
HAL Id: hal-00107137
https://hal.science/hal-00107137

Submitted on 16 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Generic Algorithms for Operations Research
Bruno Bachelet, Antoine Mahul, Loïc Yon

To cite this version:
Bruno Bachelet, Antoine Mahul, Loïc Yon. Designing Generic Algorithms for Operations Research.
Software: Practice and Experience, 2006, 36 (1), pp.73-93. �10.1002/spe.682�. �hal-00107137�

https://hal.science/hal-00107137
https://hal.archives-ouvertes.fr

Designing Generic Algorithms
for Operations Research

Bruno Bachelet1, Antoine Mahul2 and Loïc Yon3

LIMOS, UMR 6158-CNRS,
Université Blaise-Pascal, BP 10125, 63173 Aubière, France.

Research Report LIMOS/RR03-20

1bruno.bachelet@isima.fr - http://frog.isima.fr/bruno
2antoine.mahul@isima.fr - http://frog.isima.fr/antoine
3loic.yon@isima.fr - http://frog.isima.fr/loic

Abstract

Design solutions have been proposed to implement generic data structures, however there is no
technique that advanced for algorithms. This article discusses various problems encountered when
designing reusable, extensible, algorithms for operations research. It explains how to use object-
oriented concepts and the notion of genericity to design algorithms that are independent of the data
structures and the algorithms they handle, but that can still interact deeply together. An object-
oriented design is often considered to be less efficient thana classical one, and operations research
is one of these scientific fields where efficiency really matters. Hence, the main goal of this article
is to explain how to design algorithms that are both generic and efficient.

Keywords: object-oriented design, operations research, algorithm implementation, genericity,
reusability.

Résumé

Des solutions de conception ont été proposées pour implémenter des structures de données gé-
nériques. Cependant il n’existe pas de technique aussi évoluée pour les algorithmes. Cet article
discute de différents problèmes rencontrés dans la conception d’algorithmes réutilisables, exten-
sibles, pour la recherche opérationnelle. Il explique comment utiliser les concepts orientés objet et
la notion de généricité pour concevoir des algorithmes qui sont indépendants des structures de don-
nées et des algorithmes qu’ils manipulent, mais pouvant néanmoins interagir fortement entre eux.
Une conception orientée objet est souvent considérée commemoins efficace qu’une conception
dite classique, et la recherche opérationnelle est l’un de ces domaines scientifiques où l’efficacité
est vraiment importante. Ainsi, le principal but de cet article est d’expliquer comment concevoir
des algorithmes qui sont à la fois génériques et efficaces.

Mots clés : conception orientée objet, recherche opérationnelle, implémentation d’algorithme,
généricité, réutilisabilité.

1

Abstract

Design solutions have been proposed to implement generic data structures, however there
is no technique that advanced for algorithms. This article discusses various problems encoun-
tered when designing reusable, extensible, algorithms foroperations research. It explains how
to use object-oriented concepts and the notion of genericity to design algorithms that are inde-
pendent of the data structures and the algorithms they handle, but that can still interact deeply
together. An object-oriented design is often considered tobe less efficient than a classical one,
and operations research is one of these scientific fields where efficiency really matters. Hence,
the main goal of this article is to explain how to design algorithms that are both generic and
efficient.

Keywords: object-oriented design, operations research, algorithm implementation, gener-
icity, reusability.

Introduction

The authors of this article work on various projects in the field of operations research: they use
optimization techniques for graph problems in hypermedia synchronization (cf. [3]) or in bus
routing (cf. [12]), and neural approximation in communication networks (cf. [8]). In all these
studies, developing generic but efficient algorithms has been a challenge.

By generic, we mean software components that are extensible (their behavior can be adapted
to fit various goals, which is also calledreusability), and independent (although they can interact
deeply together, the components must be as independent of each other as possible). This indepen-
dence means for algorithms to abstract both the data structures and the algorithms they handle.

