensure that it
cannot decrease forever. It is sufficient to prove uniform termination of most common lists
programs such as reversing a list or insertion sort. It is also, in some way, slightly more
efficient than the original SCT because it can take into account not only decrease of the size
but also increases, so that a program that would loop on something like pop pop push
(2 pops and1 push) is not caught by SCT but is proved uniformly terminating with this
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analysis. In this sense, it is closer to the SCT with difference constraints (δSCT) [Ben-
Amram 2006].

This method is in PTIME, as we’ve shown, uniform termination of VASS is in PTIME.
The original SCT, as well asδSCT, is PSPACE-complete. However, this simple method
do not allow for data duplication or copy. Lee, Jones and Ben-Amram already claimed in
the original SCT that there exists a poly-time algorithm forSCT dealing with “programs
whose size-change graphs have in- and out-degrees bounded by 1”. It is easy to check that
VASS can only modelise such kind of programs accurately4, hence the poly-time bound is
not a big surprise.

Moreover, this method has a fixed definition of size and hence won’t detect termination
of programs whose termination argument does not depend on the decrease of the length of
a list. Among other, any program working solely on integer (represented as letters of the
alphabet) will not be analysed correctly.

8.2 Grounded resource Control Graph

Definition 8.8 (RCG). Let p be a program andG be its control flow graph. Let̂V be
a set of ground (and admissible) valuations (and≺ be a well partial order on it). Let
|| • || : Θ→ V̂ be a size function from states to valuations andV̂lbl be the image by|| • ||
of all states〈lbl, σ〉 for all storesσ. LetV +

lbl be the set obtained by adding tôVlbl a least
upper bound for each infinite subset andV + be the union of them.

For eachi edge ofG, let ω(i) be a function such that for all storesσ verifying p ⊢

〈IP, σ〉 = θ
i
→θ′, ||θ′|| � ω(i)(||θ||). Let V be the closure ofV + by all the weighting

functionsω(i).
The Grounded Resource Control Graph(Grounded-RCG) ofp is the RSS build onG

with weightsω(i) for each edgei, valuationsV , admissible valuationsV + (ordered by≺)
and ground valuationŝV . V +

lbl being the admissible valuations for vertexlbl.

As mentioned with RCG, sometimes the size function is such that no proper weight can
be found for some instruction that will correctly carry on the size. This is solved here by
the use of a non-ground valuation. Indeed, if there are no functionω(i) = f that verifies
exactly the equality (||θ′|| = f(||θ||)) for all states with instruction pointerlbl, then we
can return the least upper bound of all the sizes. This is a wayto mean that there is at this
point no more information in the grounded-RCG on the actual memory and the valuation is
not that much related to it. However, when looking for non uniform termination, we must
have an oracle which is able to guess properly what the valuation (size of the state) should
be.

LEMMA 8.9. Letp be a program,G be its Grounded-RCG andp ⊢ θ0 → . . .→ θn be
an execution with tracet. Let v̂i = ||θi|| be an sequence of admissible ground valuations.
There exists a ground-admissible walk starting at(s0, v̂0), with tracet and(v̂)N as oracle.

COROLLARY 8.10. Letp be a program andG be its Grounded-RCG. IfG is uniformly
terminating, thenp is also uniformly terminating.

Example8.11. The following program computes the exponential of an integer using

4And cannot even modelise all those programs due to the restriction on copying variables previously mentioned
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an operator for multiplication by2.

0 : a := b 3 : b := twice(b)
1 : if a = 0 then goto end 4 : goto 1
2 : a := a− 1 end : end

For some reason, one may want to choose the vector of the registers as a size function
(||θ|| = (a, b)) and a VASS as RCG, either because this is used in a program where this
size function is useful, or because things are decidable with VASS. However, both the copy
and multiplication by two are not representable with a VASS.With a grounded VASS,
however, this is doable. Indeed, both these instruction canreturn “unknown” (i.e. +∞)
for the corresponding register and let the oracle find out what the correct value should be.
Using this, we have the grounded VASS of Figure 6 as an RCG for the program (modulo a
couple of edges with weight0). Since this grounded RCG is uniformly terminating, so is
the exponentiation program.

9. δ-SIZE CHANGE TERMINATION

We explain here how to build RCG in order to perform the same kind of analysis as the
Size-Change Termination with difference constraints (δSCT). We assume here that the
reader is familiar with the original SCT work of Lee et al. [2001].

