
HAL Id: hal-00107064
https://hal.science/hal-00107064v7

Preprint submitted on 31 Aug 2009 (v7), last revised 29 Jan 2010 (v8)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cellular Computing and Least Squares for partial
differential problems parallel solving

Nicolas Fressengeas, Hervé Frezza-Buet

To cite this version:
Nicolas Fressengeas, Hervé Frezza-Buet. Cellular Computing and Least Squares for partial differential
problems parallel solving. 2009. �hal-00107064v7�

https://hal.science/hal-00107064v7
https://hal.archives-ouvertes.fr

Cellular Computing and Least Squares for partial

differential problems parallel solving

Nicolas Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes

University Paul Verlaine of Metz and Supélec

2, rue Edouard Belin, 57070 Metz Cedex, France

and

Hervé Frezza-Buet

Information, Multimodality and Signal

Supélec

2, rue Edouard Belin, 57070 Metz Cedex, France

This paper shows how partial differential problems can be solved thanks to cellular computing
and an adaptation of the Least Squares Finite Elements Method. As cellular computing can be
implemented on distributed parallel architectures, this method allows the distribution of a resource
demanding differential problem over a computer network.

Categories and Subject Descriptors: J.2 [Computer Applications]: Physical Science end En-
ginerring

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Cellular Computing, Formal computing, Least Squares,
Partial Differential Systems

1. PARTIAL DIFFERENTIAL EQUATIONS AND CELLULAR COMPUTING

1.1 Automata and calculus

Ever since von Neumann [Burks 1969], the question of modeling continuous physics
with a discrete set of cellular automata has been raised, whether they handle dis-
crete or continuous values. Many answers have been brought forth through, for
instance, the work of Stephen Wolfram [Wolfram 1983] summarized in a recent
book [Wolfram 2002]. This problem has been mostly tackled by rightfully consid-
ering that modeling physics through Newton and Leibniz calculus is fundamentally
different from a discrete modelisation as implied by automata.

Indeed, the former implies that physics is considered continuous either because
materials and fields are considered continuous in classical physics or because quan-
tum physics wave functions are themselves continuous. On the contrary, modeling
physics through automata implies modeling on a discrete basis, in which a unit ele-
ment called a cell, interacts with its surroundings according to a given law derived
from local physics considerations.

Such discrete automaton based models have been successfully applied to various
applications ranging from reaction-diffusion systems [Weimar and Boon 1994] to
forest fires [Drossel and Schwabl 1992], through probably one of the most impressive
achievements: the Lattice Gas Automata [Rothman and Zaleski 1994], where atoms

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·

or molecules are considered individually. In this frame, simple point mechanics
interaction rules lead to complex behaviors such as phase transition and turbulence.
This peculiar feature of automata, making complex group behavior emerge from
fairly simple individual rules aroused the interest around them for the past decades
[Chopard and Droz 1998].

1.2 Cellular computing

Cellular automata-based modeling attempts have also concerned the theory of cir-
cuits for a few decades, because the Very-Large-Scale Integration (VLSI) compo-
nents offer a large amount of configurable processors, spatially organized as a locally
connected array of analogical and numerical processing units. In this field, the con-
cept of cellular automata can be extended[Chua and Yang 1988] by allowing local
cells, that are dynamical systems, to deal with several continuous values and local
connections.

Such cellular computing algorithms are good candidates for the numerical reso-
lution of partial differential equations (PDE), and a methodology for their design
from a given PDE has been proposed in [Roska et al. 1995]. This approach con-
sists in performing a spatial discretisation of the PDE through the finite difference
scheme, yielding an Ordinary Differential Equation (ODE) on time that can be
numerically solved by standard methods like Runge-Kutta.

This approach is widely used in this field, and drives the design of simulators
like SCNN 2000 [Lonkar et al. 2000], as well as the design of actual VLSI com-
ponents [Sargeni and Bonaiuto 2005]. The partial differential system is there im-
plemented using analogical VLSI components, the circuit temporal evolution being
then the temporal evolution of the initial PDE.

Two main difficulties arise in this framework. The first one concerns the stability
of the cellular system. Some stability studies of cellular networks for classical PDEs
can be found in [Slavova 2000] but stability has still to be analyzed when dealing
with new specific problems, as it has been done, for example, for the dynamics of
nuclear reactors [Hadad and Piroozmand 2007]. The second difficulty raised by
transforming PDE to ODE for resolution by cellular means is the actual fitting of
the cellular algorithm to the PDE, since the method is more a heuristic one than a
formal derivation from the PDE, as mentioned in [Bandmann 2002]. Furthermore,
the features of the cellular algorithm cannot be easily associated to the physical
parameters involved in the PDE.

To cope with the lack of methods to formally derive a cellular algorithm from a
PDE, some parameter tunings can be performed. This tuning can be driven by a
supervised learning process, as in [Lonkar et al. 2000; Bandmann 2002]. Some other
a posteriori checks can be achieved if some analytical solution of the PDE is known
for particular cases, as in [Slavova 2000], or if some behavior can be expected, as
traveling waves or solitons [Roska et al. 1995; Kozek et al. 1995; Slavova and Zecca
2003]. In the latter case, validation is based on a qualitative criterion.

Some other methods to derive automata from particular differential problems
such as reaction-diffusion systems [Weimar and Boon 1994] or Maxwell’s equa-
tions [Simons et al. 1999] have been presented. In the former, the automaton is
constructed from a moving average paradigm, while the latter is a modified version
of the Lattice Gas Automaton [Rothman and Zaleski 1994].

