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Resource Control Graphs

JEAN-YVES MOYEN
University of Paris 13

Resource Control Graphs can be seen as an abstract representation of programs. Each state of
the program is abstracted as its size, and each instruction is abstracted as the effects it has on
the size whenever it is executed. The Control Flow Graph of the programs gives indications on
how the instructions might be combined during an execution.

Termination proofs usually work by finding a decrease in some well-founded order. Here, the
sizes of states are ordered and such kind of decrease is also found. This allows to build termination
proofs similar to the ones in Size Change Termination.

But the size of states can also be used to represent the space used by the program at each
point. This leads to an alternate characterisation of the Non Size Increasing programs, that is the
ones that can compute without allocating new memory.

This new tool is able to encompass several existing analysis and similarities with other studies
hint that even more analysis might be expressable in this framework thus giving hopes for a generic
tool for studying programs.

Categories and Subject Descriptors: D.B5dffware engineering]: Software/Program Verification; F.2.2Apal-
ysis of algorithms and problem complexity]: Nonnumerical Algorithms and ProblemsSemputations on dis-
crete structures F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and reasoning about
Programs; G.2.2Qiscrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory, Verification
Additional Key Words and Phrases: Abstraction, implicit complexity, non-size increasing, pro-
gram analysis, size change termination, termination

1. INTRODUCTION
1.1 Motivations

The goal of this study is an attempt to predict and control potational resources like
space or time, which are used during the execution of a pnogFar this, we introduce a
new tool calledResource Control Graphend focus here on explaining how it can be used
for termination proofs and space complexity management.

We present a data flow analysis of the low-level languagekketby means of Resource
Control Graph, and we think that this is a generic concephfrehich several programs
properties could be checked.

The first problem we consider is the one of detecting progiantesto compute within a
constant amount of space, that is without performing dycangmory allocation. These
were dubbedNon Size Increasingy Hofmann [2000].

There are several approaches which are trying to solve tbidgm. The first protection
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2 . Jean-Yves Moyen

mechanism is by monitoring computations. However, if thenitaw is compiled with the
program, it could crash unpredictably by memory leak. Thmsd is the testing-based
approach, which is complementary to static analysis. lddessting provides a lower
bound on the memory while static analysis gives an upperdhotihe gap between both
bounds is of some value in practical. Lastly, the third applois type checking done
by a bytecode verifier. In an untrusted environment (like edded systems), the type
protection policy (Java or .Net) does not allow dynamicedkion. Actually, the former
approach relies on a high-level language, which capturéslaals with memory allocation
features [Aspinall and Compagnoni 2003]. Our approachantaees, and even provides,
a proof certificate of upper bound on space computation owddael language without
disallowing dynamic memory allocations.

The second problem that we study is termination of prograrhss is done by closely
adapting ideas of Lee et al. [2001], Ben-Amram [2006] andlAm& Altenkirch [2002].
The intuition being that a program terminates whenevesetigeno more resources to con-
sume.

There are long term theoretical motivations. Indeed a lotvofks have been done
in the last twenty years to provide syntactic charactadaatof complexity classe®.g.
by Bellantoni and Cook [1992] or Leivant and Marion [1993hoEe characterisations are
the bare bone of recent research on delineating broad slabpeograms that run in some
amount of time or space, like Hofmann, but also Niggl and Waslich [2006], Amadio
et al. [2004], and Bonfante et al. [2004].

We believe that our Resource Control Graphs will be able tmempass several or even
all of these analysis and express them in a similar way. gbnse, Resource Control
Graphs are an attempt to build a generic tool for progranyaisal

1.2 Coping with undecidability

All these theoretical frameworks share the common pagtritylof dealing with behaviours
of programs (like time and space complexity) and not onlwlie inputs/outputs relation
which only depends on the computed function.

Indeed, a given function can be computed by several prograthslifferent behaviours
(in terms of complexity or other). Classical complexity alne deals with functions and
computeextensionatomplexity. Here, we want to computgensionalor implicit com-
plexity, that is try to understand why a given algorithm isrmefficient than another to
compute the same function.

The study of extensional complexity quickly reaches thenlauy of Rice’s theorem.
Any extensional property of programs is either trivial odenidable. Intuition and empir-
ical results point out that intensional properties are evanmler to decide. Section 3 will
formalise this impression.

However, several very successful works do exist for stuglipioth extensional properties
(like termination) or intensional ones (like time or spacenplexity). As these works pro-
vide decidable criteria, they must be either incompletgtea valid program) or unsound
(accept an invalid program). Of course, the choice is ugdalensure soundness: if the
program is accepted by the criterion then the property (teation, polynomial bound,...)
is guaranteed. This allows the criterion to be seen as dicaté in a proof carrying code
paradigm.

When studying intensional properties, two different kioflapproaches exist. The first
one consist of restricting the syntax of programs so thatpgongram written necessarily

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY



Resource Control Graphs . 3

has the wanted property. This is in the line of the works omjiive recursive functions
where the recurrence schemata is restricted to only pvienieécursion. This approach
gives many satisfactory results, such as the characterisaif PriMe by Cobham [1962]
or Bellantoni and Cook [1992], the works of Leivant and Maram tiering and predicative
analysis [1993] or the works of Jones on CONS-free progr@2®8(]. On the logical side,
this leads to explicit management of resources in Lineaid [igirard 1987].

All these characterisations usually have the very nice grypof extensional complete-
nessin the sense thag.g, every polynomial time computable function can be computed
by a bounded recursive function (Cobham). UnfortunateByte usually very poor on the
intensional completenessieaning that very few programs fit in the characterisatwl{
son 1998] and programmers have to rewrite their programsonanatural way.

So, the motto of this first family of methods can be descritetbaving the proof bur-
den to the programmer rather than to the analyser. If you aée & program with the
given syntax (which, in some cases, can be a real challetig®),certain properties are
guaranteed. The other family of methods will go in the othaywLet the programmer
write whatever he wants but the analysis is not guaranteedtk.

Since syntax is not hampered in these methods, decidaisilijgnerally achieved by
loosening the semantics during analysis. That is, one wilkddermorethat all the exe-
cutions a program can have. A trivial example of this idea lvdoe “a program without
loop uniformly terminates”. The reason we consider looplsasis because we assume it
is always possible to go through the loop infinitely many tifigat is, the control of the
loop is completely forgotten by this “analysis”.

A more serious example of this kind of characterisation & $tize Change Termina-
tion [Lee et al. 2001]. The set LOW*® that is build during the analysis contains all
“well-formed call sequences”. Every execution of the pesgrcan be mapped to a well-
formed call sequence but several (most) of the call seq@eticanot correspond to any
execution of the program. Then, properties (terminatidradl sequences il LOW*
are necessarily shared by all execution of the program.

However, the methods sometimes fails — which is normal sireca decidable method
for partly solving an undecidable problem — becafideOW“ does contain well formed
call sequences which correspond to no execution of the anodput nonetheless do not
have the wanted property€. are infinite).

This second kind of methods can thus be described as not mgeldth the programmer
and let the whole proof burden lay on the analysis. Of coutseanalysis being incom-
plete, one usually finds out that certain kinds of programstwe analysed correctly and
have to be rewritten. But this restriction is damprosterioriand nota priori and it can be
tricky to find what exactly causes the analysis to fail.

This work was greatly inspired by the Size Change Princigde (Section 9 for more on
this issue) and is so strongly intended to live within theosetkind of analysis.

Section 3 deals with global decidability issues of progsrtif programs, establishing the
fact that the set of poly-time programsis-complete and Section 4 will describe the core
idea of Resource Control Graphs that can be summed up asdiadiacidable (recursive)
superset of all the executions that still ensure a givengntggsuch as termination or a
complexity bound). Then, Section 5 presents Vectors AdidiBystems with States which
are generalised into Resource Systems with States in 8e&:tidhey form the backbone
of the Resource Control graphs. Section 8 present the &mif &nd explain how to build
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4 . Jean-Yves Moyen

a Resource Control Graph for a program and how it can be ussetlitty the program.
Sections 7 and 9 shows applications of RCG in detecting No@ [Bicreasing programs or
building termination proofs similar to the Size Change Ti@ation principle.

2. STACKS MACHINES
2.1 Syntax

A stacks machine consist of a finite numbenregisters each able to store a letter of an
alphabet, and a finite number sthcls, that can be seen as lists of letters. Stacks can only
be modified by usugdush andpop operations, while registers can be modified by a given
set of operators each of them assumed to be computed in & siniglof time.

Definition 2.1 (Stacks machine)Stacks machines are defined by the following gram-
mar:

(Alphabe} X finite set of symbols
(Programs pua=1lbly :dy...1bl, iy
(Instruction Z > == if (test)then goto Ibl, el se goto |bl ]|
r :=pop(stk)|push(r,stk)|r:=op(ry,---,rx)|end

(Labely L > 1bl finite set of labels
(Registers R > r finite set of registers
(Stacks S > stk finite set of stacks
(Operators O > op finite set of operators

Each operator has a fixed arityandn is an integer constant. The syntax of a program
induces a functiomext : £ — L such thamnext (I bl ;) = I bl ;41 and a mapping

v : L — T such that(l bl ;) = ix. Thepop operation removes the top symbol of a stack
and put it in a register. Thepush operation copy the symbol in the register onto the top
of the stack. The if instruction giving control to eithlebl ( or | bl ; depending on the
outcome of the test. Each operator is interpreted with i@gpe given semantics function
[op].

The precise sets of labels, registers and stacks can bednfimm the program. Hence
if the alphabet is fixed, the machine can be identified withpitogram itself.

The syntaxi f (test) then goto | bl can be used as a shorthand if the second
label is the next one. Similarlgot ol bl is a macro fori f true t hen goto I bl,
that is an unconditional jump to a given label.

If the alphabet contains a single letter, then the registersiseless and the stacks can
be seen as unary numbers. The machine then becomes an usuigrsanachine [Shep-
herdson and Sturgis 1963].

Example2.2. The following program reverses a list in stelkd put the result in stack
I". It uses registea to store intermediate letters. The empty stack is denjoted

0:if I=] then goto end; 3 : gotoO;
1 : a:=pop(l); end : end;
2 : push(al);

2.2 Semantics

Definition 2.3 (Stores) A storeis a functionos assigning to each register of a program
a symbol (letter of the alphabet) and to each stack a finitegsin ¥*. Store update is
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Resource Control Graphs . 5

i=u(IP)=r:=0p(ri,---,rg) o =ofr < [op](a(ri),...,o(rr))}

pk (IP,o)5(next (1 P),o’)

t(IP)=if (test) then goto I bl; else goto I|bly (test)istrue

pE 1 P,o) bl o)

t(IP)=if (test)then goto I bl; else goto |bly (test)isfalse

pE (1 P,o) s by o)

i=1(1P)=r:=pop(stk) o(stk)=Aw o =ocfr — A\;stk — w}

pF (1P, o) (next (1 P),a’)

i=1(IP)=r:=pop(stk) o(stk)=¢

pF(P,o)51

i=1(1P) =push(r,stk) o =o{stk — o(r).o(stk)}

pk (IP,o)5(next (1 P),o’)

Fig. 1. Small steps semantics

denotedr{x — v}.

Definition 2.4 (States) Letp be a stack program. Atateof p is a coupled = (I P, o)
where thenstruction Pointerl P is a label andr is a store. LeD be set of all state)*
(6%) be the set of finite (infinite) sequences of states @it be the union of both.