In this whole section, a given size function on states is assumed. We do not consider here
the problem of finding a proper size function for each program(or family of programs).

9.1 Size-Change Graphs and matrices

Definition 9.1 (Size Change graphs). Let p be a program, and for each labellbla in
it consider a fixed integerka. Let Va = Z

ka andV +
a = N

ka be sets of (admissible)
valuations associated with each label and consider given a size function|| • || such that for
each labellbla and for each storeσ, ||〈lbla, σ〉|| ∈ V +

a .

Let G be the CFG ofp and lbla
i
→lblb two nodes and an edge in it. TheSize

Change Graph(SCT graph) fori is a labelled directed bipartite graph withka input

nodes{A1, · · · , Aka
} andkb output nodes{B1, · · · , Bkb

} and labelled arcsAj
δ
→Bl such

that for all storesσa, σb such thatp ⊢ θa = 〈lbla, σa〉
i
→〈lblb, σb〉 = θb we have

||θb||l ≤ ||θa||j + δ
TheSize Change Matrix(SCT matrix) ofi is theka × kb matrixM such thatMj,l = δ

if there is an arcAj
δ
→Bl in the SCT graph ofi and+∞ otherwise.

Notice that this definition do not constrain too much the sizefunction whereas the one
used in the previous section was much more restricted. A verysimple use would be, if the
alphabet is the one of32 bits positive integers to choose||〈lbl, σ〉|| = (σ(r1), . . . , σ(rn))
and thus find termination proofs for programs over integers.However, some more compli-
cated relation between registers could also be provided in the size function. For example,
if a loop is controlled by (with aC-like syntax):for(i=0;i<j;i++), one of the com-
ponent of the vector (for the corresponding labels) could bej− i. This allows for a more
clever analysis and corresponds exactly to the functional inequalities of Avery [2006].

Notice also that there is not necessarily the same number of components for each label.
This is indeed very useful, typically to avoid carrying overfunctional inequalities out of
their scope. That is, if we consider again the previous loop,the inequalityj − i ≥ 0
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only makes sense inside the loop and it would be a mistake to keep it out of the loop
(especially ifi andj are reused). Another typical example would be to consider local
variables (and not take them into account out of their scope)or functional programs with
different numbers of arguments for each function (as done inthe original SCT).

This gives us an example on when separated sets of valuationsfor each label can be
useful.

The uses of matrices rather than Size Change Graphs follows the works of Abel and
Altenkirch [2002] where similar SCT matrices are used (but over a3-valued set, thus mim-
icking the initial SCT and not the work with difference constraints).

Definition 9.2 (Annotated Control Graphs). Letp be a program. ItsAnnotated Control
Graph (ACG) is the control flow graphG where each edgei has been labelled with the
SCT matrix ofi.

We now consider matrix multiplication over the(Z, min, +) semi-ring (Z = Z
⋃
{+∞}).

We denote⊕ = min and⊗ = + the operations over integers as well as the corresponding
operations over matrices using usual matrices addition andmultiplication.

Notice that in this case, the relation over the states becomes ||θb|| ≤ ||θa|| ⊗M (where
comparison is done component-wisely).

Definition 9.3. Letlbla
i
→lblb

j
→lblc be a path in an ACGG andM, N be the SCT

matrices ofi andj. The SCT matrix of pathij is the productM ⊗N

LEMMA 9.4. The SCT matrix of a path verifies the same condition as the SCT matrix

of an edge. That is, ifp ⊢ θ
t
→θ′ with tracet andM is the SCT matrix oft then||θ′|| ≤

||θ|| ⊗M .

To each matrixM ∈ Mm,n(Z), we associate a boolean matrixM ∈ Mm,n(B) such
thatM i,j = 0 if Mi,j = +∞ andM i,j = 1 otherwise. Notice that• is a morphism, that
is M ⊗N = M ×N .

Definition 9.5 (δSCT). An annotated Control GraphG does notsatisfies theδSCT con-
dition if there exists a cycle in it whose SCT matrixM is such that:

(1) M is idempotent:M ×M = M ;

(2) andM is not decreasing: there is no strictly negative number on the diagonal ofM .

THEOREM 9.6 (BEN-AMRAM [2006]). Let p be a program andG be its ACG. IfG
satisfies theδSCT condition thenp is uniformly terminating.