When an object-oriented design is said to be inefficient, it is usually due to an overuse of
inheritance. But, what really leads to an inefficient implementation with inheritance is the notion
of virtuality, and more precisely, the dynamic polymorphism that is induced. Virtual methods
require more time to be executed. The cause is not the polymorphism mechanism itself but the
fact that it can prevent theinlining of the method (i.e. the call to the method is replaced by
the body of the method itself), cf. [11] and [7]. Although some design solutions exist to attempt
avoiding dynamic polymorphism (e.g. thedelegation, cf. [6]), the genericity seems to be preferred
in languages that can afford it. The massive use of genericity leads togenericprogramming (cf.
[10]). In this article, we propose to use both object-oriented and generic programming to avoid
dynamic polymorphism when calling critical methods.

Section 1 briefly recalls the solutions to design generic data structures and how to conceive
algorithms as independent as possible of them. Section 2 presents simple design solutions that
basically make the algorithms more generic. However, they can not answer some recurrent situa-
tions. Section 3 explains that algorithms may need to add some data to the parameters they receive,
but in order to maintain the encapsulation of such algorithms, it can not be expected from the caller
of the algorithm to prepare the parameters for these additional data. Some solutions are proposed
to keep the algorithm generic. Section 4 explains that, sometimes, a problem can be modeled by
several ways, and that different models of the same problem can be managed at the same time.
Solutions are proposed to facilitate the shift from one model to another, and the exchange of data
between them.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

2

1 Generic Data Structures

1.1 Inheritance versus Genericity

To design efficient and generic data structures, the solution commonly used is the genericity that
provides not a single class but a parameterizable class, i.e. a metamodel, for a data structure. It
describes how the class should be, some of the data types it manipulates being parameters. Hence,
for different sets of parameters, the metamodel is instantiated, providing parameterized classes,
for which the full compilation and optimization process is performed, completely identical to
equivalent handwritten classes. That means genericity in adesign has no direct impact on its
efficiency.

Graph

**

ArcData NodeData

Flow
+ flow: real number
+ minimum: real number
+ maximum: real number
...

NodeArc incomingArcs

outgoingArcs

target

source
*

*
... ...

Geographic

+ x_coordinate: real number
+ y_coordinate: real number
...

......

...

Figure 1:Graph model with inheritance.

Let consider a classGraph that represents a graph in operations research (a graph is composed
of nodes and arcs, where each arc links two nodes). The aim is to provide a data structure that can
be used to model various kinds of graphs, e.g. flow graphs thatmodel flows moving from point to
point or geographical graphs that model spots with coordinates and roads that separate them. That
means the data structure must be able to carry various data types on both the arcs and the nodes of
the graph.

A model using inheritance is proposed in Figure 1 (in this article, all the diagrams are pre-
sented with UML, cf. [9]). It defines superclassesNodeData andArcData that represent the
data carried respectively by the nodes and the arcs of the graph. In the two previous examples,
that means subclassesFlow (to model flow graphs) andGeographic (to model geographical
graphs) must be defined. An algorithm manipulating, for instance, flow graphs will expect the data
on the arcs to belong to the classFlow. Thus, to use this algorithm for another kind of graphs,
theFlow class must be inherited and some of its methods overridden. Due to the nature of the
algorithms developed on such graphs, these methods should be called very often and dynamic
polymorphism for them may lead to inefficiency.

Thus, a model with genericity is proposed in Figure 2. The classesNodeData andArcData
becomeconcepts(or interfaces), cf. [2], of respectively the parametersTN andTA of the metaclass
Graph. This way, flow or geographical graph types can be instantiated simply after defining
classesFlow andGeographic, which must satisfy respectively the conceptsArcData and
NodeData so the graph can handle them. The major drawback of this approach is that all the
nodes (respectively all the arcs) must carry the same kind ofdata. It is a recurring problem when
considering inheritance versus genericity to design a datastructure. However, the generic design
can be combined with the inheritance design, but the efficiency gained by the former will be lost
by the dynamic polymorphism of the latter.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

3

Graph

Node

TNdata

Arc

TAdata
incomingArcs

outgoingArcs

target

source
*

*

Graph<Flow ,Geographic>

Arc<Flow ,Geographic> Node<Flow ,Geographic>

**

**

− data: Geographic
...