Definition 2.5 (Executions) The operational semantics of Figure 1 defines a relation
PISAN S

An executiorof a progranp is a sequence (finite or ngb)— 905912 L [

An infinite execution is said to beon-terminating A finite execution withn states in it
isterminating If the program admits no infinite execution, then itirsiformly terminating

We usel to denote runtime error. We may also allow operators to netuif we want
to allow operators to generate errors. Itis important tacedhat | is not a state and hence
won't be considered when quantifying over all states.

If the instruction is not specified, we will write simppy+ ¢ — ¢’ and usebs, = for the
transitive and reflexive-transitive closures.

Definition 2.6 (Traces) Letp 905912 .. .i—”>9n ... be an execution. Itsaceis the
sequence of all instructionis. . .4, ...

Definition 2.7 (Length) Letd = (I P,o) be a state. Itéength|f| is the sum of the
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6 . Jean-Yves Moyen

number of elements in each stacKhat is:

0= 3 Istk]

stkeS

Length is the usual notion of space. Since there is a fixed euoftregisters and each
can only store a bounded number of different values, theespaed to actually store all
registers is always bounded. So, we do not take registevsaittount while computing
space usage.

The notion of length allows to define usual time and space axitp classes.

Definition 2.8 (Running time, running space)hetime usageof a finite execution is
the number of states in it. Thenning timeof a program is an increasing functigrnsuch
that the time usage of each execution startingiatbounded byf (|6]).

Thespace usagef a finite execution is the maximum length of a state in it. Turening
spaceof a program is an increasing functigrsuch that the space usage of each execution
starting a® is bounded byf(]6]).

Definition 2.9 (Complexity) Let f : N — N be an increasing function. The claB§/f)
is the set of functions which can be computed by a program &homing time is bounded
by f. The classS(f) is the set of function which can be computed by a program whose
running space is bounded Ky
As usual, BIME denotes the set of all functions computable in polynomiaétithat is
the union of"( P) for all polynomialsP and so on.

If we want to define classes such aed&SPACE, then we must, as usual, use some
read only stacks which can only Ip@ped but notpushed and who play no role when
computing the length of a state.

2.3 Turing Machines

Stacks machines are Turing complete. We quickly describe the straightforward way
to simulate a Turing machine by a stack machine.

Simulating a TM with a single tape and alphabetan be done with a stack machine
with the alphabek | @ (whereQ is the set of states of the TM), two stacks and two reg-
isters. The two stacks and the first register will encodedpe tn an usual way (one stack,
reversed, for the left-hand side, the register for the sedsymbol and the other stack for
the right-hand side). Another register will contains therent state of the automaton.

At each step, the program will go through a sequence of testh@ state in order to
find the right set of instructions to perform and after thatjuback to the beginning of the
program. There will be at mogtsuch tests wherg is the number of states of the TM (a
more clever binary search can reduce thi$og(¢)). Then, simulation of a step is quite
easily done by modifying the “scanned symbol” register drahtsimulating movement.

Simulating movement first has to check that the correct sisgiot empty,push a
“blank symbol” on it if necessary and thgrush the scanned symbol on one stack and
pop the other stack onto it.

IHence, it should more formally bl P, o)|| = (Jo(stk1)|,...,|o(stks)|)stk,es- Since explicitly men-
tioning the store everywhere would be quite unreadable,seetk ; instead ot (st k ;) and, similarly,r instead
of o(r), when the context is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY



Resource Control Graphs . 7

Each step of the TM is simulated in a constant number of stéfiseastack machine
(depending only on the TM). So that the time complexity of steck machine will be
the same as the time complexity of the TM (up to a multipli@tonstant). Similarly, at
any step of the simulation, the length of the configuratiothefstack machine will be the
number of non-blank or scanned symbols on the tape (minudecause one symbol is
stored into a register). So the space complexity will be H#raes

Notice that the simulation of TM by stack machine preservacepcomplexity very
tightly.

3. SOME DECIDABILITY ISSUES

In this section, we hint that intensional properties areanardecidable than extensional
ones by proving this result for polynomial time.

Rice’s theorem [Rice 1953] states that axgensionaproperty of Turing Machines (or
programs) is either trivial or undecidable. An extensi@raperty is one that depends only
of the inputs and the output of the machine, that depends only of the function computed
by the machine.

However, the polytime property that is often studied ismsfj@r. When studying func-
tion, the class PIME corresponds to those functions wban becomputed in polynomial
time (in the given model). However, there also exist somerilyms (or programs) that
do compute the correct function but take much more than polyal time in order to do
so. This is because a single function is computed by sevigialitnms and some of them
can be inefficient.

Typically, in order to compute the Fibonacci’s numbers, cae either use the straight-
forward recursive algorithm that run in exponential timeuse some kind of dynamic
programming in order to get a polynomial time algorithm. Thaction computed by
both these algorithms is the same and belongstie®, but there still exists algorithms
computing it in exponential (or more) time.

However, we want here to study algorithms rather than fonsti The polynomial bound
that we're looking for should be established on a program lmgm@mm basis. That is,
we’'re studying here intensional properties of programpgedeing on the algorithm used,
and not extensional properties depending only on the coadpiutnction (that is on the
inputs/outputs relation).

Empirically, intensional properties seem even harder wdg#ethat extensional ones.
This can be formalised a bit by the following theorem.

THEOREM 3.1 (MARION 00, TERUI 06). Letp be a program. The question "does
computes in polynomial time” is undecidalaeen if we know thap uniformly terminates

PROOF (MARION AND MOYEN [2006]). Letq be a program and consider the program
p that works as follows:

—p answer9) if its input is 0.

—On inputx # 0, p simulatesy(0) for = steps.
—If ¢(0) halts withinz steps, thep answers).
—Else,p loops for2” (or any other large value depending:onsteps and then answers
0.

Obviously,p uniformly terminates. Is it polynomial-time?

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY



8 . Jean-Yves Moyen

LetT,(n) be the time (number of steps) needed to comp(ig (may be infinite ifg(n)
does not terminate).

If ¢(0) terminates, then there existé € N such thatT,(0) = N. The timeT,(x)
needed to compute(z) is bounded byV + 2V, that is a constant valué\( only depends
ong). Indeed, ifr < N, thenp will run for = steps simulating and then for an additional
27 steps looping. This leads to a total of+ 22 < N + 2. On the other hand, if
x > N thenp will run for N steps simulating and then immediately retufh So, if¢(0)
terminates, thep(z) runs in constant timév + 2% for all z.

Notice that there might be some simulation overhead (thsitisilatingg for NV steps
might require more thatVv steps ofp) but this overhead is depending only éhand not
onz, so that the reasoning is still true.

If ¢(0) does not terminates, theiiz) runs forz + 2* steps ¢ for the simulation (plus
an eventual overhead) afd for the final loop), that is exponential time with respectto

So,p runs in polynomial time if and only i§(0) terminates. Since the halting problem
is not decidable, so is polytime computability of programsl

Uniform termination of programs, in itself, is a non semiuesive property. So even
with an oracle powerful enough to solve (some) non semitsdoel problems, the inten-
sional property of running in polynomial time is still und@able! Intensional properties
are, indeed, much harder than extensional ones.

Notice that this proof can be easily adapted to show the uddeility of any complexity
class (of programs). It is sufficient to change the functiomputed byp if ¢(0) does not
terminates. Notice also thatdoes computes the constant functiowhich, as a function,
certainly belongs to BME. Itis really important to separate the extensional propghie
function can be computed by some program in polynomial tifre@j the intensional one
(the program we're considering is polytime).

Remark3.2. A similar proof, for the undecidability of running in [yoomial time,
based on Hilbert's tenth problem [Matiyasevich 19931(+ 1) = 0 if some polynomial
P has a rootr, 2 x p(z) otherwise) was presented as the Geocal ICC workshop in Feb.
2006 by K. Terui. This work has been done independently from alamnesult presented
by J.-Y. Marion in March2000 at a seminar in ENS Lyon. This is kind of a folklore result
but is nonetheless worth mentioning because lot of confusidone on the subject.

The above result can be improved. Indeed, the set of progttamsun in polynomial
time isX¥,-complete (in the arithmetical hierarchy). Recall, thay@ical >,-complete set
is the set of partial computable functions.

In order to establish the fact that polytime programsisecomplete set, we take a class
C of computable functions which contains all constant funtdi Assume also that there
is a computable set of function cod€swhich enumerates all functions @#. The set of
linear functions{x + b | Vb € N} satisfies the above hypothesis. Another example is the
set of polynomials or the set of affine functioms @ + b).

Next, let[p] be the function computed by the programwith respect to an acceptable
enumeration of programs. We refer to Rogers’ textbook [19@7background. Say that
T,(x) is the number of steps to execute the proggaon inputz with respect to some
universal (Turing) machine.

Now, define the set of programs whose runtime is uniformlyrataa by functions ir:

Ar = {p|3e € CVz, Ty(x) < [e](lz])}

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY



Resource Control Graphs . 9

THEOREM 3.3 (MARION 00). The setAr is YXs-complete.

PROOF (MARION AND MOYEN [2006]). It is clear that the statement which defines
Ar is aXy statement.
Let B be any>:; set defined as follows:

B ={q|3yVz, R(q,y,z)} R is a computable predicate

We prove thatB is reducible toAr.

For this, we construct a binary predicaieas follows. Q(q,t) tests duringt steps
whether there is g with respect to some canonical ordering such thatR(q, y, «) holds.
If it holds, Q(q, t) also holds. Here, the predicageis computable with a compleié; set
as oracle.

Using the s-m-n theorem, there is a progrgrauch thafl¢'](t) = Q(q, t).

(1) Suppose thai € B. We know that there is ap such thatvz, R(q,y,z). It follows
that the witnesg will be found by aftert steps. Since the constant functidnt is
in C, we conclude thaf’ is in Ar.

(2) Conversly, suppose thetis in Ap. This means tha®)(¢/, t) holds for some, which
yields any verifyingVz, R(q,y,x)

O

Notice that we may change time by space in the above proothwhads to the follow-
ing consequence:

COROLLARY 3.4. Let
As = {p|3e € OV, Sp(x) < [e](|x])}
whereS),(z) is the space use hyonz. The setdg is X,-complete.

Depending on the choice of the set of functi@nsthis proves th&2;-completeness of
the following sets:

—The set of programs running in polynomial time (for polyrnatsfunctions andir).
—The set of programs running in exponential time.

—The set of programs running in logarithmic space or in potyial space.
—Almost any set of program defined by a space or time bound.

Since the arithmetical hierarchy is separated, this meaisail these problems are
strictly harder than the halting problem.

4. A TASTE OF RCG
This section describes the idea behind Resource ContrplGneorder to get a better grip
on the more formal definitions later on.

4.1 Control and memory

The undecidability results means that given a program iigassible to say if the set of
executionsY, and®©«, the set of infinite sequences of states, are disjoint. ddtéa here

is to find a set4 of admissiblesequences, which is a superset of the set of all executions,
and whose intersection witB“ can be computed. If this intersection is empty, tlzen

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY



10 . Jean-Yves Moyen

@*w @*w

@*w
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Fig. 2. Sequences of states, executions and admissiblersezgi
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w3/

fortiori, there is no infinite executions but if the intersection i @mpty, then we cannot
say if this is due to some non-termination of the program soifie of the sequences added
for the analysis caused trouble. This means that dependitfyeomachine considered and
the way A is build, we can be in three different situations as desdribg~igure 2. We
build A > Y such thatd () ©% is recursive. If its empty, then the program uniformly
terminates. else, we cannot say anything. Of course, theaishability theorem means
that if we required (or at least4 () ©%) to be recursive, then there will necessarily be
some programs for which the situation will be the one in thddta (in Figure2), that is
we falsely suppose that the program does not uniformly testei

Clearly, states can be split up into a control part, namedyidlel, and a memory part,
namely the store. This two parts interact in both directiahg control can change the
memory via assignments of a new value to a register or stastkh@memory part changes
the behaviour of the control when tests are performed.