Notice that this condition is undecidable in general. However, if the SCT graphs arefan-
in free, that is in each row of each SCT matrix, there is at most one non-+∞ coefficient,
then the problem is PSPACE-complete. See [Ben-Amram 2006] for details. Notice that in
this paper, Ben-Amram uses mostly SCT graphs and not SCT matrices. The translation
from one to the other is, however, quite obvious. Similarly we present here directly a
condition on the cycles of ACG without introducing the multipaths. This is close to the
“graph algorithm” introduced in [Lee et al. 2001].

The simple Size Change Principle of Lee et al. [2001] can be seen as an approximation of
theδSCT principle where only labels in{−1, 0, +∞} are used. Since this only gives way
to finitely many different SCT matrices, this is decidable ingeneral (PSPACE-complete).
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Fig. 10. Annotated Control Graph.

Example9.7. Consider the following program (adapted from [Lee et al. 2001] fifth
example):

0 : if y = 0 then goto end 5 : goto0
1 : if x = 0 then goto 6 6 : x := y
2 : a := x 7 : y := y− 1
3 : x := y 8 : goto0
4 : y := a− 1 end : end

It can be proved terminating by choosing the size function||θ|| = (x, y, a). With this
size, its Annotated Control Graph is displayed on Figure 10.For convenience reason,
instructions2 − 4, as well as6 − 7 have been represented as a single edge (with a single
matrix). This allow to completely forget registera and so use(x, y) as size. Similarly,
the other SCT matrices are not depicted since they are the identity matrix. Since there is
no cycle whose SCT matrix is both idempotent and not decreasing, the ACG satisfies the
δSCT criterion and hence the program is uniformly terminating.

9.2 SCT as a Grounded-RCG

Now, let’s take a closer look at the Annotated Control Graphs. These look quite close to
RCG. Indeed, there is an underlying graph which is the control flow graph of a program and
weight for each edge that are composed along paths, that is wewould haveW = M(Z)
and# = ⊗. However, in order for them to be truly a RCG we need to define valuations
(and admissible valuations).

Even more, the relation between sizes of states and the SCT matrices, as in Lemma 9.4
is exactly the one fulfilled by Grounded-RCG. Hence, we can simply chooseNk as ad-

missible (and ground) valuations and this will leads toN
k

as admissible valuations (where

N = N
⋃
{+∞}). the complete set of valuations will then beZ

k
whereZ = Z

⋃
{+∞}.

notice that we do not need here to add−∞ because only upper bounds are considered.

Definition 9.8 (Size Change RCG). Letp be a program and||•|| be a size function such
that for all storesσ, ||〈lbla, σ〉|| ∈ N

ka . Let G be the CFG ofp and for each edgei in it
let Mi be the corresponding SCT matrix.

TheSize Change RCG(SCT-RCG) ofp is the Grounded-RCG forp build with ground

valuationsNka , admissible valuationsN
ka and valuationsZ

ka for vertexlbla. The weight
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for edgei is the SCT matrixMi and we have⊛ = # = ⊗.

LEMMA 9.9. Let p be a program,G be its SCT-RCG andp ⊢ θ0 → . . . → θn be an
execution with tracet. There exists an admissible walk(s0, v0)→ . . .→ (sn, vn) with the
same tracet such that for alli, ||θi|| ≤ vi.

This is a direct consequence of Lemma 9.4.

COROLLARY 9.10. Let p be a program,G be its SCT-RCG andp ⊢ θ0 → . . . → θn

be an execution with tracet. There exists an admissible grounded-walkθ0  θ̂0 → . . .→

θn  θ̂nwith the same tracet such that for alli, ||θi|| = v̂i.

So, if the SCT-RCG has no infinite ground-admissible walk, then the program uniformly
terminates. As usual, the converse is not true. But we can do even better: indeed, uniform
termination of the SCT-RCG is equivalent to verifying theδSCT criterion as we’ll show
now.

LEMMA 9.11. Letp be a program andG be its SCT-RCG. Letc be a finite path in it,c
is the underlying path of a ground-admissible walk.

This is the equivalent of Lemma 5.3 for VASS and the proof is also similar.

PROOF. Consider a walkθ0 → . . .→ θn following c. Let xi,j be theith component of
thejth valuation. Each sub-path ofc induces relations of the shape:xa,b = min{xc,d +
δa,b,c,d} whereδs might be either an integer (positive or not) or+∞.

So, ifxc,d ≥ −δa,b,c,d, then the corresponding term will be positive. If all are, thenxa,b

is also positive.
So, if yi,j is theith component of thejth ground valuation in the sequence used as an

oracle, puttingyc,d = maxa,b{−δa,b,c,d} leads to the wanted ground-admissible walk.