− data: Flow
...

Flow
+ flow: real number
+ minimum: real number
+ maximum: real number
...

Geographic

+ x_coordinate: real number
+ y_coordinate: real number
...

« interface »
NodeData

...

« interface »
ArcData

......

TA,TN

TA,TNTA,TN

« bind »

« bind »« bind »

« implements »

« implements »

Figure 2:Graph model with genericity.

1.2 Independence from Data Structures

The design of data structures with the generic approach proved to be efficient (e.g. the STL [2]).
But this is not enough to ensure the independence of the algorithms from the data structures they
handle. To achieve this purpose, the solution commonly usedis to propose one or more classes that
become interfaces between the algorithm and the data structure it handles. Usually, an interface is
proposed for each kind of operations on the data structure. For instance, to search through a data
structure, the well-knowniterator interface (cf. [5]) is used. We can also imagine an interfaceto
access global informations on the data structure such as itssize.

+ next()
+ isEnd() : boolean
+ getElement() : T

« interface »

I terator

I terator2

+ next()
+ isEnd() : boolean
+ getElement() : T

Collection1I terator1

+ next()
+ isEnd() : boolean
+ getElement() : T

Collection2

Algor ithm

« uses »

« friend »

« friend »
+ getIterator() : Iterator2<T>
...

« implements »

+ getIterator() : Iterator1<T>
...

+ run(I)
...

TT

TT

T

T

T,I

T: type of the elements of in collection,
I: type of the iterator.

Figure 3:Algorithm parameterized on the iterator type.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

4

+ next()
+ isEnd() : boolean
+ getElement() : T

« interface »

I terator

Collection1

I terator
(from Collection1)

+ next()
+ isEnd() : boolean
+ getElement() : T

Algor ithm

« uses »

« implements »

+ getIterator() : Iterator<T>
...

+ run(C)
...

« nested class »

Collection2

I terator
(from Collection2)

+ next()
+ isEnd() : boolean
+ getElement() : T

+ getIterator() : Iterator<T>
...

« nested class »

« interface »
Collection

+ getIterator() : Iterator<T>
...

« implements »

« uses »

T

T

T

T

T

T

T,C
T: type of the elements in the collection,
C: type of the collection.

Figure 4:Algorithm parameterized on the data structure type.

In our discussion, we will consider a single iterator interface, but it can be generalized to any
other interface. Some designs propose that the algorithm receives directly the iterators instead of
the data structure, this way the algorithm is completely independent of the data structure, e.g. a
collection (cf. Figure 3). However, if many iterators are required by the algorithm, the caller must
provide all of them, which leads to a partial break of the encapsulation of the function: details have
to be known from the caller so it provides the relevant iterators. The following example illustrates
how to use the collection from the modeling of Figure 3:

method Algorithm<T,I>::run(I i)
while not i.isEnd() do
...i.getElement()...
...
i.next();

end while;
end method;

A better design would be to propose a parameterizable version of the algorithm where the
parameter is the type of the data structure the algorithm handles (cf. Figure 4). The collection
is still provided to the algorithm, but the meta-algorithm is independent of it. However, the data
structure needs to implement a specific concept: with the iterator example, the collection must
provide methods that create iterators on its own structure.The type of the iterator must also be
provided by the data structure as shown in Figure 4 with the nested typeIterator. It means
a completely independent collection will need an adapter before the algorithm can use it. The
following example illustrates how to use the data structurefrom the modeling of Figure 4:

method Algorithm<C,T>::run(C c)
c.Iterator i = c.getIterator();

while not i.isEnd() do
...i.getElement()...
...
i.next();

end while;
end method;

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

5

2 Toward Generic Algorithms

The previous section explains how to make an algorithm independent of the data structures it han-
dles. The same way, this section recalls a design solution tomake it independent of the algorithms
it manipulates. In a second part, various techniques are discussed to make an algorithm extensible.