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

1.3 Cellular computing for solving PDE’s

In most cases, the predictions of calculus based, continuous models and those of
discrete, automata based ones, are seldom quantitatively identical, though qualita-
tive similarity is often obtained. This is mostly explained by the fact that the two
drastically different approaches are applied to their own class of problems.

Some attempts have recently been made to set up the solution of a PDE by using
a regression method [Zhou et al. 2003]. The idea there is to measure an error at
each discrete point of the system, and to drive an optimization process in order to
find the continuous function that minimizes this error, this function being taken
in a parametrized set of continuous functions defined by a multi-layer perceptron.
This error is null if the function that is found meets the EDP requirements. Such
regression processes, based on classical empirical risk minimization, are known to
be sensitive to over fitting [Vapnik 2000].

Other attempts at a quantitative link have however been made by showing con-
nections between an automaton and a particular differential problem [Tokihiro
et al. 1996] or by designing methods for describing automata by differential equa-
tions [Doeschl et al. 2004; Kunishima et al. 2004; Omohundro 1984] allowing in
the way to assess the performance of two different implementations of the same
problem, which are in fact basically two different automata for the description of
the same physics.

The interest of solving PDEs with cellular automata is of course not limited
to physics, since PDEs are also intensively used in image processing [Aubert and
Kornprobst 2006]. Some cellular-based solutions have also been proposed in that
field [Rekeczky 2002]. This stresses the need for generic tools for simulating PDEs
in many areas. In [Rekeczky 2002], an attempt has been made to provide ready-
to-use programming templates for the design of cellular algorithms, and previously
mentioned software [Lonkar et al. 2000] help to rationalize this design for PDEs.

In this paper, the problem of designing a cellular algorithm from a given partial
differential problem is addressed in an attempt to bridge the present gap [Bandmann
2002] between continuous PDE and discrete cells. To this aim, we have adapted
the Least Squares Finite Elements Method [Jiang 1998] (LSFEM). In the following,
section 2 describes our adaptation of the LSFE Method. Section 3 shows that the
proposed algorithm can be made purely local and thus implemented thanks to
cellular computing. Section 4 provides implementation and application examples.

2. ADAPTATION OF LSFEM TO CELLULAR COMPUTING

In the following, we will reformulate the LSFE Method in a mathematical formalism
which can then be used in a cellular scheme. Subsection 2.1 sets the necessary
mathematical basis where one particular state of a cellular network is viewed as a
function from a discrete set (the cells) into a vector space (each cell hosts a vector of
reals). Subsection 2.2 describes how the LSFEM functional is set and minimized.
Finally, subsection 2.3 suggests that stochastic gradient descent [Spall 2003] can
help at making the computations local only. This will be proved in section 3.

Unfortunately, the necessary mathematical formalism used in this section can
seem quite abstract. To overcome this difficulty, we will provide, at each step,
a simple example: a normalized mono dimensional Poisson equation, △V (x) =

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·

∂2V
∂x2 = ρ (x), V being the unknown electrostatic potential and ρ a given repartition
of charges. The example chosen has of course a straightforward solution but it is
simple enough so that each step can be detailed in the paper.

2.1 Definitions

The very characteristic of continuous physics is its intensive use of fields. If we note

(B)A the set of functions from A to B, a field ξ ∈ (Rn)R
m

is a mapping of a given
vector physical quantity —belonging to R

n— over a given physical space R
m, for

(m, n) ∈ N
2. For instance, our example electrostatic potential field in a 1D space is

a scalar mapping over R, as an electric field over a 3D space would be a 3D vector
mapping over R

3. Furthermore, if time were present in this example, it would be
treated equally as just an additional dimension. For instance, a time-resolved 3
dimensional problem is considered as having 4 dimensions.

Therefore, a particular local differential problem P stemming from local relation-
ships, can be expressed in terms of a functional equation Φ(ξ) = 0, where the field ξ
is the unknown, and where Φ represents the differential relationships derived from
physical considerations, that a field ξ should satisfy to be the solution of P. Let us
note here that the functional equation Φ(ξ) = 0 merely represents any differential
equation, or system of equations, over a field ξ of one or more dimensions. In our
example, the field ξ is the association of an electrostatic potential V (x) to each
point x. The equation that has to be satisfied is ∀x, △V (x) − ρ(x) = 0. This is
better expressed by the corresponding functional equation, △V − ρ = 0, where the
whole mapping V is the unknown.

Φ can thus be defined as follows, where p ∈ N can be thought of as the number of
independent real equations necessary to express the local relationships which are to
be satisfied at any point of R

m (p = 1 in our example since only one scalar equation
describes the problem):

Φ : (Rn)
R

m

7→ (Rp)
R

m

ξ → Φ(ξ) .

In other words, Φ(ξ) is a mapping of a vector of p real values over the physical
space R

m. For any point x ∈ R
m in space, the ith component of Φ(ξ)(x) ∈ R

p,
which would be zero if ξ was the solution of P, actually corresponds to the local
amount of violation of the ith real local equation used to describe the problem at
x: in our example, △V (x) − ρ (x), if not null, is the violation of Poisson equation
at x. This is the heart of LSFEM: all violations, or errors, on all points can be
summed up to a global error, which can itself be minimized. This is developed in
the next paragraphs.