By analogy to Turing machines, the interaction of the cdnirer the memory cor-
responds tavriting while the interaction of the memory over the control cormugs to
reading Figure 3 describes this situation. On Turing machinesgtimsrol part will be the
automaton while the memory part is the tapes.@or any other imperative programming
language, the control part is the program itself and the nmgsahe content of the heap
and stack. For functional programming, we can see the cufiuaantion as the control part
and the values of its parameters as memory.

The control part is completely finite because there are onitefiy many labels. On the
other hand, the memory part is infinite because there arateifirmany different strings.
So, the first idea will be to really split states in two in oréiehave a finite representation
of the control part that can then, in a more or less dynamiesl, Wwe completed by the
memory.

4.2 The folding trick

The first try at building such an admissible set of executigitisbe to completely forget
the memory part and only keep the control part. So we studyais ofL*“ which are
build over a finite alphabet) while executions are build over an infinite one (since there
are infinitely many stores).

Given a word over labels, we can “fold” it by identifying atléntical labels in it into
a single vertex of a graph and then adding edges between tioegif and only if they
appear in sequence somewhere in the word. Because of trexyfrthe program, not all
edges will appear in such a graph and, even more, this foldicigcan be applied to all
possible executions (only keeping the labels) yielding single graph called the Control
Flow Graph of the program.
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Wml}-) | Memory
J?eading

Contro|

Fig. 3. Control and memory interactions.

Definition 4.1 (Control Flow Graph) Let p be a program. Itontrol Flow Graph
(CFQG) is adirected grapfi = (.5, A) where:

—S = L. There is one vertex for each label.

—If «(Ibl') = if (test)then goto |bl; else goto |bl. then there is one
edge from bl tol bl ; labelled (test),. and one from bl tol bl - labelled (test)se

—If (I bl ) = end then there is no edge going outldbl .
—Otherwise, there is one edge frdrhl to next (I bl ) labelled.(I bl ).

Both vertices and edges are named after the label or ingtnutitey represent. No
distinction are made between the vertex and the label ordbe and the instruction as
long as the context is clear.

Example4.2. The CFG of the reverse program is displayed on Figure 4.

Now, to each execution corresponds a path (finite or not) énGRG. The converse,
however, is not true. There are paths in the CFG that corresfmono executions.

Let P be the set of paths in the CF®.is a regular language over the alphabet of the
edges (see Lemma 6.19), herfeds recursive. Since we can associate a path to each
execution, we can say th& is a superset of>. So, we can choosd = P and have a
first try at an admissible set of sequences of executions.

However, as soon as the graph contains lo®pwjll contain infinite sequences. So this
is quite a poor try at building an admissible set of sequercmsesponding exactly to the
trivial analysis ‘A program without loop uniformly terminates

In order to do better, we need to plug back the memory into th&.C

4.3 Walks
So, in order to take memory into account but still keep the C®& will not consider
vertices any more but states again. Clearly, each statedégiased to a vertex of the CFG.
Moreover to each instructioly we can associate a functi¢ij such that for all state, ¢’
suchthap -6 = (1 P,o)-5(1 P',o’) = ¢, we haver’ = [i](o).

So, instead of considering paths in the graph, we can nowidemwalks. Walks are
sequences of states following a path where each new stomriputed according to the
semantics functiofii] of the edge just followed.

2in some loose sense of “superset” that can be toleratedsiintftirmal description.
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goto 0

Fig. 4. CFG of the reverse program.

But if we do this exactly that way, then there will be a bijectibetween the executions
and the walks and nothing can be studied.

Paths can be seen as removing both interaction of controfreemdory. Indeed, a path
only looks at the control part of a program and is completddiivaus of its memory.
When trying to plug back memory, if we keep both interactisafling and writing) then
we only manage to describe again the executions (in termalis)v So we need to find
something that lay between the two.

The idea at this point is to keep both branches of a test ashp@sghenever a test is
encountered. With the CFG, when there is a vertex with ogrek> 2, both paths are
considered. So we will now relax the constraints on walks@deoto do the same. That s,
replacefi] with the identity for tests. This can be seen as removingehding part of the
program and keeping only the writing part.

This yield to a bigger set of walks. However, in certain cgslepending on the shape of
the semantics functions for instructions, hence on thefsgierators of the program), this
set will be decidable. Often, in order to achieve decidahiii is necessarily to consider
not stores (and states) but only approximations of sed, (only the total size of each
store).

5. VECTOR ADDITION SYSTEM WITH STATES

This section describes Vectors Addition Systems with Stf##\SS). Resources Con-
trol Graphs are a generalisation of VASS. VASS are known tecefeivalent to Petri
Nets [Reutenauer 1989].

In a directed graphG = (S, A), will write s-%r to say that is an edge betweenand
r. Similarly, we will write so 255,23 ... %35, to say that . . . a, is a path going through
verticessg, - - - , s,,. Or simplysg—s, if w =a; ...a,. s — s’ means that there exists an
edgea such thats>s’ and>, 5 are the transitive and reflexive-transitive closures-of

Definition 5.1 (VASS, configurations, walksp Vector Addition System with Statiss
a directed grapli’ = (S, A) together with aveighting functionv : A — Z* wherek is a
fixed integer.

3We will uses € S to designate vertices and € A to designates edges. The choice of using french initials
(“Sommet” and “Aréte”) rather than the usu@f, E) is done to avoid confusion between vertices and valuations.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY



Resource Control Graphs . 13

A configurationis a couplefl = (s,v) wheres € S is a vertex and) € Z* is the
valuation A configuration isadmissiblef and only if v € N*,

A walkis a sequence (finite or not) of configuratiqns, o) B ... ﬂ'(sn, vy ) such that
505513 ... %s, and for alli € N*, v; = v;_1 + w(a;). A walk is admissibleif all
configurations in it are admissible.

We say that path; . .. a,, is theunderlying pathof the walk and the walkollows this
path. Similarly,G is theunderlying graptfor the VASS.

As for graphs and paths, we will write — ¢’ if there exists an edge such tha®-%¢’
and>, % for the closures.

Definition 5.2 (Weight of a path) Let V' be a VASS and; ... a, be a path init. The
weight of edges is extended to paths canonicallyi; ... a,) = > w(a;).

LEMMA 5.3. LetV be aVASS and; ... a, be afinite path in it. There exists a valu-
ationwvg such that for) < i < n, vy + w(ay ...a;) € N¥,

This means that every finite path is the underlying path ofdamissible walk.

PROOF Because the path is finite, thith component ofu(a; . .. a;) is bounded from
below by« (of course, this bound is not necessarily reached with threegdor all com-
ponents, but nonetheless such a bound exists for each cemgeparately). By putting
B; = max(0, —«;) (that isO if «; is positive), thervg = (61, - - , k) verifies the prop-
erty. O

LEMMA 5.4. Let(sg,v9) — ... — (sn,v,) be an admissible walk in a VASS. Then,
for all v{, > vy (component-wise comparisori}g, vy) — ... — (s, v},) is an admissible
walk (following the same path).

PROOF By monotonicity of the addition. O

Definition 5.5 (Uniform termination) A VASS is said to bainiformly terminatingf it
admits no infinite admissible walk. That is, every walk idheitfinite or reaches a non-
admissible configuration.

THEOREM 5.6. A VASS isiot uniformly terminating if and only if there exists a cycle
whose weight is ifN* (that is, is positive with respect to each component).

PROOF If such a cycle exists, starting and ending at vegtehen by Lemma 5.3 there
existsvg such that the walk starting @, vo) and following it is admissible. After fol-
lowing the cycle once, the configuratios v, ) is reached. Since the weight of the cycle
is positive,u; > vy. Then, by Lemma 5.4 the walk can follow the cycle one more time
reaching(s, v2), and still be admissible. By iterating this process, it isgible to build an
infinite admissible walk.

Conversely, let(sg,vg) — ... — (sn,v,) ... be an infinite admissible walk. Since
there are only finitely many vertices, there exists at leastwertexs’ appearing infinitely
many times in it. Let(s},v;) be the occurrences of the corresponding configurations in
the walk. Since the component-wise order over vectors islbpagial order, there exists
i, j such that; < v%. The cycle followed betwees ands; has a positive weight.[J

Definition 5.7 (Characteristic matrix, Parikh vector)LetV be a VASS and consider a
given enumerationy, - - - , a,, of the edges. Itsharacteristic matrix” is thek x n matrix
whoseith column isw(a;).
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(0,—1,+1) (0,0,—-1)  (0,42,+1) (—1,0,—-1)

(0,+1,-2) (0,0,+1) (0,0,+1) (0,—1,0)

Fig. 5. Two VASS

Given an enumeratiosy, - - - , s,,, Of the vertices ofl/, its connectivity matrix" is the
m X n matrix where:

. a;
—I ;= —1if s,—s' for some vertex’

—T ;= 1if s'*%s, for some vertex'.
—TI" ; = 0 otherwise.

Letp = a; ...a, be a path. It¥arikh vectort,, is a vector inN"™ whoseith component
is the number of occurrences@fin p.

LEMMA 5.8. The weight of a pathisT' x ¢,,.
This is due to the commutativity of the addition.

THEOREM 5.9. A VASS with characteristic matrix and connectivity matriX” is not
uniformly terminating if and only if the system:

X >0
I X =0
I' X >0

admits a solution. This can be checked in polynomial time.

PROOF X is the Parikh vector of a cycle whose weight is positive, leethe VASS is
not uniformly terminating due to Theorem 5.6.

The first inequation ensure that is the Parikh vector of a non-empty walk. The equa-
tion ensure that it is the Parikh vector of a cycle and the sg@@eequation ensure that the
weight of this cycle is positive.

Since the set of solutions is a cone (that isXifis a solution then so ia x X for all
«), the existence of a real solution ensure the existence iofteger one. Since we're only
concerned with the existence of a solution, this can be ddlvpolynomial time by usual
Linear Programming techniques]

Since VASS and Petri nets are equivalent, this also showtauthiform termination of
Petri nets is decidable. Without going through the equivede a direct and very similar
proof can be made for Petri nets (characteristic matrix aatkP vectors also exist, and
there is no need for connectivity matrix). Such a proof anduenél in [Moyen 2003],
(theorent0, pagel3).
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Example5.10. Figure 5 display two VASS. More formally, the first ot®sld be de-
scribed as a grapy = (S, A) with:
—S ={a,b,c,d}
—A = {a®b,a%B¢, 0%¢, c*d, d3a
_w(al) = (07 _17 +1)’ W(ag) = (_17 07 O)' W(GB) = (07 +17 _2)’ W(a4) = (07 07 +1):
LA}(CL5) - (Oa 07 _1)
Its characteristic matriX'; and connectivity matriX’; are:

-1 -1 0 0 +1

0 -1 0 0 0
| , |+1 0 =10 0
Ty=|-1 0 410 0| Ii="" " 5 5 ¢

+1 0 -2 +1 —1 0 0 0 41 -1

If we putX = (u,v,z,y, 2), the system of Theorem 5.9 becomes:

u>0,v>0,2>0,y>0,2>0

ut+v+z+y+z > 1 u+t+v =z
—v >0 u = x

T > u v+ =y

u+y > z2+2z Yy =z

Since this system admits no solution, the VASS is uniforratyrtinating.
For the second VASS, which is build on the same underlyinglgtaence, the connec-
tivity matrix is the same), the characteristic mafrixis:

0 +3 0 0 -1
F'g=|42 0 0 -1 O
-1 -1+1 0 -1

And so the system is:
u>0,v>0,2>0,y>0,2>0

utv+z+y+z > 1 ut+v =z
v > z U ==
2u >y v+xr =y
T > ut+v+z Yy =z

This system admits solutions with:= = = 2v andy = z = 3v, among other, there is the
integer solution(2, 1, 2, 3, 3) which is the Parikh vector of a cycle with positive weight and
so, for example, the walks, (5, 6,2)) — (b, (5,8,3)) — (¢, (5,8,4)) — (d, (5,7,4)) —
(a,(4,7,3)) — (¢, (7,7, 2))i(a, (6,6,1)) — (b, (6,8, 2))L(a, (5,7,2)). Since(5,7,2) >
(5,6, 2), this walk can then be repeated infinitely and leads to anifefadmissible walk.