2.1 Abstraction of Algorithms

As shown in the previous section, an algorithm can be modeledas a class with a method,run()
for instance, that is called to perform the algorithm. Moreover, such a class can aggregate the
parameters of the algorithm, thus instances will representthe algorithm with different parameters.
Based on this modeling, the design patternstrategy(cf. [5]) allows to make components indepen-
dent of an algorithm: as it is represented by a class, it is possible to define an abstract superclass to
gather all the algorithms that solve a same problem. As shownin Figure 5, the classical problem
of the shortest path between two nodes in a graph (ShortestPathAlgo abstract class) can be
solved with various algorithms (cf. [1]):BellmanAlgo,DijkstraAlgo...

« abstract »

Shor testPathAlgo

BellmanAlgo

+ run(Graph)
+ default() : ShortestPathAlgo

Abstract method.

Dij kstraAlgo

return new DijkstraAlgo;

+ setParameters(...)
+ run(Graph)

+ setParameters(...)
+ run(Graph)

M inCostFlow Algo

+ constructor(a: ShortestPathAlgo)
+ setParameters(...)
+ run(...)

Graph * g = ...;
...
spalgo.run(g);
...

spalgo

spalgo = a;

Figure 5:Abstraction of algorithms.

The run() method of theShortestPathAlgo class is abstract so the subclasses must
override it. This way, the different shortest path algorithms become interchangeable in any algo-
rithm that manipulatesShortestPathAlgo (e.g. MinCostFlowAlgo). The virtuality im-
plied here will not impact the whole efficiency of the design,because the algorithms are supposed
to have complex behavior, so the time requested in the call mechanism to the method is insignif-
icant compared to the execution time of the method itself. However, asShortestPathAlgo
provides a common interface for all the algorithms, it can not be used to parameterize the algo-
rithms. A specific method must be added to each algorithm, e.g. setParameters(), whose
duty is to initialize the parameters of the algorithm.

BellmanAlgo s = new BellmanAlgo;
MinCostFlowAlgo f = new MinCostFlowAlgo(s);

s.setParameters(...);
f.setParameters(...);
f.run(...);

The example above, based on the modeling of Figure 5, shows that it is possible to decide
which shortest path algorithm to use inside the minimum costflow algorithm at the execution time.
The algorithm must be created and parameterized before it can be used in the methodrun() of
the minimum cost flow algorithm. Note that the duty of thesetParameters() methods can
be performed by the constructors of the classes. It is also important to provide a method in the

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

6

abstract classShortestPathAlgo to return a default algorithm object of one of its concrete
class to the final user. Basically, it will be the class that isrecognized to be the most efficient, but
we can imagine a more sophisticated approach where, for instance, an analysis of the structure of
a graph allows to select the best algorithm to solve a specificproblem on this graph.

2.2 Extension of Algorithms

This section discusses three ways of making an algorithm extensible, the idea being that some
parts of its code are delegated in separate methods that can be replaced by the user. This way the
behavior of the whole algorithm can be modified, whereas mostof its code is not (and can not be)
altered. Moreover, the user does not need to know all the details about the implementation of the
algorithm, only relevant information on the methods he can replace is necessary.

2.2.1 Virtual Method Approach

The design patterntemplate method(cf. [5]) is a classical solution to make an algorithm ex-
tensible. It externalizes parts of the methodrun() of an algorithm into virtual methods, e.g.
operation1() and operation2() in Figure 6, called theparameter methods. Hence,
through inheritance, these methods can be overridden to modify their behavior, leaving the body
of run() unchanged.

+ setParameters(...)
+ run(...)
operation1(...)
operation2(...)