Using a functional equation instead of considering ξ as a given numerical instanti-
ation as is usually done, allows to point out that the differential problem expressed
by the mapping Φ depends intrinsically on the unknown field ξ, whatever its actual
instantiation, or value, is. The functional formalism allows to handle the depen-
dency itself, i.e. the way all violations Φ(ξ) over the physical space R

m depend on
the whole field ξ.

With these notations, finding the solution to the differential problem Φ means
finding ξ⋆ for which Φ(ξ⋆) = 0. This can be done by conventional approaches such as

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

the multidimensional Newton minimization method or well known gradient descent
such as conjugate gradient. All such methods could be used in the framework of our
paper, each having its own advantages and disadvantages. For the sake of clarity
and illustration purposes, we have chosen to develop our paper on the Newton
Minimization Method but all concepts and demonstrations can be generalized to
the other minimization methods.

We will express this method using functional derivatives of the mapping Φ with
respect to ξ to set the basis for understanding how we can make it local only. Let
us note here however that the functional derivatives are not as mathematically
exotic as they may seem: they simply correspond to the derivative of one side of a
differential equation with respect to the unknown field itself. In our example, this
means deriving △V − ρ with respect to V .

To make this approach computationally tractable, we need to discretize the prob-
lem. This is performed by discretizing Φ on a finite mesh Ω ⊂ R

m, the discretized

problem being then expressed as Φ̃(ξ̃) = 0, where ξ̃ is the unknown and Φ̃ is defined
as follows:

Φ̃ : (Rn)Ω 7→ (Rp)Ω

ξ̃ → Φ̃(ξ̃) . (1)

We will not address, in this paper, the difficult question of the optimum mesh
Ω which allows the discrete solution to be the closest to the continuous one. We
will thus assume that Ω is correctly chosen with respect to the differential problem
itself so that conventional methods would give satisfactory results.

In contrast, the question of of the treatment of boundary conditions, whether they
be of the Dirichlet or Neumann type is of primary importance. A Dirichlet condition

expressed as some ω ∈ Ω is to expressed as ∀ξ̃, Φ̃(ξ̃)(ω) = 0: in other words, the
restriction of Φ̃ to {ω} is null. Equally, specifying that Neumann conditions are to
be satisfied on a subset of Ω is equivalent to giving a specific definition of Φ̃ over this
subset. This idea can be further generalized by considering several subsets of Ω over
which the general expression of Φ̃ changes. This would allow to take into account
subdomains of Ω, each of which having its own differential problem. However and
whatever the precise differential problem and thus the actual definition of Φ̃, this
shows that boundary conditions are not to be added to the discretised differential
problem Φ̃ but are inherently part of it, as it should mathematically be.

To clarify this, let us go back to our example: the solving of the 1D Poisson
equation on a mono dimensional mesh Ω of N regularly spaced points x1, · · · , xN .
In the following, the value V (xi) associated by the mapping V at the point xi will
be shortened to V i. The same stands for the charge ρ(xi) at the point xi, that will
be written as ρi. The discretized problem can then be found by finite difference as
the following, provided V 1 and V N are defined as Dirichlet boundary conditions
and d is the sampling step :

∀i ∈ N, 1 < i < N,
1

d2

(

V i−1 − 2V i + V i+1
)

− ρi = 0.

Once again, let us us stress here that the whole expression, including all space
points is seen as depending on a single functional parameter V , which is a function
over the discrete set {x1, · · · , xN}. This function V is what is actually generally

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·

formalized above as ξ̃.

2.2 General method

Getting back to the general case and as was already discussed, solving the problem

means finding ξ⋆ for which Φ(ξ⋆) = 0, which means finding a field ξ̃ for which Φ̃(ξ̃) is
as close to the 0 mapping as possible given a distance on the functional space (Rp)

Ω
.

This, in turn, is equivalent to zeroing all p relations Φ̃(ξ̃)(ω) for all ω ∈ Ω. Finally,
this can be equivalently done by similarly minimizing a the functional expression

E(ξ̃) as is done in the LSFE Method [Jiang 1998]:

E(ξ̃) =
∑

ω∈Ω

∣

∣

∣Φ̃(ξ̃)(ω)
∣

∣

∣ (2)

where | | is any given norm on R
p. The usual LSFEM continuous integral is

here replaced by a discrete sum because we have already discretized the differential
problem so as to formalize the use of cellular computing. Strictly speaking, we
depart here from the Least Squares Finite Element Method and should rather call
our method a Least Squares Finite Difference Method.

In our example, if the norm is chosen as the simple square, equation (2) translates
to

E(V) =

N−1
∑

i=2

(

1

d2

(

V i−1 − 2V i + V i+1
)

− ρi

)2

.

As mentioned previously, we have to set Φ̃ so that it includes the satisfaction of
the differential equations at boundary conditions. This has been done here easily
for the Dirichlet type by just a priori removing boundary terms 1 and N from the
sum, because their values are known from the Dirichlet conditions and thus no error
can be committed on them.

Now that the error functional E(ξ̃) is defined, the LSFE Method prescribes that
it be minimized so as to find the value ξ̃⋆ which produces the best solution to the
initial problem. This can be done by numerous numerical methods such as the
steepest or conjugate gradient (see for instance [Bishop 2004]). As we chose not to
restrain our study to a specific differential problem, we have no particular reason to
chose one particular minimization method. Thus, for illustration and demonstration
purposes, we have chosen the standard Newton minimization method applied to
multidimensional problems. The following considerations are valid whatever the
method chosen. Let us note here however that this minimization process does not

ensure the zeroing of E(ξ̃), which is to be verified a posteriori by evaluating E(ξ̃⋆).