It is worth noticing that in the second case, the cycle detkigtnot a simple cycle. So
the problem is different from the one of detecting simplelegdn graphs and require a
specific solution.

6. RESOURCE SYSTEMS WITH STATES

Resource Systems with States (RSS) are a generalisatioA®® \¢een in the previous
section. In VASS, the only information kept if a vector ofégers and only additions
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of vectors can be performed on them. When modelling programis is not sufficient.
Indeed, if one want to closely represent the memory of a staakhine, a vector is not
sufficient. Moreover, vector addition is not powerful enbug represent usual operations
such as copy of a variable (= ).

Hence, we will now relax the constraints on valuations anijiats and basically allow
any set to be the set of valuations and any kind of functioesween valuations) to be
a weight. Notice that for VASS, the addition of a vectocould be represented as the
function\z.x + v.

In order to be a bit more general, we will even allow the setsabfations to be different
for each vertex. This may seems strange, but a typical udeabig to have vectors with
different numbers of components as valuations (that is ¢h@fvaluations for vertex;
would beZ*") and matrix multiplications as weights (where the matricage the correct
number of rows and columns). Of course, it is always possibtaeke the (disjoint) union
of these sets, but it usually clutters needlessly the rwotati In section 9, we'll use RSS
with separate sets of valuations and discuss this a bitdurth

6.1 Graphs and States

Definition 6.1 (RSS) A Resource System with Sta(BSS) is a tupléG, V, VT, W, w)
where

—G = (S, A) is a directed graphS = {s1,---,s,} is the set of vertices and =
{a1,--- ,an,} is the set of edges.

—Vi,---,V, are the sets ofaluations V is the union of all of them.

—Vf C V; are the sets addmissible valuationd/* is the union of them.

—W; ; : Vi — Vj are the sets ofveights W is the union of them.

—w : A — W is theweighting functiorsuch thatv(a) : A — W; ; if s;%s;.

When both the valuations and weights sets are clear, we aitlenthe RSS after the un-
derlying graphG.

The idea behind having both valuations and admissible tiahsis that this allowd”
to have some nice algebraic properties not sharddbyMoreover, this also allows the set
of valuations to be the closure of the admissible valuatiorder the weighting functions,
thus removing the deadlock problem of reaching somethiagviould not be a valuation
(and replacing it by the more semantical problem of detgation admissible valuations).
Typically with VASS, V is Z*, thus being a ring, antf * is N*. Since weights can add
any vector, with positive or negative components, to a &@naV’ is the closure o/ ™ by
this operation. Moreover, VASS do not suffer from the deeklproblems that appear in
Petri nets (but this is done by introducing the problem ofdiag if a walk is admissible).

Notice that either unions (fo¥’, V+ or W) can be considered to be a disjoint union
without loss of generality.

Definition 6.2 (Walk). Let (G,V, V™, W, w) be a RSS. Aconfigurationin G is a pair
0 = (s,v) wheres = s, € S is a vertex of the graph and € V; is a valuation. A
configuration isadmissiblés v € V;* is admissible.

A walkis a sequence of statés), v9)% ... “(s,, v, ) such thap = a; . . . a, is a path
in G andv; = w(a;)(v;—1). A walk isadmissibldf every configuration in it is admissible.

The walkfollows pathp which is called eitheunderlying pathor trace of the walk.
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As earlier, we writed — ¢’ if the relation holds for an unspecified edge and -5 for
the transitive and reflexive-transitive closures.

Definition 6.3 (Weight) Let G be a RSS. The weighting function can be canonically
extended over all paths i by choosingv(ab) = w(b) o w(a).

(W, o) is amagma. Itis not a monoid because the identity is not @ni@bere is a finite
set of neutral elements, the identities over edch

Of course, If we considér; as dots and) € W as arrows, we have a category. Indeed,
identity exists for eacli; and composition of two arrows is properly defined.

Notice that we do not actually need the wholé Only the part generated by the indi-
vidual weights of edges is necessary to handle a RSS. We figh overload the notation
and call it as well.

In practise, it is often more convenient to descrilfeas a set together with some right-
action onV. Thatis, there is an operatian: V' x W — V such thab ® w(a) = w(a)(v).
In this case, the function composition becomes an inteevaldf W, s : W x W — W
such thatv(a) ¢ w(b) = w(b) o w(a).

This notation is a much more convenient when composing weigbng a path. Indeed,
we havew(ab) = w(a) s w(b), that is the weights are composed in the same order as the
edges along the path while using functional composition @@dv(ab) = w(b) o w(a),
needing to reverse the order of edges along the path. Maresinee weight usually have
some common shap@}, ¢) is often a well known algebraic structure.

Example6.4. For the VASS of previous section, we haje= Z* andV," = N* for
all i, andw(a) = Az.z+ « for some vectory € Z*. Or we could describe VASS by saying
thatV =W =ZF, Vt =NF and® = 3 = +.

The notation with® andg is much more convenient, especially to handle easily wsight
of paths such as done in the lemmas and theorems of the pseségation.

Moreover, the fact that weights (as functions) all have e shape (namelyz.z+«)
allows to identify each weight with the vectar thus giving a more convenient definition.

6.2 Properties of RSS
6.2.1 Order

Definition 6.5 (Ordered RSS)An ordered RS$s an RSSG = (G, V, V™', W,w) to-
gether with a partial ordering over valuations such that the restriction-obverV " is a
well partial order.

Remember that a partial orderis a well partial order if there are no infinite anti-chain,
that is for every infinite sequeneg, - - - , z,, ... there are indexes< j such thatr; < ;.
This mean that the order is well-founded (no infinite dedrepsequence) but also that
there is no infinite sequence of pairwise incomparable eitsndhe order induced by the
divisibility relation onN, for example, is not a well partial order since the sequemed o
prime numbers is an infinite sequence of pairwise incomparbments.

For VASS, the component-wise order on vectors of the sangthen the well partial
order (over + = N¥) that was used in the previous section.

In the following, we will not always explicitly mention if a&S is ordered.
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Definition 6.6 (Monotonicity, positivity) Let(G,V,V*, W,w) be an ordered RSS. We
say that it ismonotonidf all weighting functionw(a;) are increasing with respect te.
Since the composition of increasing functions is still @esing, the weighting function of
any path will be increasing.

We say thatG, V, V+, W, w) is positiveif < is such that for each € V™ andv’ € V,

v < v impliesv’ € V+.

VASS are both monotonic and positive. Monotonicity is thg ké Lemma 5.4 while
positivity is implicitly used in the proof of Theorem 5.6 taysthat the valuation reached
after one cycle is still admissible.

Definition 6.7 (Resource awareness)et G be an ordered RSS anfd: V' — V be a
function. G is f-resource awaréf for all walk (sq, vo)— (s, v, ) We havev, =< f(vo)

6.2.2 Uniform termination

Definition 6.8 (Uniform termination) Let G be a RSS( is uniformly terminatingf
there is no infinite admissible walk i@.

Notice that if a RSS is not uniformly terminating, then thexésts an infinite admiss-
ble walk that stay entirely within one strongly connectednponent of the underlying
graph. In the following, when dealing with infinite walks weynsuppose without loss of
generality that the RSS is strongly connected.

For VASS, uniform termination is decidable as stated in Tapn5.9. It is worth notic-
ing that it does only depends on the underlying graph and thights and not on the
valuations. Indeed, since uniform termination is a glolraperty that must hold for all
valuations, this will often be the case.

THEOREM 6.9. If G doesnot uniformly terminates then there is an admissible cycle
(s, v)i(s, u) with v < w. If G is monotonic and positive, then this is an equivalence.

ProOF If an infinite admissible walk exists, then we can extraonirit an infinite
sequence of admissible state§ v;.) since there is only a finite number of vertices. Since
the order is a well partial order dri™, there exists a < j with v; < v;, thus leading to
the cycle.

If the cycle exists, then it is sufficient to follow it infiniiemany time to have an infinite
admissible walk. Monotonicity is needed to ensure thatyetiere one follows the cycle,
the valuation does indeed increase. Positivity is neededgare than when going through
always increasing valuations one will never ledve. O

Of course, this is simply the generalisation of Theorem 5.6.
PROPOSITION 6.10.

(1) If V isfinite, thenlV is finite.
(2) If V is finite, then uniform termination @ is decidable.

(3) If both vV and W are enumerable, then it is semi-decidable to know if a RS®tis n
uniformly terminating.

PrROOR

(1) Because the set of functiol§V, V) is finite and containgV.
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(2) Since both/ and1V are finite, it is possible to computes all the values w(a) and
check whether one is both increasing (with respeet}@and corresponds to a cycle.

(3) By enumerating” x W.

O
6.2.3 Grounded RSS

Definition 6.11(Grounded RSS)An ordered RSS: = (G, V,V*, W, w) is grounded
if there is a set/ c V* of grounded valuationsuch that:

—Each finite subset of ground valuations has a ground valuats a least upper bound
(thatis,(V, <) is a join-semi lattice).

—V+ is build fromV by adding a least upper bound for each infinite subset (iféisdwot
already exist).

Non-grounded valuations are used to represent “unknowhiega For example, we
could allow-+oco to appear in weights as well as valuations in VASS. In thicasc in
a valuation would mean that nothing is known about this comepo of the vector but we
keep it admissible by default. However, we keep groundegatains as a reminder that at
some point something should be known before we are allowsdyt@nything.
__In the following, non-admissible valuations are considerebe ground valuations, but
V only designates the ground and admissible valuations.

If G is positive, then every non-ground valuation is admissiblen more, non-ground
valuations are the maximal elementslof :

LEMMA 6.12 (PSITIVITY). If v € VT \ V is a non ground valuation and < u,
thenu ¢ V.

PROOF Because has been added a the join of an infinite subset'afnd ifu € V,
this would not have been necessary becauseuld already have been a join for this
subset. O

Definition 6.13(Grounding walks) Let G be a grounded RSS, Consider a walk (finite
or not)w = (so, vo) ... ﬁ>(sn, v,) ... and let(v)y be a sequence of ground admissible
valuations. Let); = (s;,v;).

We say thatv)y is anoraclefor w if the following properties hold:

—If vy € V thenvy = vy elsevy < vy.

—For eachj > 0, we have(s;_1,;1)—(s;,v}). If v} is a ground valuation, then
v; = v elsev; < vl

Thegrounded walkw is 6y ~ 9A0 — 01 ~ 9A1 — =0, ~ @where@\j = (84,05).
~ denotes the replacement of a non-ground valuation by thesmonding one from the
oracle. We may simply write the grounded Walkﬁas—> = 5;

A walk is ground-admissiblé there exists an oracle for it.