V irtual method.

V irtual method.

...
operation1(...);
...
operation2(...);
...

Algor ithm1 Algor ithm2

« abstract »

Algor ithm

+ setParameters(...)
operation1(...)
operation2(...)

+ setParameters(...)
operation1(...)
operation2(...)

Figure 6:Extension of an algorithm, virtual method approach.

The major drawback of this approach is obviously the use of the dynamic polymorphism that
may lead to inefficiency, especially when the parameter methods are fast and often called. Another
disadvantage is the rigidity to extend an algorithm: it is impossible at the execution time to propose
an extension of the methods but those defined by the subclasses of the algorithm.

2.2.2 Abstract Visitor Approach

To make the extension more flexible, the notion ofvisitor is introduced in [5]. It proposes to embed
the parameter methods into objects. More precisely, a visitor possesses methods that match the
parameter methods. To be operational, the algorithm must aggregate a visitor, which provides the
missing parts in itsrun() method. The visitor can be provided to the algorithm during its con-
struction, or later, before the call to therun()method, or even as argument of therun()method.
In Figure 7, inside therun() method of theAlgorithm class, avisitor object that imple-
ments theVisitor interface is used to call its embedded parameter methodsoperation1()
andoperation2().

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

7

Algor ithm

+ constructor(v : V isitor)
+ setParameters(...)
+ run(...)

...
visitor.operation1(...);
...
visitor.operation2(...);
...

+ operation1(...)
+ operation2(...)

visitor « abstract »

Visitor

Visitor1 Visitor2

visitor = v;

+ setParameters(...)
+ operation1(...)
+ operation2(...)

+ setParameters(...)
+ operation1(...)
+ operation2(...)

Figure 7:Extension of an algorithm, abstract visitor approach.

The following example shows the flexibility of this approach. It is possible to decide, during
the execution, which visitor to use to run the algorithm. However, the major drawback, due to the
virtuality of the parameter methods, remains.

Visitor1 v = new Visitor1;
Algorithm a = new Algorithm(v);

v.setParameters(...);
a.setParameters(...);
a.run(...);

2.2.3 Visitor Interface Approach

To finally avoid the dynamic polymorphism, the visitor must become a parameter, not of the
run() method, but of theAlgorithm class itself. That means the class becomes parameteriz-
able with the type of the visitor as parameter. Thus, as shownin Figure 8, the algorithm aggregates
a visitor that must satisfy aVisitor concept.

Algor ithm

+ run(...)
+ getV isitor() : V

« interface »

Visitor

+ operation1(...)
+ operation2(...)

Algor ithm<Visitor1> visitor

visitor

Visitor1

Visitor2Algor ithm<Visitor2>

...
visitor.operation1(...);
...
visitor.operation2(...);
...

Vvisitor
« uses »

« implements »

+ setParameters(...)
+ operation1(...)
+ operation2(...)

+ setParameters(...)
+ operation1(...)
+ operation2(...)

V

« bind »

Figure 8:Extension of an algorithm, visitor interface approach.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

8

The following example illustrates this modeling. This approach is very similar to the previous
one, but the dynamic polymorphism is avoided, thus there is no loss of efficiency. Nevertheless,
the flexibility proposed with the abstract visitor approachis lost. As in the previous approach,
the visitor could be provided directly as an argument of the constructor ofAlgorithm, instead
of being automatically created by the algorithm. This way the visitor interface approach can be
combined with the abstract visitor approach to provide flexibility.

Algorithm<Visitor1> a = new Algorithm<Visitor1>;

a.getVisitor().setParameters(...);
a.setParameters(...);
a.run();

2.3 Conclusion

To obtain a "good" genericity of the algorithms, it seems important to apply the strategy pattern
with the solutions proposed here to make the components independent, and to combine it either
with the visitor interface approach (when efficiency matters), or with the abstract visitor approach
(when flexibility is preferred), to allow sufficient extensibility for the algorithm. Note that the STL
proposes the notion offunctor that is similar to the notion of visitor interface. Other approaches
are proposed, for instance in [4] that defines generic versions of many behavioral design patterns
introduced in [5].