The computation of E(ξ̃) produces a scalar from a given state ξ̃ of the discretized
problem variables. This scalar can be viewed as an evaluation of this state. For fur-

ther purpose, let us define more generally an evaluation as a function ζ ∈ (R)
(Rn)Ω

.
E is precisely an evaluation that is suited for quantifying the quality of a particular
instantiation of ξ̃ as a solution to the discretized differential problem Φ̃ .

To undertake this optimization task, we previously need to define a canonical
basis of the functional space (Rn)

Ω
with respect to which the gradient and Hessian

will be taken. This basis is the set of the Cellular Network states in which each

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

state is totally null except one given component of one given cell, which is set to
1. The number of basis elements is thus equal to the number of cells multiplied by
the number of reals in each cell. This is mathematically defined as the following:
if δ is the Kronecker symbol and {r}i is the canonical basis of R

n, let us define

{e}(ω,i), the canonical basis of (Rn)
Ω

as the set of functions e(ω,i), for all ω ∈ Ω

and all 1 ≤ (i ∈ N) ≤ n:

e(ω,i) : Ω 7→ R
n

ω′ → δωω′ri
(3)

The partial derivative of an evaluation ζ at point ξ̃ according to basis vector e(ω,i)

is by definition limh∈R→0

(

ζ
(

ξ̃ + he(ω,i)

)

− ζ
(

ξ̃
))

/h. This value is, by definition

of the gradient, the actual (ω, i) component of grad
(ζ)

|{e}(ω,i)

(

ξ̃
)

.

In our example, the basis vector e(ω,i) is reduced to e(ω,1) since p = 1. As ω is
a given xi, this basis vector is the mapping with 0 potential everywhere, except at
xi where the value V i equals 1. Let us write this e(xi,1) as vi for our example.

Using these definitions of derivation and getting back to the general case, the
Newton method consists in building a series ξ̃t defined as follows, the limit of which
should be the sought solution ξ̃⋆ to P̃, the field which is the solution of our initial
differential problem:

ξ̃t+1 = ξ̃t − µ
(E)

|{e}(ω,i)

(

ξ̃t

)

µ
(E)

|{e}(ω,i)

(

ξ̃t

)

= H̄
(E)

|{e}(ω,i)

(

ξ̃t

)

.grad
(E)

|{e}(ω,i)

(

ξ̃t

)

where H̄ is the inverse of the Hessian matrix.

(4)

The above expression requires some derivability conditions on E , and thus on
both Φ̃ and the chosen norm on R

n. The former is assumed, since it stems from
the problem P itself: the differential problem is here assumed to be derivable with
respect to the unknown field. The latter is ensured by the appropriate choice of
the used norm. As another precaution to be taken on that choice, the used norm
must ensure that no component of the gradient – and thus of the Hessian inverse –
neither supersedes the others nor is superseded by them, for this is known to create
stability problems in the iteration defined by (4). The conventional | |2 norm, or
its square, is for instance a good choice, provided P is conveniently normalized, i.e.

that the unknown of the initial differential problem is a normalized quantity which
has an order of magnitude around 1.

Equation (4) can be applied to our example by simply replacing ξ̃t by Vt and

{e}(ω,i) by the set of all {v}i. This yields a complex expression for µ
(E)

|{v}
i

(Vt), too

complicated too show here, that involves all V i, 1 ≤ i ≤ N .

2.3 Local only computations

The effective computation of such a series as defined by (4) implies to compute, for
each step t, the gradient and inverse Hessian with respect to {e}(ω,i), which implies
getting access to the whole Ω. This is in contradiction with our initial goal which

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·

i = 1 or i = N V i
t+1 = V i

t

i = 2 V i
t+1 = 1

5

(

2V i−1
t + 4V i+1

t − V i+2
t + d2 ×

(

ρi+1 − 2ρi
))

i = N − 1 V i
t+1 = 1

5

(

2V i+1
t + 4V i−1

t − V i−2
t + d2 ×

(

ρi−1 − 2ρi
))

3 ≤ i ≤ N − 2 V i
t+1 = 1

6

(

−V i−2
t + 4V i−1

t + 4V i+1
t − V i+2

t + d2 ×
(

ρi−1 − 2ρi + ρi+1
))

Table I. Update rules for the mono dimensional automaton which solves the mono
dimensional Poisson equation, as computed from (5).

was to design a computational method which can be implemented in a cellular way.
Indeed, this requires that the method be local-only. This means that the evaluation
of a particular cell of the mesh requires only the knowledge of the values in a few
neighboring cells instead of the whole Ω.

To overcome this limitation, we present in the following a method inspired from
the stochastic gradient descent method [Spall 2003], the locality of which will be
established in the next section.