The idea is that as soon as a non-ground valuation is reaitliedeplaced by a ground
one (which is provided by the oracle) and the walk resumdsviadhg the same path.
Using grounded RSS and grounding walks can be seen as ioingdsome kind of non
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(0, +00)

Fig. 6. A grounded VASS

determinisminto RSS. Sometimes, when the valuation cdsmobmpletely specified (that
is, is non-ground), a random valuation can be chosen.

Notice that whenever the valuation reached by using thdaeguies of RSS is ground,
then the oracle is not allowed to change it. That is, we doeéchto ask anything to the
oracle as long as everything can be computed. However, asasogomething “unknown”
is reached, then we ask the oracle what this should be and glmog the walk.

Definition 6.14(Uniform termination) A grounded RSS igniformly terminatingf it
admits no infinite ground-admissible walk.

This goes with the idea of “unknown” as stated above. Indeekinown spreads faster
than knowledge and this definition of uniform terminatiom §pounded RSS prevents
things such as a prefix of the walk setting the valuation taktuown” and then there is
a cycle looping infinitely with unknown valuations, but thense cycle could no be fol-
lowed infinitely with known valuations.

If we consider again VASS with-oo allowed, then we could have a prefix of the walk
setting the valuation t¢+oo, ..., +0o0) and then a loop with a negative weight that could
be taken infinitely many times just becauseo stays+oo (no knowledge is gained). This
definition of uniform termination could be stated as allogvthe RSS to forget (part of) the
valuation but still remind what it is suppose to represertte Teplacement of a valuation
in the infinite walk means that something can be unknown buiwst remember that this
actually represent a ground valuation and should be ablettib 0 any time.

With grounded RSS, Theorem 6.9 becomes:

THEOREM 6.15. LetG be a positive monotonic grounded RSS. tiasuniformly ter-

minating if and only if there is a ground-admissible cyclgvo)i(s,v;) with oracle
(0)o..n, such thaty < v,,.

PROOF If aground-admissible infinite walk exists, then we camaottfrom it a ground-
admissible cycle in exactly the same way as in Theorem 6.9.

Conversely, if a ground-admissible cycle exists, it canddeed infinitely many time
(the oracle being build from the repetition of the oracletfa cycle). O

Example6.16. Figure 6 displays a grounded VASS, that is a VASS whexeis al-
lowed in weights as well as valuation. The ground valuatenesthose where no compo-
nent is+oo. Here, the non-ground valuations can be seen as a lack ofhaf®n: if a
component ist-oo, it means that nothing is known on the real value which shbaltiere.
Typically, this might arise if the operation one want to iegent cannot be described as the
addition of a vectord.g, it would need a multiplication).
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The notion of oracle for walks is important. Indeed, withthis notion of grounded
walks, we could consider the walk, (0,0)) — (b, (+00,0)) — (¢, (+00, +00)) which
can then loop forever with the valuatigr-co, +00). This walk can be seen as first for-
getting everything (including the fact that we should be kirog over integers) and then
looping forever in blissful ignorance. However, the loogeif has weight-1 on the first
component and so should not really be taken infinitely mamgsi.

So, we need an oracle who knows everything and is able tolydiest knowledge back.
Since no oracle leads to an infinite ground-admissible waktk,say that this grounded
VASS is uniformly terminating.

Notice also the importance of the condition= v.. Indeed, without it the oracle could
be use to reset the first component of the valuation wheneigdnierrogated, thus leading
to things like: (¢, (1,0)) — (b,(0,0)) — (¢, (0,+00)) ~ (c,(1,0)). So this condition
v; < v} can here be seen as tightly keeping all that is still knowiowihg to take a smaller
valuation is harmless for two reasons. Firstly, when cagrand) only uniform termination,
smaller things mean faster termination and secondly sieselts are usually quantified
over all ground-admissible walks, the ones with biggerdhialso get considered.

6.3 Semi-linearity

Definition 6.17(Linear parts, semi-linear parts)Let (), +) be a commutative monoid.
A linear partof M is a subset of the form + U* whereu € M andU is a finite part of
M. Thatis, ifU = {u1,--- ,u,}, alinear part can be expressed as:

=p
{u+ Z n;viln; € N}
i=1

A semi-linear partof M is a finite union of linear parts.

LEMMA 6.18.In a commutative monoid, rational parts are exactly the skmear
parts.

Recall that rational parts are build from union and Kleene'’s stér When dealing with
words (that is the free monoid generated by a finite alphathet)- is word concatenation
(not commutative) and so rational parts are exactly theleedmanguages.

PROOF Semi-linear parts are clearly expressed as rational.parts

Conversely, it is sufficient to show that the set of semidinparts contains all finite
parts and is closed by union, sum a@d he hard point being the closure undexhich is
a consequence of commutativity. See [Reutenauer 1989@Bition 3.5) for details. O

LEMMA 6.19. The set of cycles in a graph is a rational part (of the free mdmen-
erated by the edges).

PROOF Consider the graph as an automaton with each edge labglkeddparate label.
The set of paths between two given vertices is a regular g (accepted by the automa-
ton with the proper input and accepting nodes). So is thefsgtabes as finite union of
regular languages.O]

COROLLARY 6.20. The set of weights of cycles in a RSS is a rational pakb/of

PROOF Because the weighting function is a morphism between #eerfronoid gener-
ated by the edges ari@V, 3). O
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THEOREM 6.21. If (W) is commutative, then the set of weights of cycles is a semi-
linear part of it.

This allows to easily find candidates for Theorem 6.9. Indeetheed to find a valuation
v and a cycle of weighty such that ® w > v. Since the construction of the semi-linear
part is effective, it is possible to have a concise repregiemt of weights of cycles.

This hints that commutativity of plays an important role in decidability of uniform
termination. It is however not a necessary condition (asvshioy §SCT [Ben-Amram
2006]) and maybe not a sufficient one.

7. MONITORING SPACE USAGE

In this section, we introduce the notion of Resource CorBa@ph for the very special
case of monitoring space usage. In Section 8, this notidrbeilully generalised to define
Resource Control Graphs.

7.1 Space Resource Control Graphs
Definition 7.1 (Weight) For each instruction we define aveightk; as follows:

—The weight of any instruction that is neith@ash norpop is 0.
—The weight of goush instruction is+1.
—The weight of gpop instruction is—1.

PROPOSITION 7.2. For all storeso such thatp - 6 = (I P,o—>—i>9’, we haveld'| =
0] + k.

It is important here that both andé’ are states. Indeed, this means that when an error
occurs (L), we remove all constraints.

Definition 7.3 (Space Resource Control Graphlet p be a program. Its Space Re-
source Control Graph (Space-RCG) is a RS (G, V, V™, W, w) where:
—G@ is the Control Flow Graph agj.
—V =27 Vt=N
—For each edgé The weighting functiow (i) is Az.x + k;.
Of course, since all weights have the same shape, they catydim identified by the

constant;. In this case, we'll have (i) = k;, ® = ¢ = 4. That s, the Space Resource
Control Graph can be seen as an usual weighted graph.

PROPOSITION 7.4. Letp be a program(= be its Space-RCG and- 0, = (I Py, 01) —
. — 0, = (I P,,0,) be an execution with tracg then there is an admissible walk
(I P1,]61]) — ... — (1 P, |0,]) with the same trace

PROOF By construction of the RCG and induction on the length ofé¢kecution. O

7.2 Characterisation of Space usage

THEOREM 7.5. Let f be a total functionlN — N. Letp be a program and~ be its
Space-RCG.

p € S(f)ifand only if for each staté, = (I Py, o) and each execution 6,6, the
trace of the execution is also the trace of an admissible la, |6p]) — (1 P1,i1) —
... — (I P,,i,) and for eacht, ir, < f(|6o]).
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PROOF Proposition 7.4 tells us that = |6,|. Then, both implications hold by defini-
tion of space usage.[J

COROLLARY 7.6. Let f : N — N be a total functionp be a program and= be its
Space-RCG.
If G is f-resource aware, thep € S(f).

Here, the converse is not true because the Space-RCG camadiangsible walks with
uncontrolled valuations but who do not correspond to anyexacution.

7.3 Non Size Increasingness

The study of Non Size Increasing (NSI) functions was inticainy Hofmann [1999]. For-
mers syntactical restrictions fomRE, such as the safe recurrence of Bellantoni and Cook
[1992], forbid to iterate a function because this can yieldstiper-polynomial growth.
However, this prevents from using perfectly regular algponis such as the insertion sort
where the insertion function is iterated. The idea is thamitlerating functionsvho do not
increase the size of data harmless.

In order to detect these functions, Hofmann uses a typedi@na programming lan-
guage. A special type?, is added. This type has no closed terms (that is, no conetg)¢c
and can only be used in variables. It can be seen as pointieetmemory. Constructors
of other types now require one of moge Typically, the usuatons for lists require a>
in addition to the data and the list and will then be typehs : & x o x L(a) — L(«).

Whenever a list is destroyed, tkein thecons is freed (in a variable) and can thus be
later reused to build another list. By ensuring a linear tgiseipline, one can be sure that
no < is ever duplicated. Then, any program that can be typed Wighttype system can be
computed in a NSI wa.g.be compiled intdC without anymal | oc instruction.

With Space RCG, valuations in a walk play exactly the same asl Hofmann's dia-
monds ¢©). The higher the value, the more diamonds are needed in thentwconfig-
uration. push has positive weight, meaning that it uses diamondsployt has negative
weight, meaning that it releases diamonds for later use.

Definition 7.7 (Non Size Increasing)A program isNon Size IncreasingNSI) if its
space usage is bounded hy.z + « for some constant.

NSl is the class of functions which can be computed by Non Bizeeasing programs.
Thatis{J, S(A\z.z + ).

PROPOSITION 7.8. Letp be a program and~ be its Space-RCG. Iff is Az.z + a-
resource aware for some constantthenp is NSI.

PROOF This is a direct consequence of Theorem 7 8.

THEOREM 7.9. Letp be a program and- be its Space-RCG is \x.x + a-resource
aware (for some) if and only if it contains no cycle of strictly positive whig

PROOF Ifthereis no cycle of strictly positive weight, then tebe the maximum weight
of any path inG. Since there is no cycle of strictly positive weight, it is llagefined.
Consider a walkso, vg)—(sn, v,) in G. Sincea is the maximum weight of a path, we
havev,, < vy + «. Hence G is A\z.x + a-resource aware.

Conversely, if there is a cycle of strictly positive weigthte it can be followed infinitely
many time and provides an admissible walk with unboundedatains. [
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0 SO
(end) W
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Fig. 7. Space-RCG of the reverse program.

Building the Space-RCG can be done in linear time in the sizeeoprogram. Finding
the maximum weight of a path can be done in polynomial timehagize of the graph
(so in the size of the program) with Bellman-Ford’s algarit{fCormen et al. 1990] chap-
ter 25.5). So we can detect NSI programs and find the constantpolynomial time in
the size of the program.

Example7.10. The Space-RCG of the reverse program (from Examplei®.ais-
played on Figure 7. Since it contains no cycle of strictlyipps weight, the program
is Non Size Increasing. Moreover, since the maximum weidlainy path is0, it can be
computed in spacgz.z, that is the constant is 0 for this program.