THEOREM 9.12. Letp be a program,G be its SCT-RCG andG be its annotated control
graph.G is uniformly terminating if and only ifG verifies theδSCT condition.

This theorem states that RCG encompass the Size Change Principle, even with some
refinements such as the difference constraints of Ben-Amram[2006] or the functional in-
equalities of Avery [2006] and even allows to combine them easily.

Of course, the property is still undecidable in general but results on theδSCT tell that
this is decidable if the matrices are fan-in free, that is at most one non-+∞ per row.

PROOF. If G does not verify theδSCT condition, then there is a cyclec whose corre-
sponding SCT matrixM is idempotent and not decreasing. This matrix is also the weight
of c in G. By the previous lemma, this cycle is the underlying path of aground-admissible
walk. Let(x1, · · · , xn) and(y1, · · · , yn) be the first and last valuations in this walk. Since
M is idempotent,yi either depends onxi or on one of the ground valuations introduced in
the oracle. Ifyi depend onxi, sinceM is not decreasing we must haveyi ≥ xi.

If yi depend on a valuation from the oracle, then we have again two cases. Eitheryi de-
pends on a component that was introduced to replace a+∞ in a valuation or it depends on
a component that was introduce but replace a non-∞ component of the valuation. Indeed,
if the non ground valuation(10, +∞) is reached, then the oracle could well replace it with
(7, 24). Since the replacement valuation must be smaller than the replaced one, this is not
harmful (we cannot arbitrarily increase some components onthe valuation whose value is
already known, only guess for the values that are unknown).
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In the second case, we can always use a maximal oracle, in the sense that if a component
of a non-ground valuation is not+∞, then the oracle do not changes it (takes the maximum
possible value for this component). Then,yi is still dependant directly onxi and the
previous argument apply. In the first case, we can choose any value to replace+∞ in the
oracle valuation, so we can always find one that ensure thatyi ≥ xi.

So, if G does not verify theδSCT condition, then there is a ground-admissible cycle
(c) such that(s, v̂)

c
→(s, v̂′) and v̂ � v̂′. Hence, by Theorem 6.15,G is not uniformly

terminating (it is easy to see thatG is indeed positive and monotonic).
Conversely, suppose thatG is not uniformly terminating and consider a ground-admissible

infinite walk (s0, v0)
i1→ . . .

in→(sn, vn) . . . Let Mi be the SCT matrix associated with edge
i.

Define a2-setto be a2-elements set{t, t′} of positives integers. Without loss of gener-
ality, t < t′.

Let the sign matrixM of M be a matrix over{−1, 0, +1, +∞} such thatM i,j = +∞
(resp.+1, 0,−1) if Mi,j = +∞ (resp. is strictly positive,0, strictly negative). Notice that
M = M .

Now, for each sign matrixM , define the classPM of 2-sets yielding it by:

PM = {(t, t′)|M = Mit
⊗Mit+1

⊗ . . .⊗Mit′−1
}

The setsPM forms a partition of the 2-sets. Indeed, they are mutually disjoint and
every 2-set belongs to exactly one of them. Since the set of sign matrices (of bounded
dimensions) is finite, it is also finite. Hence, by Ramsey’s theorem, there is an infinite set
of positive integers,T , such that all2-sets{t, t′} with t, t′ ∈ T are in the them class. Let
PM◦ be this class.

Now, considert < t′ < t′′ ∈ T . We have:

M◦ = Mit
⊗ . . .⊗Mit′′−1

= Mit
⊗ . . .⊗Mit′′−1

= Mit
⊗ . . .⊗Mit′−1

×Mit′
⊗ . . .⊗Mit′′−1

= M◦ ×M◦

Hence,M◦ is idempotent.
Now, let Ik = it such thatt is thekth element ofT (in increasing order). LetNj =

MIj
⊗ . . .⊗MIj+1−1 and suppose thatNjk,k

= −1, that is eachNj has a negative number
on the diagonal. Then, ifxl is thekth component ofvl in the walk, for eachl < m ∈ T
we must havexm < xl (becausevm = vl⊗Nj for somej. Since there are infinitely many
integers int, that would lead to an infinite decrease on one component of the valuation and
the walk would no be admissible (or ground-admissible).

Hence,Nj does not have any negative number on the diagonal andNj is idempotent.
SoG do not verify theδSCT condition.