The stochastic gradient method consists in updating ξ̃ by considering only a few
of its components at a time. We choose to consider a single ω in Ω at each step,
thus modifying only ξ̃ω, the ω-related components of ξ̃, i.e. the values of the field
at a given point in the mesh. Therefore, the gradient and Hessian appearing in (4)
are taken not with respect to the whole {e}(ω,i) but rather with a subset {e}ω of

it, restricted to ω, defined as the set
{

e(ω′,i) : ω′ = ω and 1 ≤ i ≤ n
}

.
The system of interdependent equations resulting from the problem discretization

is thus derived with respect to the field values at a given point at a time only. One
such step is therefore defined as follows:

ξ̃ω
t+1 = ξ̃ω

t − µ
(E)

|{e}
ω

(

ξ̃t

)

, (5)

which, in the frame of our example, translates to:

V i
t+1 = V i

t − µ
(E)
|vi

(Vt).

The above relationship describes a series for a given point ω of Ω. For the series
(4) to be completely approximated by the stochastic method, the relationship (5) is
to be iterated over Ω with a random choice of ω ∈ Ω at each step: for the derivative
to be complete, it is here taken successively with respect to the field values at each
point in the mesh.

Thus, provided µ
(E)

|{e}
ω

is somehow local, an issue that will be addressed in the

next section, the above considerations allow to consider (5), at ω, as the definition
of a continuous automaton, which is an extension of classical cellular automata for
which the cell states are allowed to take their values in R

n. This automaton can
be implemented for any given differential problem P by evaluating µ

(E)

|{e}
ω

for this

particular problem.

Evaluating µ
(E)

|{e}
ω

can be done, as equation (4) suggests, by taking the proper

gradient and Hessian of the discretized problem at each point in the mesh. Ap-
plied to our example, this method allows to calculate, for each point in the mono

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

dimensional mesh, the update rule to be applied to that point. 4 different rules are
found, which are given in table I.

As can also be inferred from table I, the automaton described by (5) for each
ω departs from the strict definition of a cellular automaton by the fact that the
update rule for all cells ω are only the same for a vast majority of them, but
not strictly all. Indeed, because of the existing boundary conditions, the H and
grad operators will not give the same result for all points, since the boundary
conditions are considered as constants. Hence, a Dirichlet boundary is described
in the automaton by a constant cell, the value of which is given by the automaton
initial state.

At this point of the paper, we have defined a cellular algorithm that can be
automatically generated from any given differential problem, thanks to automated
formal derivative computing, by evaluating the stochastic gradient descent (5) at
each point of the mesh. We have done so by assuming that the update rules thus
computed is local. To formally establish that the generated algorithm is indeed
cellular, we now need a proof of this assumption. It is the subject of the next
section.

3. LOCALIZATION OF EACH CELL NEIGHBORHOOD

The demonstration of the locality of the variant of the LSFE Method we have
presented is a key point in this paper, as cellular computing which can be im-
plemented on parallel architecture is our essential goal. It is done in a two step
procedure detailed in the next two subsections. The first step is the definition of
the neighborhood of a given cell ω in the mesh: it is the set of the cells whose values
are needed in the computation of the update of ω.

The second step consists in evaluating the size of this neighborhood by deter-
mining which cells are elements of it. This demonstration is done by considering
the particular Newton method for minimization but it would be valid for any other
method as only the properties of the derivatives are used.

3.1 Neighborhood definition

The definition of the neighborhood V(ζ) of a given evaluation ζ (see section 2.2 for
a definition) is thus to be understood as being the set of all the points ω needed in
the computation of ζ.

V : (R)
(Rn)Ω

7→ P (Ω)

ζ →

{

ω ∈ Ω : ∃ξ̃ : grad
(ζ)

|{e}
ω

(

ξ̃
)

6= 0

}

(6)

The algorithm described in the previous section is thus practically usable if the
calculations needed to evaluate each cell are indeed local, i.e. expression (5) can be
evaluated without requiring access to Ω as a whole. This can be formally stated as

V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

6= Ω. This can happen only if some kind of locality condition on P is

assumed, i.e. if the initial differential problem is expressed in a local manner, as it
is usually the case.

In the frame of our example, the values of V
(∣

∣

∣µ
(E)
|vi

∣

∣

∣

)

for all points in the mesh

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·

i = 1 or i = N {xi}

i = 2 {xi−1, xi+1, xi+2}

i = N − 1 {xi−2, xi−1, xi+1}

3 ≤ i ≤ N − 2 {xi−2, xi−1, xi+1, xi+2}

Table II. Neighborhoods V

„˛

˛

˛

˛

µ
(E)

|{v}i

˛

˛

˛

˛

«

for all cells of an automaton which solves the mono dimen-

sional Poisson Equation

are given in table II. For instance, the last row of table table I show that the value
of V at points xi−2, xi−1, xi+1 and xi+2 are required to evaluate xi, thus leading
to the neighborhood {xi−2, xi−1, xi+1, xi+2} shown on the last row of table II.

3.2 Neighborhood size

To show that the automaton is indeed local in the general case, let us first consider

the specific case of the evaluation
∣

∣

∣Φ̃(ω)
∣

∣

∣, that is the error measurement at point

ω. The global error evaluation E is a summation of such terms (see (2)).
For further use, we now need to define an enhancement of the neighborhood

concept we have called the dependency D
(

ω, Φ̃
)

of a given ω ∈ Ω involved in a

problem Φ̃. It is the set of point ω′ for which ω belongs to the neighborhood of ω′:

D
(

ω, Φ̃
)

=
{

ω′ : ω ∈ V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)}

.

Given the definition (4) of µ
(E)

|{e}
ω

, the gradient can be linearly distributed over the

additive components of E as in (8). The summation term appearing in (7) has
been restricted to those ω′ in Ω for which the gradient does not vanish, i.e. those

ω′ ∈ D
(

ω, Φ̃
)

. The summations product in (8) is obtained by similarly distributing

the Hessian.