This result, however, lacks an intentionality statementy(Imuch of all NSI programs
are caught?) or even an extensional completeness one {tvesekist functions in NSI
that are not captured by such a program?) Of course, theNlas&s undecidable and the
class of allprogramswhich are NSI is£;-complete according to Theorem 3.3. This means
that intentionality statements are hard to achieve. Howewe can reach an extensional
completeness one.

Without loss of generality, we consider here that in theéah@tonfiguration of a TM, the
tape consists in only blank symbols except faramsecutivesequence of symbols which
areall non-blank. That is, we do not allow input tape to have the shapy wherex and
y are non-blank symbols andis the blank symbol. This allows to detect the end of input
as the first non-blank symbol. The head is assumed to scarrshadn-blank symbol at
the beginning of computation.

PROPOSITION 7.11 (NORMALISING TMs). LetM be a NSI Turing Machine running
in space\z.xz + a. There exists a TM/, computing the same function, running in space
Az.x + « + 2, proceeding iR phases:

(1) Firstly, M writes2 # anda B on blank squares of its tape, where bgthand B are
new symbols.
2 Secondly]\Ai never scan any blank symbol again.
PROOF M starts by going one square left and writigfgthere. Then it goes to the end
of the input, writen B after it (sincex is fixed for M and does not depend on the input,

this is doable) and lastly anothgr. Then, it goes back to the beginning of the input (the
symbol immediately after thg) and goes into the second phase.
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Phase | | Phase Il

_ . I
Find end of input Eeog[i)nar%gtgo | Simulate steps
push # push B push # |
. S I
1 1 1 |
0 0 | 0

I

Fig. 8. Space-RCG of the simulation of a normalised NSI Tairmachine.

In the second phasé/f simulatesV/. However# are never overwritten. Whenevéf
request to write over &, the whole content of the tape is shifted one square lefiigbt)
and simulation ofM resumes where it stopped. Sint€ is NSI, the simulation can be
done entirely between the twp. 0O

Of course, this simulation is rather costly from a time poif¥iew, but since we're only
controlling space here, that does not matter. Notice alabghich a normalisation could
be made for a TM running in spagéx) for any computable functiofi. However, in that
case the simulation would require an additional tape to agefz) from the input and
then allocate sufficiently many new squares. This would b&dticky to do and require
control over the space used to compfite). ..

THEOREM 7.12 (EXTENSIONAL COMPLETENESY. Let M be a NSI TM,M be the
corresponding normalised machine apdbe the program simulating/ according to the
simulation of Section 2.3. Lét be the Space-RCG pf

G contains no cycle of strictly positive weight.

PROOF. During the second phase of the simulatiod\6f M never scan a blank symbol.
Hence, there is no need push new (blank) symbol on any of the stacks. While moving
the head, eachush on one stack is immediately followed byp@mp and the other, thus
yielding only paths of weigh.

During the first phase of the simulatignstarts by adding a symbol on a stack (a blank
symbol immediately erased b#, or alternatively directly a# with a slightly smarter
simulation). Then it loops to find the end of the input. Durthgs loops, eaclpush is
also followed by goop, thus creating only cycles of weight Then it addsy + 1 new
symbols B and#), but sincea: does not depend on the input, this can be done by1
separatgush, thus creating no cycle. And lastly it goes back to the sththe input,
again eaclpush is followed immediately by @op. Figure 8 shows how the Space-RCG
of plooks like. [

This result means that our characterisation of NSl is exteadly complete. Each func-
tionin NSI can be computed by a program which fit into the cbt@résation (that is, whose
Space-RCG is\z.x + a-resource aware). Of course, intentional completenegduidag
all NSI programs) is far from reached (but is unreachablé witiecidable algorithm).
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7.4 Linear Space

LINSPACE seems to be closely related to NSI. Indeedy PACE functions can be com-
puted in spacez.Sx + o and so NSI is a special case ofNSPACE with 5 = 1. So we
want to adapt our result to detect linear space usage.

The idea is quite easy: since we're allowed to ugetime more space than what is
initially allocated, it is sufficient to consider that evetigne some of the initial data is
freed,(s “tokens” (©) are released and can later be used to coptdifferent allocations.

In order to do so, the most convenient way is to design cestaicks of the machine (or
certain tapes of a TM) aaput stacksand the others must be initially empty. Thempap
operation over an input stack would have weight instead of simply—1 to account for
this linear factor. However, doing so we must be careful tiestly allocated memory (that
is, furtherpush) will only be counted ag when freed again (to avoid a cycle of freeing
one slot, allocating?, freeing theses slots and reallocating? and so on). In order to do
so, we simply require that the input stacks are read-onligérsense that it is not possible
to perform gpush operation on them.

Notice that any program can be turned into such kind of prodrg having twice more
stacks (one input and one work for each) and starting by ogpgil the input stacks into
the corresponding working stacks and then only deal wittwtbiking stacks.

With these programs, the invariant will not be the lengthtafess, but something slightly
more complicated, namelytimes the length of input stacks plus the length of work stack
We will call this measursize Globally, we'll use size to denote some kind of measure on
states that is used by the RCG for analysis. The terminoleglose from the one of the
Size Change Termination [Lee et al. 2001] where values anenasd to have some (well-
founded) “size ordering” which is not specified and not neae$ related to the actual
space usage of the data. Typically, termination of a prograrking over positive integers
can be proved using usual orderingoés size ordering, even if the integers are3albits
integers, thus taking exactly the same space in memory.

Definition 7.13. The set of stacks is now partitioned in tws; is the set ofinput
stacksandS,, is the set ofworking stacks There are two instructionsop; andpop,,
depending on whether an input or working stack is considérgdonly onepush =
push,, instruction, that is it is impossible fpush anything on an input stack.

The -sizeof a state is3 times the length of input stacks plus the length of working
stacks, that is:

[P.o)ls =5 Y Istki+ Y. Istkyl
stk;eS; Stk ESw

Theweightof pop, is —/3, the weight ofpop,, is —1, the weight ofpush is +1. the
weight of other instructions i@.

The 5-Space RCG is build as the Space-RCG: the underlying grathie isontrol flow
graph and the weighting function of each edge\isz + k; wherek; is the weight of
the corresponding instruction. Alternatively, we can itfgrweighting functions with the
constant;.

Proposition 7.4 becomes:

PROPOSITION 7.14. Let p be a program,Gs be its 5-Space RCG ang - 6; =
(1Py,01) — ... = 0, = (I P,,0,) be an execution with tracg then there is an ad-
missible walk(l Py, [|61]|3) — .. — (I Py, ||0x]|3) with the same trace
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Then, adapting Theorem 7.5 and Theorem 7.9, we have:

PROPOSITION 7.15. Letp be a program andx s be itsj-Space RCG. I3 is Az.x +
a-resource aware for some constantthenS(p) < \z.fz + o .

THEOREM 7.16. Letp be a program andxs be its 5-Space RCGGg is Ax.x + a-
resource aware (for some) if and only if it contains no cycle of strictly positive whig

COROLLARY 7.17. Letp be a program. If there exist8 such that its3-Space RCG
contains no cycle of strictly positive weight, theis in LINSPACE.

This can be checked in NIME sinces is clearly polynomially bounded in the size of
the program.

For LINSPACE also, the normalisation process of Turing Machine can ceatgly be
performed, typically by using an input (read-only) tape andorking tape were space
usage is counted. The first phase of the normalised TM cookigpeatedly copy one
symbol from the input tape to the right of the working tape adds — 1 B at the left of
the working tape, then putting the tw#é on the working tape. This means that here also
the characterisation is extensionally complete: for eantSkACE function, there exists
one program computing it that fits into the characterisation

8. RESOURCES CONTROL GRAPHS

Instead of the simple weighted graphs used for Space-RC®yilveow use any RSS to
modelise programs. A set of admissible valuations will begito each state and weighting
functions simulate the corresponding instruction.

Since we can now have any approximation of the memory (thestdor valuations,
we cannot simply use the length of a state. Instead, we cengislen asize function
that associate to each state (or to each store) some sizesiZEhinction is unspecified
in general. Of course, when using RCG to modelise progranesfitst thing to do is
usually to determine a suitable size function (accordirigécstudied property). Notice that
depending on the size function, weights of instructionsa@acannot be defined properly
(that is, some sizes are either too restrictive or too looskre function can accurately
reproduce on the size the effect of a given instruction ounactata). In this case, the RCG
cannot be defined and another size function has to be coadider

8.1 Resources Control Graphs

Definition 8.1(RCG) Letp be a program and' be its control flow graph. Let' ™ be
a set of admissible valuations (ardbe a well partial order on it). Lete || : © — V'
be a size function from states to valuations afifj be the image by o || of all states
(I bl , o) for all storess.

For eachi edge ofG, let w(i) be a function such that for all storesverifying p +
(I1P,o) = 050, w(i)(||0]]) = ||¢|]. LetV be the closure o/ * by all the weighting
functionsw(i).

The Resource Control GrapfRCG) of p is the RSS build o7 with weightsw(i) for
each edge, valuationsl” and admissible valuation * (ordered by<). V;}, being the
admissible valuations for vertéxbl .

Example8.2.
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(1) Of course, a Space-RCG as defined earlier is a specialofageneral RCG. In
this case,||d|| = |6, this leads toVj}, = V*+ = N for each label bl . Similarly,
w(i) = A\z.z + k; with k; as in definition 7.1. Sincé € Z, the closure o’ ™ by the
weighting functions id” = Z.

(2) For a more accurate representation of programs, we athddse||(l P,o)|| =
(Ist kql,...,|stks|)stk;es, the vector where each component is the length of a stack
(given an enumeration of the stacks). This would leadgtp = V* = N* wheres is
the number of stacks for each labddl , < being the component-wise partial order. In this
casew(i) = Az.x + z wherez € Z°. Thisleads td” = Z*. Thatis, in this case, RCG are
VASS.

(3) However, even this representation can be improved.c@ipi using these VASS it
is impossible to detect anything happening to registenselhave a suitable size function
|| ]| : ¥ — N for registers, we can choos$gl P,o)|| = (|[r1l],.--,[rr]])r,er- In
this case, depending on the operators, weight could bereitlotors addition or matrices
multiplication (to allows copy of a register).

As stated before, we will write ® w(i) instead ofw(i)(v) andw(i) s w(j) instead of
w(j) o w(i).
LEMMA 8.3. Let p be a program,G be its RCG anp + 6y — ... — 6, be an

execution with trace. There exists an admissible wall, [|6o]|) — ... — (sn, [|04]])
with the same trace

COROLLARY 8.4. Letp be a program and be its RCG. If7 is uniformly terminating,
thenp is also uniformly terminating.

Remark8.5. Taking exactly the image (ife || as the set of admissible valuatioris
might be a bit too harsh. Indeed, this set might have any saag@és probably not really
easy to handle. So, it is sometimes more convenient to cenaiduperset of it in order
to easily decide if a valuation is admissible or not. The extwull (in V') of the image
of || e || is typically such a superset. Notice that it is very similathe idea of trying to
find an admissible set of sequences of states which will bemanageable than the set of
executions. Here, we try to find an admissible set of valanatighich is more manageable
than the actual set of sizes. For more details on how to buitdraanage such a convex
superset, see the work of Avery [2006].

Remark8.6. The size function is not specified and may depend on theepty one
want to study. We do not address here the problem of findingtalde size function for a
given program. As hinted, it might be a simple vector of fums over stacks and register
but it can also be a more complicated function such as a lie@abination or so. Hence,
with a proper size function, one is able not only to check thgiven register (seen as an
integer) is always positive but also that a given registaiwsys bigger that another one.
This is similar to Avery’s functional inequalities [2006].