10. MORE ON MATRICES

If we use vectors as valuations and (usual) matrices multiplication as weights, we can
define Matrices Multiplication Systems with States (MMSS) in a way similar to VASS.
Admissible valuations will still be the ones inNk but k is not fixed for the RSS and may
depend on the current vertex.
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Definition 10.1(Matrices Multiplication System with States). A Matrices Multiplication
System with States(MMSS) is a RSSG = (G, V, V +, W, ω) where:

—Vi = Z
ki , V +

i = N
ki for some constantki (depending on the vertexsi).

—Weights are matrices with integer coefficients.

—# = ⊛ = ×.

Using this, it is quite easy to model copy instructions of counters machines (x := y)
simply by using the correct permutation matrix as a weight. To represent increment or
decrement of a counter, an operation which was quite naturalwith VASS, we now need
a small trick. Simply represent then counters as an + 1 components vector whose first
component is always1. Then, increment of decrement of a variable just becomes a linear
combination of components of the vector which can perfectlydone with matrices multipli-
cation.

But there is even more. VASS are able to forbid ax 6= 0 branch of a test being taken in
an admissible walk ifx is 0 simply by decrementingx and then incrementing immediately
after. The net effect is null but ifx is 0, the intermediate valuation is not admissible. This is
still doable with MMSS. VASS, like Petri nets, are however not able to test if a component
is empty, that is forbid thex = 0 branch of a test to be taken ifx is not0.

With MMSS, we can perform this test to0. It is indeed sufficient to multiply the correct
component of the valuation by−1. If it was different from0, then the resulting valuation
will not be admissible.

So, using these tricks it is possible to perfectly model a counters machine by a MMSS:
each execution of the machine will correspond to exactly oneadmissible walk in the MMSS
and each admissible walk in the MMSS will correspond to exactly one execution of the
machine.

This leads to the following theorem:

THEOREM 10.2. Uniform termination of MMSS is not decidable.

However, the study can go further. Indeed, using matrices ofmatrices (that is, tensors)
we can represent the adjacency graph of a MMSS (a matrix wherecomponent(i, j) is the
coefficient of the edge between verticesi andj). That is, a first order program can be rep-
resented as such kind of tensors. However, it would then be possible to uses these tensors
(and tensors multiplication) in order to study second-order programs. In turn, the second
order programs would probably be representable by a tensor (with more dimensions) and
so one.

This would lead to a tensor algebra representing high order programs.

10.1 Polynomial time

Another interesting approach of program analysis using matrices is the one done by Niggl
and Wunderlich [2006]. The programs they study are similar to our stacks machines except
that the (conditional) jump is replaced by a fixed iteration structure (loop) where the
number of iterations is bounded by the length of a given stack. It is quite easy to see that
both models are very similar and can simulate one another without major trouble.

Then, they assign to each basic instruction a matrix, calleda certificatewhich contains
information on how to polynomially bound the size of the registers (or stacks) after the
instruction by their size before executing the instruction. It appears that when sequencing
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instructions, the certificate for the sequence turns out to be the product of the certificates
for each instruction in turn. Certificates for loops are somekind of iterate of the certificate
for the body and certificate forif statements are the maximum of the two branches.

Building the certificate of a program thus leads to a polynomial bound on the result
depending on the inputs which can then be turned into a polynomial bound on the running
time (depending on the shape of the loops).

So, these certificates can very well be expressed in a MMSS where the valuation would
give information on the size of registers (depending on the size of the inputs of the pro-
gram) and the weight of each instruction will be these certificates. This will exactly be a
Resources Control Graph for the program. If the program is certified, then this RCG will
be polynomially resource aware.

11. CONCLUSION

We have introduced a new generic framework for studying programs. This framework is
highly adaptable via the size function and can thus study several properties of programs
with the same global tool. Analysis apparently quite different such as the study of Non
Size Increasing programs or the Size Change Termination canquite naturally be expressed
in terms of Resource Control Graph, thus showing the adaptability of the tool.

Moreover, other analysis look like they can also be expressed in this way, thus giving
hopes for a truly generic tool to express and study programs properties such as termination
or complexity. It is even likely that high order could be studied that way, thus giving
insights for a better comprehension of high order complexity.

Theory of algorithms is not well established. This work is really on the study of pro-
grams and not of functions. Further works in this direction will shed some light on the very
nature of algorithms and hopefully give one day rise to a theoretical framework as solid
as our knowledge of functions. Here, the study of MMSS and thetensors multiplication
hints that a tensors algebra might be used as a mathematical background for a theory of
algorithms and must then be pursued.
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