µ
(E)

|{e}
ω

=
∑

ω′∈D(ω,Φ̃)

H̄
(|E|)

|{e}
ω

grad
(|Φ̃(ω′)|)
|{e}

ω

(7)

= H̄
(|E|)

|{e}
ω

∑

ω′∈D(ω,Φ̃)

grad
(|Φ̃(ω′)|)
|{e}

ω

=

∑

ω′∈D(ω,Φ̃)

H
(|Φ̃(ω′)|)
|{e}

ω

−1

∑

ω′∈D(ω,Φ̃)

grad
(|Φ̃(ω′)|)
|{e}

ω

(8)

The neighborhood of a product being included in the union of its operands neigh-

borhoods, from (6), the neighborhood of

∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

, according to (8), can be limited

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

to

V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

⊂ V

∣

∣

∣

∣

∣

∣

∣

∑

ω′∈D(ω,Φ̃)

H
(|Φ̃(ω′)|)
|{e}

ω

−1∣
∣

∣

∣

∣

∣

∣

⋃

V

∣

∣

∣

∣

∣

∣

∣

∑

ω′∈D(ω,Φ̃)

grad
(|Φ̃(ω′)|)
|{e}

ω

∣

∣

∣

∣

∣

∣

∣

(9)

From definition (6), it can be shown that the neighborhood of a derivative, or a
gradient, is included in the neighborhood of its operand. The same holds for the
neighborhood of a Hessian since any line or column of the Hessian is a derivative
of the gradient. Therefore, the right-hand term of the above union is included in
⋃

ω′∈D(ω,Φ̃) V
(∣

∣

∣
Φ̃(ω′)

∣

∣

∣

)

.

Furthermore, the neighborhood of a matrix norm |M | is obviously included in the
union of the neighborhoods of all its components. The same holds for the inverse

matrix
∣

∣

∣(M)
−1

∣

∣

∣ since each of its components can be obtained by a combination of

the components of M . We can therefore conclude that the left-hand term of the

union in (9) is also a subset of
⋃

ω′∈D(ω,Φ̃) V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)

.

Therefore, provided we can assume that V
(∣

∣

∣Φ̃(ω)
∣

∣

∣

)

is small enough for all ω ∈ Ω

—which is ensured if the differential problem P is defined locally—, the calculations

to be undertaken to evaluate µ
(E)

|{e}
ω

for each cell ω are local to some extended

neighborhood of that cell:

V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

⊂
⋃

ω′∈D(ω,Φ̃)

V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)

From the definition of the neighborhood, the above inclusion means that the

calculations involved in computing the update rule µ
(E)

|{e}
ω

at a given point in the

mesh only involve the field values of the dependent points ω′ in the sense of D, the
actual number and repartition of those points being dependent on the differential
problem itself. (In the frame of our example, the automaton obtained by our formal
resolution process is given in table I.)

We have now proven that the stochastic gradient descent applied to the Newton
minimization in LSFEM can be implemented through cellular computing, provided
that the initial differential problem is itself local as it is generally the case. This is
particularly interesting if a programming cellular environment, analogous to those
described in [Cannataro et al. 1995; Spezzano and Talia 2001], is available not
only on shared memory multi-processor computers but also on distributed memory
architectures such as clusters [Gustedt et al. 2006; 2007; Fressengeas et al. 2007].

4. APPLICATION EXAMPLES

This next section is thus devoted to the presentation of application examples on
two classical Dirichlet boundary value problems. We will however not present any

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·

performance analysis in terms of computing time until convergence since this highly
depends on the actual parallel implementation of the cellular algorithms [Gustedt
et al. 2006; 2007]. This work is currently in progress and an analysis of the obtained
computing time has already been done [Fressengeas et al. 2007].

As hinted before, we have implemented the continuous automaton described in
the previous sections with the help of an off-the-shelf formal computing software1,
essentially used to formally evaluate the update rule from the differential prob-
lem through equation (5), and a cellular automata environment analogous to those
reported in [Cannataro et al. 1995; Spezzano and Talia 2001]. We have thus auto-
mated the computation from the specification of the discrete differential problem P̃

to the design of the adequate continuous automaton solving the differential problem
through LSFEM2.

Let us now illustrate this process with two examples. The first one is the gener-
alization to 3 dimensions of the example used in the previous sections. The mono
dimensional example was trivial, as it possessed a straightforward solution. The 3D
one is a little trickier as it is a 3D boundary value problem. The second example
is the application of strictly the same piece of software to the non-paraxial beam
propagation equation, which is not so easy to solve numerically.

4.1 Poisson equation

The first example is thus the solving of a normalized Poisson Equation for V in the
three dimensions of space: △V (x, y, z) = ρ (x, y, z) for any given ρ, the Dirichlet
boundary conditions being set on the sides of the computing cube window. The
corresponding discrete problem is straightforward and is obtained through finite
difference centered second derivatives on each dimensions of space, for the same
space step d.

The automaton obtained through the evaluation of (5) on each point of the mesh
has 28 different update rules. The update rule obtained for ω such as the boundaries

conditions are not in V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

concerns the vast majority of the mesh nodes ω

and is shown below. It is a centro-symmetric three dimensional convolution kernel
involving V and ρ. Only middle and lower parts of these kernels are shown, the
upper part being obtained by symmetry.