Using ||[{I P,a)|| = (|stki|,...,|stKs|)stk,es @s a size measure, that is VASS as
RCG, we can already achieve a good termination analysiseekhdas previously seen,
uniform termination of VASS is decidable and uniform teration of the RCG induce
uniform termination of the program.

This kind of RCG has weight0,...,0,—1,0,...,0) (resp. (0,...,0,+1,0,...,0))
for thepop (resp.push) instruction, where the noi-component correspond to the stack
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Fig. 9. A RCG for the reverse program

poped (resppushed). Other instructions have weight

Example8.7.

(1) If we apply this to the reverse program, that leadgoP, o)|| = (|o(1)],|o(I)]).
The resulting RCG (which is a VASS), is displayed on Figuré&tce this VASS is uni-
formly terminating (there is no cycle of positive weight)etreverse program is also uni-
formly terminating.

(2) Let us consider the following program, working on integéhat is the alphabet is
the set 032 bits positive integers):

0:if i=n then goto end 3 :gotol
1:i=i+1 end : end
2 : some instructions modifying neithenorn

Thisis simply aloog or (;i < n;i++) (in aC-like syntax). If we consider a size function
that simply takes the vector of the registers, that(isP, o)|| = (i, n), then the loop will
have weigh{+1, 0) and thus lead to a cycle of positive weight. However, a clavnalysis
of the program could detect that inside the loop we must secidg haven — i > 0 and
thus suggest the sizgl P, o)|| = n — i. Using this, the loop has weightl and we can
prove uniform termination of the program.

As stated, we do not address here the problem of finding actaize function for a given
program. This problem is undecidable in general. But irargs can often be automatically
generated, usually by looking at the pre- and post-contbtaf the loops.

Notice also that since this inequality must hold only in tbed § andn could be reused
outside), it can be useful to have a different size functionas the loop, hence different
sets of valuations for each vertex.

This first termination analysis is close to the Size Changmifetion [Lee et al. 2001]
in the sense that the size of data is monitored and a well ioglen it ensure that it
cannot decrease forever. It is sufficient to prove unifonmmteation of most common lists
programs such as reversing a list or insertion sort. It is,ats some way, slightly more
efficient than the original SCT because it can take into actoot only decrease of the size
but also increases, so that a program that would loop on $angelike pop pop push
(2 pops andl push) is not caught by SCT but is proved uniformly terminatinghntiis
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analysis. In this sense, it is closer to the SCT with diffeeenonstraints§SCT) [Ben-
Amram 2006].

This method is in PIME, as we've shown, uniform termination of VASS is irmIRE.
The original SCT, as well a8SCT, is BPACEcomplete. However, this simple method
do not allow for data duplication or copy. Lee, Jones and Bemwam already claimed in
the original SCT that there exists a poly-time algorithm$@T dealing with “programs
whose size-change graphs have in- and out-degrees bounpdédbis easy to check that
VASS can only modelise such kind of programs accurtéignce the poly-time bound is
not a big surprise.

Moreover, this method has a fixed definition of size and herm@twetect termination
of programs whose termination argument does not depenceatettrease of the length of
a list. Among other, any program working solely on integep¢esented as letters of the
alphabet) will not be analysed correctly.

8.2 Grounded resource Control Graph

Definition 8.8(RCG) Let p be a program and: be its control flow graph. LeV be
a set of ground (and admissible) valuations (ande a well partial order on it). Let
|| e]| : © — V be asize function from states to valuations &hgl be the image byj e ||
of all states(l bl , o) for all storess. LetV;,, be the set obtained by addingltp, a least
upper bound for each infinite subset drid be the union of them.

For eachi edge ofG, let w(i) be a function such that for all storesverifying p +

(I1P,o) = 050, [|0'|| = w(i)(]|0]|). LetV be the closure o/ * by all the weighting
functionsw(i).

The Grounded Resource Control Gragdrounded-RCG) op is the RSS build or&
with weightsw(i) for each edge, valuationsl’, admissible valuationg* (ordered by<)
and ground valuation. V%, being the admissible valuations for veriell .

As mentioned with RCG, sometimes the size function is suahrth proper weight can
be found for some instruction that will correctly carry o thize. This is solved here by
the use of a non-ground valuation. Indeed, if there are notfomw(i) = f that verifies
exactly the equality|(¢’|| = f(||6]])) for all states with instruction pointérbl , then we
can return the least upper bound of all the sizes. This is atavayean that there is at this
point no more information in the grounded-RCG on the actuahory and the valuation is
not that much related to it. However, when looking for nonfoim termination, we must
have an oracle which is able to guess properly what the viatuédize of the state) should
be.

LEMMA 8.9. Letp be a program( be its Grounded-RCG and- 6y — ... — 6,, be
an execution with trace Letu; = ||0;|| be an sequence of admissible ground valuations.
There exists a ground-admissible walk startindsat, vy ), with tracet and (v)y as oracle.

COROLLARY 8.10. Letp be a program andx be its Grounded-RCG. & is uniformly
terminating, therp is also uniformly terminating.

Example8.11. The following program computes the exponential ofraager using

4And cannot even modelise all those programs due to theatisirion copying variables previously mentioned
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an operator for multiplication bg.

0:a:=b 3:b:=tw ce(b)
1:if a=0 then goto end 4 :gotol
2:a:=a-1 end : end

For some reason, one may want to choose the vector of theaegyes a size function
(/|0]] = (a,b)) and a VASS as RCG, either because this is used in a programe ihis
size function is useful, or because things are decidableWASS. However, both the copy
and multiplication by two are not representable with a VA8&th a grounded VASS,
however, this is doable. Indeed, both these instructionreann “unknown” {.e. +o0)

for the corresponding register and let the oracle find outtweacorrect value should be.
Using this, we have the grounded VASS of Figure 6 as an RCGéoptogram (modulo a
couple of edges with weiglt). Since this grounded RCG is uniformly terminating, so is
the exponentiation program.

9. 0-SIZE CHANGE TERMINATION

We explain here how to build RCG in order to perform the sanmel kif analysis as the
Size-Change Termination with difference constraifiSGT). We assume here that the
reader is familiar with the original SCT work of Lee et al. {(Z0.

In this whole section, a given size function on states isragsu We do not consider here
the problem of finding a proper size function for each prog¢anfamily of programs).

9.1 Size-Change Graphs and matrices

Definition 9.1 (Size Change graphs).et p be a program, and for each labdil , in
it consider a fixed integek,. LetV, = Z*« andV,® = N* be sets of (admissible)
valuations associated with each label and consider giveredwmnction|| e || such that for
each label bl , and for each store, ||(I bl ,,0)|| € V..

Let G be the CFG ofp andl bl ,—=I bl , two nodes and an edge in it. Tl8ize
Change Graph(SCT graph) fori is a labelled directed bipartite graph with input

nodes{A,--- , Ay, } andk, outputnode§ By, - - - , By, } and labelled arcﬂjiBl such

that for all storess,,, o3, such thatp - 6, = (I bl 4,0,)-%( bl ,0,) = 6, we have
10611 < [10all; + 0
TheSize Change MatrixXSCT matrix) ofi is thek, x k, matrix M such thatV/;; = ¢

if there is an aro4ji>Bl in the SCT graph of and+oc otherwise.

Notice that this definition do not constrain too much the $izection whereas the one
used in the previous section was much more restricted. Asiergle use would be, if the
alphabet s the one @2 bits positive integers to choo§él bl ,o)|| = (o(r1),...,0(ry))
and thus find termination proofs for programs over integdsvever, some more compli-
cated relation between registers could also be providdukirsize function. For example,
if a loop is controlled by (with &-like syntax):f or (i =0;i <j ; i ++), one of the com-
ponent of the vector (for the corresponding labels) coulg bei . This allows for a more
clever analysis and corresponds exactly to the functioregualities of Avery [2006].

Notice also that there is not necessarily the same numbeamoponents for each label.
This is indeed very useful, typically to avoid carrying o¥enctional inequalities out of
their scope. That is, if we consider again the previous Idbe,inequalityy —i > 0
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only makes sense inside the loop and it would be a mistake @ép keout of the loop
(especially ifi andj are reused). Another typical example would be to consideallo
variables (and not take them into account out of their scop&)nctional programs with
different numbers of arguments for each function (as dottledroriginal SCT).

This gives us an example on when separated sets of valudtioesch label can be
useful.

The uses of matrices rather than Size Change Graphs follusva/orks of Abel and
Altenkirch [2002] where similar SCT matrices are used (lwgr@3-valued set, thus mim-
icking the initial SCT and not the work with difference camagts).

Definition 9.2 (Annotated Control Graphs)Letp be a program. Ité&innotated Control
Graph (ACG) is the control flow grapl¢y where each edgehas been labelled with the
SCT matrix ofi.

We now consider matrix multiplication over ti&, min, +) semi-ring Z = Z | J{+o0o}).
We denote® = min and® = + the operations over integers as well as the corresponding
operations over matrices using usual matrices additiomauitiplication.

Notice that in this case, the relation over the states bes@tgl < ||0,|| ® M (where
comparison is done component-wisely).

Definition 9.3. Letl bl ai>l bl bi>l bl . beapathinan ACE andM, N be the SCT
matrices ofi andj. The SCT matrix of pathyj is the productV/ ® N

LEMMA 9.4. The SCT matrix of a path verifies the same condition as the SEfTxm

of an edge. Thatis, if - -6’ with tracet and M is the SCT matrix of then||¢’|| <
10]] @ M.

To each matrix\ € M,, ,(Z), we associate a boolean matiX € M,, ,(B) such
thatMm- =0if M; ; = +o0 andMi_’j = 1 otherwise. Notice thaé is a morphism, that
isM®@N =M x N.

Definition 9.5(6SCT) An annotated Control Graghdoes nosatisfies thé SCT con-
dition if there exists a cycle in it whose SCT matfiX is such that:

(1) M isidempotentM x M = M ;
(2) andM is not decreasing: there is no strictly negative number erdtagonal of?/.

THEOREM 9.6 (BEN-AMRAM [2006]). Let p be a program andj be its ACG. IfG
satisfies th@ SCT condition thep is uniformly terminating.

Notice that this condition is undecidable in general. Hogveif the SCT graphs afan-
in freg that is in each row of each SCT matrix, there is at most one-remcoefficient,
then the problem is $PAcEcomplete. See [Ben-Amram 2006] for details. Notice that in
this paper, Ben-Amram uses mostly SCT graphs and not SCTicestrThe translation
from one to the other is, however, quite obvious. Similarly present here directly a
condition on the cycles of ACG without introducing the mpitihs. This is close to the
“graph algorithm” introduced in [Lee et al. 2001].

The simple Size Change Principle of Lee et al. [2001] can ba as an approximation of
the JSCT principle where only labels ifi-1, 0, +co} are used. Since this only gives way
to finitely many different SCT matrices, this is decidablganeral (BPACEcomplete).
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Fig. 10. Annotated Control Graph.