3 Managing Extensions of Data Structures

When designing generic algorithms, it is often necessary toextend a data structure, so its elements
provide additional attributes that an algorithm may temporarily need. For instance, to solve a
minimum cost flow problem some algorithms require to affect apotential to the nodes of the graph.
However, the nodes of flow graphs do not possess such data and it can not be expected from the
caller of the algorithm to add this data, it would break the encapsulation of the component.

+ clone() : AbstractExtension

E xtension

« abstract »

AbstractE xtension

− value: T

+ clone() : AbstractExtension

return new Extension<T>(this);

T

Figure 9:Extension class.

The first idea is to add a "free" attribute to the nodes of the graph. This attribute is a reference
to an object of a classAbstractExtension. When a graph is built, no data is pointed. Then,
if an algorithm needs to add data, it can make the "free" attribute reference an object belonging
to a class inherited fromAbstractExtension. The parameterizable classExtension is
proposed to offer a generic way of encapsulating an entity inside an object with the interface
AbstractExtension.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

9

This first approach requires that before an algorithm uses the "free" attribute it must memorize
the data another algorithm may have stored in it and restore it once its process finishes. It is
typically a stack, so the second idea is to replace the "free"attribute by a stack of "free" attributes.
When an algorithm needs to add data, it must put it on top of thestack and remove it after its
process.

However, the execution of some algorithms may be iterative,and between two iterations other
actions can be performed. For instance, for the learning with pruning of a neural network, there are
two independent iterative algorithms: the learning algorithm that modifies, at each iteration, the
weight of the neural network, and the pruning algorithm thatmay remove, at each iteration, some
arcs that prove to be useless. The whole process is to performsome iterations of the learning,
then one of the pruning and repeat until certain conditions are satisfied. Both the learning and
the pruning need to put additional data on the nodes of the graph that must remain between two
iterations of each algorithm. That means the order in which the algorithms add data to the nodes
can not be modeled as a stack. Any algorithm can add or remove,at any time, its own data on the
nodes.

+ clone() : AbstractExtension

« abstract »

AbstractE xtension

E xtensionM anager

+ attach(AbstractExtension) : index
+ detach(index)
...

E xtensionM anager
<Collection1<Node>, Node>

+ attach(AbstractExtension) : index
+ detach(index)
...

C

...

« interface »

E xtendable

« implements »

Graph

...

*

« indexed »

Node

« uses »

...

Collection1<Node>

...

« interface »
Collection

...

« implements »

T

C,T

C: type of the collection,
T: type of the elements in the collection.

*

Figure 10:Additional data management modeling.

Figure 10 presents a solution to design a data structure thatcan manage the insertion or the
removal of data on a set of elements. The example of a collection of nodes in a graph is considered.
Instead of manipulating a collection of nodes directly, e.g. with theCollection1<Node>class
(cf. Figure 4), the graph handles an object of the classExtensionManager that implements
theCollection interface, so no changes in the code of theGraph class is required (except for
the declaration of the collection of nodes). ThisExtensionManager class is an adapter that
aggregates a collection; any call to methods of theCollection interface is delegated to its inner
collection.

The duty of anExtensionManager object is to manage the addition or the removal of an
Extension object for each node of the set it encapsulates. Hence, an algorithm, that wants to
add an extension, calls itsattach() method with a template of the extension to clone and to

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

10

put on each node. An index is returned indicating the location of the extension in the indexed lists
the nodes aggregate. Thus, it allows the algorithm to directly ask a node for a specific extension,
using this index. Finally, to remove an extension, the algorithm calls thedetach() method
with the index as argument so the manager knows which extension to remove from the nodes. To
manipulate the sets of extensions, the manager uses theExtendable interface implemented by
the nodes.