V ←
1

42

V

12

12
12 12

−2

−2 −2

−2

−2

−2

−1 −1

−1

−1

−1

0

+ d2.ρ

1

1
11

1

−6

.

The 27 other update rules account for the boundary conditions. When launched,
the system converges to a fixed point, corresponding to the result that, in that case,
can also be obtained with other methods.

As stated above, the result has to be checked valid a posteriori by evaluating

1We have used SAGE Mathematical Software, Version 4, http://www.sagemath.org
2The corresponding piece of software is available under GPL license on the authors web sites.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

10

20

30

10

20

30

0

0.25

0.5

0.75

1

10

20

30

10

20

30

10

20

30

0

0.5

1

1.5

10

20

Fig. 1. Left : laser beam Gaussian profile to be coupled in the waveguide (black) and waveguide
(grey) (A.U.). Right : beam profile after a 3mm propagation. The window size is 30µm and the
beam wavelength is 250µm. The highest peak on the right evidences the light which is coupled
into the waveguide.

the remaining error as defined by (2). For a better assessment of the performance,
we will provide two values of the remaining error. the first one is the mean error,

which is simply E(ξ̃) when ξ̃ takes the value of the solution found, all divided by
the number of points, to get the mean error per mesh point. The other one, the

maximum error, is defined as EM
(ξ̃) = maxω∈Ω

∣

∣

∣Φ̃(ξ̃)(ω)
∣

∣

∣ and yields the maximum

error per point. Both will be normalized to the maximum component of ξ̃.
For a 20 × 20 × 20 mesh and for a value of ρ varying from 1 to 0 from one side

of the cube to the other, the a posteriori computed mean and maximum errors are
7× 10−3 and 4× 10−1 respectively for d = 1 and decrease with it. The maximum
error, that can seem large, is due to strong gradients in the solution close to the
boundary conditions and the very crude mesh used. The strong gradients are caused
by the non realistic values taken for ρ. However, the mean error shows that the
solution found, aside from a few points, is still acceptable, despite the sparse mesh.

4.2 Non paraxial laser beam propagation

The second example is a well know difficulty in the domain of electromagnetic
propagation: the removal of the paraxial approximation. Indeed, we now aim
to compute the coupling of a Gaussian laser beam of width W into a Gaussian
shaped waveguide of width W

2 and modulation depth 10−4. The centers of both

beam and waveguide are set to a distance of W
2 , both being aligned in the same

direction. In the computation process, we will not make the standard simplifying
paraxial approximation, which makes our problem difficult to solve by conventional
methods.

The non-paraxial propagation equation to be solved is thus the following, where
A is the wave electric field to be found, z is the propagation direction, k is the wave
vector, n and δn are the given refraction index and a small variation of it:

∂A

∂z
−

i

2k
△A =

ik

n
δnA. (10)

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·

The problem is solved by deriving two real equations from (10), discretizing
them with finite difference centered derivatives except along z where left-handed
derivatives are needed because of the impossibility to give a boundary condition on
one side of the propagation axis.

The adequate continuous automaton (it also has 28 update rules but is too com-
plicated to show here) is then computed from the discretized problem. When
launched on a 30× 30× 30 network, it stabilizes to a fixed point shown on figure 1,
where the light is found to be coupled into the waveguide. The a posteriori remain-
ing mean and maximum errors are now computed to be 2 × 10−12 and 9 × 10−12

respectively, proving that the obtained solution does indeed meet the differential
problem requirements.

5. CONCLUSION

We have shown how the Least Squares Finite Elements Method can be adapted for
its cellular implementation. This is of particular interest as cellular algorithms can
be efficiently implemented on parallel hardware [Fressengeas et al. 2007; Gustedt
et al. 2006; 2007], paving the way for the distribution of large scale differential
problems on computer networks.

A side effect of the method is the possibility to automate the design of the cellular
algorithm, thanks to formal computing, from the differential problem specification
down to its solution, sparing the user the need to get involved in actual numerical
mathematics and computer programming, thus sparing code development time.

6. ACKNOWLEDGMENTS

This work was supported by the InterCell MISN program of the French State to
Lorraine region 2007-2013 plan. Cellular computing software implementation was
done and run on hardware funded from this grant.

REFERENCES

Aubert, G. and Kornprobst, P. 2006. Mathematical Problems in Image Processing Partial

Differential Equations and the Calculus of Variations, 2 ed. Applied Mathematical Sciences,
vol. 147. Springer.

Bandmann, O. 2002. Cellular-neural automaton: an hybrid model for reaction-diffusion simula-
tion. Future Generation Computer Systems 18, 737–745.

Bishop, C. M. 2004. Neural Networks for Pattern Recognition. Oxford University Press.

Burks, A. W. 1969. Von Neumann’s Self-reproducing Automata. University of Michigan.

Cannataro, M., Gregorio, S. D., Rongo, R., Spataro, W., Spezzano, G., and Talia, D.

1995. A parallel cellular automata environment on multicomputers for computational science.
Parallel Computing 21, 803–823.

Chopard, B. and Droz, M. 1998. Cellular Automata and Modeling of Physical Systems. Cam-
bridge University Press, Cambridge.

Chua, L. O. and Yang, L. 1988. Cellular neural networks: Theory. IEEE Transactions on

Circuits and Systems 35, 1257–1272.