Example9.7. Consider the following program (adapted from [Lee et2801] fifth
example):

0:if y=0 then goto end 5 : got ol
1:if x=0 then goto 6 6 :X:=Yy

2 ra:=x 7T:y=y—-1
3 X:=Yy 8 : gotol

4 :y:=a—1 end : end

It can be proved terminating by choosing the size functiéfi = (x,y,a). With this
size, its Annotated Control Graph is displayed on Figure EQr convenience reason,
instructions2 — 4, as well a®s — 7 have been represented as a single edge (with a single
matrix). This allow to completely forget registarand so uséx,y) as size. Similarly,

the other SCT matrices are not depicted since they are tindéitiglenatrix. Since there is

no cycle whose SCT matrix is both idempotent and not deargatie ACG satisfies the
0SCT criterion and hence the program is uniformly termirgtin

9.2 SCT as a Grounded-RCG

Now, let’s take a closer look at the Annotated Control Graphsese look quite close to
RCG. Indeed, there is an underlying graph which is the cofitne graph of a program and
weight for each edge that are composed along paths, that vgowtel havelV = M(Z)
ands = ®. However, in order for them to be truly a RCG we need to defineateons
(and admissible valuations).

Even more, the relation between sizes of states and the S@Tcesaas in Lemma 9.4
is exactly the one fulfilled by Grounded-RCG. Hence, we camplj chooseN* as ad-

missible (and ground) valuations and this will lead&foas admissible valuations (where
N = NU{+o0}). the complete set of valuations will then £i6 whereZ = ZJ{+oo}.
notice that we do not need here to adco because only upper bounds are considered.

Definition 9.8 (Size Change RCG)Letp be a program ande|| be a size function such
that for all storesr, ||(I bl ,,0)|| € N¥«. Let G be the CFG o and for each edggin it
let M; be the corresponding SCT matrix.

The Size Change RCGCT-RCG) ofp is the Grounded-RCG fagr build with ground

valuationgV*«, admissible valuations* and valuation&"* for vertexl bl «. The weight
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for edgei is the SCT matrixV/; and we havey = § = ®.

LEMMA 9.9. Letp be a program( be its SCT-RCG ang+ 0y — ... — 6,, be an
execution with trace. There exists an admissible weliy, vo) — ... — (s, v, ) With the
same trace such that for alli, ||6;|| < v;.

This is a direct consequence of Lemma 9.4.

COROLLARY 9.10. Letp be a program( be its SCT-RCG ang - 6y — ... — 0,
be an execution with trace There exists an admissible grounded-wlk~ 6y — ... —

0, ~~ awith the same tracesuch that for alk, ||6;|| = v;.

So, if the SCT-RCG has no infinite ground-admissible wal&ntthe program uniformly
terminates. As usual, the converse is not true. But we cawveloleetter: indeed, uniform
termination of the SCT-RCG is equivalent to verifying #®&CT criterion as we’ll show
now.

LEMMA 9.11. Letp be a program andx be its SCT-RCG. Letbe a finite path in it¢
is the underlying path of a ground-admissible walk.

This is the equivalent of Lemma 5.3 for VASS and the proofseaimilar.

ProoF Consider awalky — ... — 0, following c. Letz; ; be theith component of
the jth valuation. Each sub-path efinduces relations of the shape; ;, = min{z. 4 +
da.b,c,d} Whereds might be either an integer (positive or notH-eso.

So, ifze g > —04,5.¢.4, then the corresponding term will be positive. If all aresrity, ;
is also positive.

So, if y; ; is theith component of thgth ground valuation in the sequence used as an
oracle, putting..q = max,_ »{—da.p.c,q} l€ads to the wanted ground-admissible walki

THEOREM 9.12. Letp be a program(= be its SCT-RCG and be its annotated control
graph. G is uniformly terminating if and only i verifies theySCT condition.

This theorem states that RCG encompass the Size Changépkrireven with some
refinements such as the difference constraints of Ben-Anf28@6] or the functional in-
equalities of Avery [2006] and even allows to combine thesilga

Of course, the property is still undecidable in general lesuits on the/SCT tell that
this is decidable if the matrices are fan-in free, that is ashone non+-oc per row.

PrRoOOF If G does not verify thedSCT condition, then there is a cyatevhose corre-
sponding SCT matriX/ is idempotent and not decreasing. This matrix is also thghtei
of cin G. By the previous lemma, this cycle is the underlying path gf@ind-admissible
walk. Let(zq,- -+ ,x,)and(yi, - - -, y,) be the first and last valuations in this walk. Since
M is idempotenty; either depends on; or on one of the ground valuations introduced in
the oracle. Ify; depend on;, sinceM is not decreasing we must haye> x;.

If y; depend on a valuation from the oracle, then we have againasesc Eithey, de-
pends on a component that was introduced to replaessan a valuation or it depends on
a component that was introduce but replace a sonemponent of the valuation. Indeed,
if the non ground valuatio(il0, +o0) is reached, then the oracle could well replace it with
(7,24). Since the replacement valuation must be smaller than filaced one, this is not
harmful (we cannot arbitrarily increase some componentdewaluation whose value is
already known, only guess for the values that are unknown).
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In the second case, we can always use a maximal oracle, iertise ¢hat if a component
of a non-ground valuation is netco, then the oracle do not changes it (takes the maximum
possible value for this component). Theyp,is still dependant directly om; and the
previous argument apply. In the first case, we can chooseang to replaceroco in the
oracle valuation, so we can always find one that ensurejthatz;.

So, if G does not verify thedSCT condition, then there is a ground-admissible cycle
(¢) such that(s, 7)->(s,7') and? < ?’. Hence, by Theorem 6.1%; is not uniformly
terminating (it is easy to see th@tis indeed positive and monotonic).

Conversely, suppose thatis not uniformly terminating and consider a ground-adrbigsi

infinite walk (s, v0)~> ... (s, vy) . .. Let M; be the SCT matrix associated with edge
7.

Define a2-setto be a2-elements seft, t'} of positives integers. Without loss of gener-
ality, t < t'. o o

Let the sign matrix\/ of M be a matrix ovef—1,0, 41, 400} such thatV/; ; = +oo
(resp.+1,0, —1) if M; ; = +o0 (resp. is strictly positivel), strictly negative). Notice that
M =M.

Now, for each sign matrid/, define the clas®y; of 2-sets yielding it by:

Py ={tt)M=M;, @M, ,®...0 M, }

The setsP;; forms a partition of the 2-sets. Indeed, they are mutualjodtit and
every 2-set belongs to exactly one of them. Since the setgof iatrices (of bounded
dimensions) is finite, it is also finite. Hence, by Ramseyé&ottem, there is an infinite set
of positive integersT’, such that alR-sets{¢, ¢’} with ¢,¢' € T are in the them class. Let
Pyo be this class.

Now, considet < ¢’ < ¢ € T. We have:

M° =1, ®...® M,

' —1

= M;,®... ®Mit”—1
=M, Q..Q ]\/[it’—l X ]\/[it’ &...Q ]\/f@,,il
= M° x M°

Hence M ° is idempotent.

Now, let I, = i, such that is the kth element ofl" (in increasing order). LelV; =
Mp,®...® My, 1 and suppose thaTjkyk = —1, that is eachV; has a negative number
on the diagonal. Then, if; is the kth component of; in the walk, for each < m € T
we must have:,,, < z; (because,, = v; @ N; for somej. Since there are infinitely many
integers int, that would lead to an infinite decrease on one componentofaluation and
the walk would no be admissible (or ground-admissible).

Hence,N; does not have any negative number on the diagonal¥ni$ idempotent.
Sog do not verify the§SCT condition. [ T

10. MORE ON MATRICES

If we use vectors as valuations and (usual) matrices migliifibn as weights, we can
define Matrices Multiplication Systems with States (MMS&)ai way similar to VASS.
Admissible valuations will still be the ones M* but & is not fixed for the RSS and may
depend on the current vertex.
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Definition 10.1(Matrices Multiplication System with States) Matrices Multiplication
System with Stat¢MMSS) is a RSS7 = (G, V, VT, W, w) where:

—V; = 7%, V.t = N¥ for some constant; (depending on the vertex).
—Weights are matrices with integer coefficients.
—5=® = X.

Using this, it is quite easy to model copy instructions of m@us machinesy( := )
simply by using the correct permutation matrix as a weight. r@present increment or
decrement of a counter, an operation which was quite natitalVASS, we now need
a small trick. Simply represent thecounters as & + 1 components vector whose first
component is always. Then, increment of decrement of a variable just becometeali
combination of components of the vector which can perfetdiye with matrices multipli-
cation.

But there is even more. VASS are able to forbid & 0 branch of a test being taken in
an admissible walk if: is 0 simply by decrementing and then incrementing immediately
after. The net effect is null but if is 0, the intermediate valuation is not admissible. This is
still doable with MMSS. VASS, like Petri nets, are howevet able to test if a component
is empty, that is forbid the = 0 branch of a test to be takenaifis not0.

With MMSS, we can perform this test o It is indeed sufficient to multiply the correct
component of the valuation by1. If it was different fromo0, then the resulting valuation
will not be admissible.

So, using these tricks it is possible to perfectly model antets machine by a MMSS:
each execution of the machine will correspond to exactlyaamissible walk in the MMSS
and each admissible walk in the MMSS will correspond to dyamie execution of the
machine.

This leads to the following theorem:

THEOREM 10.2. Uniform termination of MMSS is not decidable.

However, the study can go further. Indeed, using matricesaifices (that is, tensors)
we can represent the adjacency graph of a MMSS (a matrix wdoengonenti, ;) is the
coefficient of the edge between vertigeandj). That is, a first order program can be rep-
resented as such kind of tensors. However, it would then bsilple to uses these tensors
(and tensors multiplication) in order to study second-optegrams. In turn, the second
order programs would probably be representable by a temsthr ihore dimensions) and
S0 one.

This would lead to a tensor algebra representing high onderams.

10.1 Polynomial time

Another interesting approach of program analysis usingioest is the one done by Nigg|
and Wunderlich [2006]. The programs they study are similaur stacks machines except
that the (conditional) jump is replaced by a fixed iteratiomucture { oop) where the
number of iterations is bounded by the length of a given stédk quite easy to see that
both models are very similar and can simulate one anothéowitmajor trouble.

Then, they assign to each basic instruction a matrix, callesttificatewhich contains
information on how to polynomially bound the size of the stgis (or stacks) after the
instruction by their size before executing the instructidrmppears that when sequencing
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instructions, the certificate for the sequence turns ouetthb product of the certificates
for each instruction in turn. Certificates for loops are sdine of iterate of the certificate
for the body and certificate forf statements are the maximum of the two branches.

Building the certificate of a program thus leads to a polyradrhbund on the result
depending on the inputs which can then be turned into a palyaldound on the running
time (depending on the shape of the loops).

So, these certificates can very well be expressed in a MMS$avthe valuation would
give information on the size of registers (depending on the sf the inputs of the pro-
gram) and the weight of each instruction will be these cesdtiés. This will exactly be a
Resources Control Graph for the program. If the programrisfieel, then this RCG wiill
be polynomially resource aware.

11. CONCLUSION

We have introduced a new generic framework for studying mg. This framework is
highly adaptable via the size function and can thus studgreéwroperties of programs
with the same global tool. Analysis apparently quite déf@rsuch as the study of Non
Size Increasing programs or the Size Change Terminatioquidéanaturally be expressed
in terms of Resource Control Graph, thus showing the adaipyadf the tool.

Moreover, other analysis look like they can also be expegsehis way, thus giving
hopes for a truly generic tool to express and study prograopsgpties such as termination
or complexity. It is even likely that high order could be sadithat way, thus giving
insights for a better comprehension of high order compjexit

Theory of algorithms is not well established. This work iallgon the study of pro-
grams and not of functions. Further works in this directidthshed some light on the very
nature of algorithms and hopefully give one day rise to a rtbteal framework as solid
as our knowledge of functions. Here, the study of MMSS andéehsors multiplication
hints that a tensors algebra might be used as a mathemaditkedtound for a theory of
algorithms and must then be pursued.
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