+ clone() : AbstractExtension

« abstract »

AbstractE xtension
+ getExtensions() : ExtensionSet

« interface »

E xtendable

+ get(index) : AbstractExtension
+ set(index, AbstractExtension)

E xtensionSet

« implements » « indexed »

Node
+ getExtensions() : ExtensionSet
...

extensions

return extensions;

*

Figure 11:Extendable interface implemented with delegation.

Two solutions are possible to implement theExtendable interface. First, theNode class
can delegate the management of the extension list to anotherclass, e.g.ExtensionSet in Figure
11. Second, the interfaceExtendable can become a class that manages the extension list (as
theExtensionSet in the previous design), and theNode class inherits fromExtendable,
cf. Figure 12. This specialization is efficient because no dynamic polymorphism is implied. In
this second design, implementation is inherited from theExtendable class. It arises problems
with languages that forbid multiple implementation inheritance, that meansNode can not inherit
implementation from another class, which may be important for some designs.

+ clone() : AbstractExtension

« abstract »

AbstractE xtension
« indexed »

+ getExtension(index) : AbstractExtension
+ setExtension(index, AbstractExtension)

E xtendable

Node

...

*

Figure 12:Extendable interface implemented with specialization.

In terms of maintenance and reusability, this design allowsto add anExtensionManager
without modifying the data structure that aggregates the original collection, e.g.Graph. The
structure of the class that aggregates the extensions has not to be modified, it only requires to ag-
gregate an object of theExtensionSet class or to inherit from theExtendable class, both
solutions providing the set of extensions. Dynamic polymorphism has been avoided as much as
possible, however algorithms need to downcast the extensions fromAbstractExtension to
Extension<T>. That means some type checking at the execution time is required, which usu-
ally leads to inefficiency because the extensions are singledata that we can reasonably assume to
be called very often. The efficiency is ensured only if this type checking is avoided, which is possi-
ble with langages such as C++ that proposes the checking (with its instructiondynamic_cast)

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

11

or not (with its instructionstatic_cast).

4 Maintaining Several Models of a Same Problem

Another recurring problem is to deal with several models of aproblem at the same time. For
instance, a graph can also be modeled as a matrix, and algorithms often need to manage aGraph
object and the equivalentMatrix model. An algorithm may need to convert theGraph object
into aMatrix object, perform some optimization, and data from theMatrix object must be
interpreted to modify theGraph object. The simplest solution is a converter object that provides
a method to transform a graph into a matrix, and another to interpret the results back from the
matrix to the graph. The drawback of this approach is obvious: each time a modification is made
on the graph, the converter object must be called to rebuild completely the matrix.

Vir tualGraph

...

« interface »
Graph

...

« implements »

M atr ix

...

Vir tualM atr ix

...

« interface »
M atr ix

...

« implements »

Graph

...

(a) Virtual matrix

(b) Virtual graph

Figure 13:Virtual data structure.

A second design solution can be proposed: one of the two components,Graph or Matrix,
can be "virtual". This means only one of the two data structures physically exists, and the other one
is simply an adapter of the other. Figure 13(a) proposes aVirtualMatrixclass that implements
theMatrix interface and aggregates the graph to convert. Each time a method of theMatrix
interface is called, theVirtualMatrix object delegates the execution to its associated graph.

On the contrary, Figure 13(b) proposes to make the graph structure virtual. With this de-
sign solution, the graph (respectively the matrix) can be modified at any time because each time
information for the matrix (respectively for the graph) is requested, it is built from the graph (re-
spectively from the matrix) structure. However, if the methods of the virtual component need time
to be executed, the design is inefficient. It should be used when the methods are fast, the best
being that they only provide a mapping from matrix (respectively from graph) elements to graph
(respectively to matrix) elements.