Doeschl, A., Davison, M., Rasmussen, H., and Reid, G. 2004. Assessing cellular automata
based models using partial differential equations. Math. Comp. Mod. 40, 977–944.

Drossel, B. and Schwabl, F. 1992. Self-organized critical forest-fire model. Phys. Rev.

Lett. 69, 11, 1629–1632.

Fressengeas, N., Frezza Buet, H., Gustedt, J., and Vialle, S. 2007. An Interactive Problem
Modeller and PDE Solver, Distributed on Large Scale Architectures. In Third International

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

Workshop on Distributed Frameworks for Multimedia Applications - DFMA ’07. IEEE, Paris

France. http://lifc.univ-fcomte.fr/dfma07/ CPER Région Lorrain MIS - InterCell.

Gustedt, J., Vialle, S., and De Vivo, A. 2006. parXXL: A Fine Grained Development Envi-
ronment on Coarse Grained Architectures. In Workshop on State-of-the-Art in Scientific and

Parallel Computing - PARA’06. Ume̊a/Sweden Suède.

Gustedt, J., Vialle, S., and De Vivo, A. 2007. The parXXL Environment: Scalable Fine
Grained Development for Large Coarse Grained Platforms. In Applied Parallel Computing.

State of the Art in Scientific Computing PARA-06: Worshop on state-of-the-art in scientific

and parallel computing. Lecture Notes in Computer Science, vol. 4699. Umea Suède, 1094–1104.

Hadad, K. and Piroozmand, A. 2007. Application of cellular neural networks (cnn) method to
the nuclear reactor dynamics equation. Annals of Nuclear Energy .

Jiang, B.-N. 1998. The Least-squares Finite Element Method: Theory and Applications in Com-

putational Fluid Dynamics and Electromagnetics. Springer.

Kozek, T., Chua, L. O., Roska, T., Wolf, D., Tetzlaff, R., Puffer, F., and Lotz, K. 1995.
Simulating nonlinear waves and partial differential equations via cnn–part ii: Typical examples.
IEEE Transactions on Circuits and Systems–I: Fundamental theory and applications 42, 10
(october), 807–815.

Kunishima, W., Nishiyama, A., Tanaka, H., and Tokihiro, T. 2004. Differential equations for
creating complex cellular automaton patterns. Journ. Phys Soc. Japan 73, 8, 2033–2036.

Lonkar, A., Kuntz, R., and Tetzlaff, R. 2000. Scnn 2000 - part i: Basic structure and features
of the simulation system for cellular neural networks. In 6th EEE International Workshop on

Cellular Neural Networks and Their Applications. 123–128.

Omohundro, S. 1984. Modelling cellular automata with partial differential equations. Physica

D 10D, 128–134.

Rekeczky, C. 2002. Cnn architecture for constrained diffusion based locally adaptive image
processing. International Journal of CVircuit Theory and Applications 30, 313–348.

Roska, T., Chua, L. O., Wolf, D., Kozek, T., Tetzlaff, R., and Puffer, F. 1995. Simulat-
ing nonlinear waves and partial differential equations via cnn–part i: Basic techniques. IEEE

Transactions on Circuits and Systems–I: Fundamental theory and applications 42, 10 (octo-
ber), 807–815.

Rothman, D. H. and Zaleski, S. 1994. Lattice-gas models of phase separation: interfaces, phase
transitions, and multiphase flow. Rev. Mod. Phys. 66, 4, 1417–1479.

Sargeni, F. and Bonaiuto, V. 2005. Programmable cnn analogue chip for rd-pde multi-method
simulation. Analog Integrated Circuits and Signal Processing 44, 283–292.

Simons, N. R. S., Bridges, G. E., and Cuhaci, M. 1999. A lattice gas automation capable of
modeling three-dimensional electromagnetic fields. J. Comput. Phys. 151, 2, 816–835.

Slavova, A. 2000. Application of some mathematical methods in the analysis of cellular neural
networks. Journal of Computational and Applied Mathematics 114, 387–404.

Slavova, A. and Zecca, P. 2003. Cnn model for studying dynamics and travelling wave solutions
of the fitzhugh-nagumo equation. Journal of Computational and Applied Mathematics 151, 13–
24.

Spall, J. C. 2003. Introduction to Stochastic Search and Optimization: Estimation, Simulation,

and Control. Wiley-Interscience.

Spezzano, G. and Talia, D. 2001. The carpet programming environment for solving scientific
problems on parallel computers. In Virtual shared memory for distributed architectures. Nova

Science Publishers, Inc., Commack, NY, USA, 51–68.

Tokihiro, T., Takahashi, D., Matsukidaira, J., and Satsuma, J. 1996. From soliton equations
to integrable cellular automata through a limiting procedure. Phys Rev. Lett. 76, 18, 3247–3250.

Vapnik, V. N. 2000. The Nature of Statistical Learning Theory. Statistics for Engineering and
Information Science. Springer.

Weimar, J. R. and Boon, J. P. 1994. Class of cellular automata for reaction-diffusion systems.
Phys.Rev.E 49, 2, 1749–1752.

Wolfram, S. 1983. Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–444.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·

Wolfram, S. 2002. A new kind of science. Wolfram Media, Champaign.

Zhou, X., Liu, B., and Shi, B. 2003. Neural networks for solving partial differential equations.
In Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics.
Computer Science and Engineering: I, vol. V. 240–244.

ACM Journal Name, Vol. V, No. N, Month 20YY.