The third solution consists in maintaining several physical models of a problem at the same
time. It means there are two classesGraph andMatrix, and when a modification occurs in the
Graph object, it must be reflected in theMatrix object (for the sake of simplicity, the opposite
case is not considered). That means algorithms will manipulate an adapter of theGraph class, e.g.
ObservedGraph, that follows the sameGraphInterface interface. Moreover, the design
patternobserver(cf. [5]) is implemented for the observed graph, which meansexternal objects,
the observers, can ask observer managers in the observed graph to be informed when certain
operations occur. The observed graph decides to notify its relevant changes to one or more of its
observer managers, which inform then the observers. An observer, receiving a notification, can
decide to modify the matrix in order to keep the coherence with the graph. Thus, any algorithm
can manipulate theObservedGraph as any graph, and each time a relevant operation occurs,
the matrix is modified. This solution is efficient only if a fewcalls to the observers are performed.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

12

Graph

...

Observ erM anager1

Observ erM anager2

+ attach(Observer2)
+ detach(Observer2)
+ notify(...)

Observ edGraph

...

« interface »
GraphI nterface

...

« implements »

Algor ithm

...
« uses »

M atr ix

...

+ attach(Observer1)
+ detach(Observer1)
+ notify(...)

Observ er1

+ update(...)

Observ er2

+ update(...)

< update

< update

Figure 14:Maintaining several models.

To conclude, the first solution can be used only if the models are not requested to be maintained
together. If a direct mapping between the elements of the twomodels can be achieved, the second
solution with a single adapter is efficient. Finally, if the relation between the models is more
complex and two physical models are necessary, the third approach should be chosen. In all these
solutions, dynamic polymorphism has been avoided.

Conclusion

The object-oriented paradigm focusing more on the data thanon the behavior of a program, it
seems better suited to build reusable data structures than reusable algorithms. However, it is
possible to provide design solutions to model generic and efficient algorithms combining the
object-oriented and the generic programming. This articlepresents how to make a component
independent of both the data structures and the algorithms it handles. It also explains how to bring
extensibility in the code of an algorithm, without losing its efficiency. We also discuss recur-
ring problems, such as how to manipulate additional information on data structures without losing
neither the efficiency nor the genericity of the design; and such as keeping several models of a
problem up-to-date at the same time. The design solutions presented along this article have been
implemented and their reusability and extensibility experienced successfully in several operations
research projects.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows - Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] Matthew H. Austern. Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley, 1999.

[3] Bruno Bachelet, Philippe Mahey, Rogério Rodrigues, andLuiz Fernando Soares. Elastic
Time Computation for Hypermedia Documents. InSBMidìa’2000, pages 47–62, 2000.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

13

[4] Alexandre Duret-Lutz, Thierry Géraud, and Akim Demaille. Generic Design Patterns in
C++. In6th USENIX Conference on Object-Oriented Technologies andSystems, pages 189–
202, 2001.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] Ralph E. Johnson and Jonathan Zweig. Delegation in C++. In Journal of Object-Oriented
Programming, volume 4-11, pages 22–35, 1991.

[7] Stanley B. Lippman.Inside the C++ Object Model. Addison-Wesley, 1996.

[8] Antoine Mahul and Alexandre Aussem. Neural-Based Quality of Service Estimation in
MPLS Routers. InSupplementary Proceedings of ICANN’03, pages 390–393, 2003.

[9] Pierre-Alain Muller. Instant UML. Wrox Press, 1997.

[10] David R. Musser and Alexander A. Stepanov. Generic Programming. InLecture Notes in
Computer Science, volume 358, pages 13–25. Springer-Verlag, 1989.

[11] Martin J. O’Riordan. Technical Report on C++ Performance. Technical report, International
Standardization Working Group ISO/IEC JTC1/SC22/WG21, 2002.

[12] Loïc Yon, Alain Quilliot, and Christophe Duhamel. Distance Minimization in Public Trans-
portation Networks with Elastic Demands: Exact Model and Approached Methods. In21st
IFIP TC 7 Conference, 2003.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2003.

