
HAL Id: hal-00107064
https://hal.science/hal-00107064v5

Preprint submitted on 24 May 2007 (v5), last revised 29 Jan 2010 (v8)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic method for solving partial differential equations
through the design of problem-specific Cellular Neural

Networks
Nicolas Fressengeas, Hervé Frezza-Buet

To cite this version:
Nicolas Fressengeas, Hervé Frezza-Buet. Generic method for solving partial differential equations
through the design of problem-specific Cellular Neural Networks. 2007. �hal-00107064v5�

https://hal.science/hal-00107064v5
https://hal.archives-ouvertes.fr

ha
l-

00
10

70
64

, v
er

si
on

 5
 -

 2
4

M
ay

 2
00

7
Generic method for solving partial differential equations through the design of

problem-specific Cellular Neural Networks

N.Fressengeas
Laboratoire Matériaux Optiques, Photonique et Systèmes, 57070 Metz, France

Unité de Recherche Commune à l’Université Paul Verlaine – Metz et Supélec - CNRS UMR 7132

H.Frezza-Buet
Information, Multimodality and Signal, Supélec, 2, rue Edouard Belin, 57070 Metz, France

This paper presents an original and generic numerical method for solving partial differential
equations. A new mathematical and systematic method stemming from the local very nature of any
differential problem is proposed: a custom tailored Cellular Neural Network is purposely derived
from any given differential problem so that its fixed point yields the solution in a quantitatively
correct way. The combined use of formal computing and continuous automata thus offers the
unique possibility to completely automate the process from formal problem specification to its
numerical solution, thus potentially saving code development time for the numerical solving of
partial differential problems.

PACS numbers: 02.30.Jr, 02.60.Cb, 02.60.Jh, 02.60.Lj

I. PARTIAL DIFFERENTIAL EQUATIONS AND

CELLULAR NEURAL NETWORKS

A. Automata and calculus

Ever since von Neumann [1], the question of mod-
elling continuous physics with a discrete set of cellular
automata has been raised, whether they handle discrete
or continuous values. Many answers have been brought
forth through, for instance, the work of Stephen Wol-
fram [2] summarized in a recent book [3]. This problem
has been mostly tackled by rightfully considering that
modelling physics through Newton and Leibniz calculus
is fundamentally different from a discrete modelization
as implied by automata.

Indeed, the former implies that physics is considered
continuous either because materials and fields are con-
sidered continuous in classical physics or because quan-
tum physics wave functions are themselves continuous.
On the contrary, modelling physics through automata
implies modelling on a discrete basis, in which a unit
element called a cell, interacts with its surroundings ac-
cording to a given law derived from local physics consid-
erations.

Such discretized automaton based models have been
successfully applied to various applications ranging from
reaction-diffusion systems [4] to forest fires [5], through
probably one of the most impressive achievements: the
Lattice Gas Automata [6], where atoms or molecules are
considered individually. In this frame, simple point me-
chanics interaction rules lead to complex behaviors such
as phase transition and turbulence. This peculiar feature
of automata, making complex group behavior emerge
from fairly simple individual rules aroused the interest
around them for the past decades.

B. Cellular Neural Networks

Cellular automata-based modelling attempts have also
concerned the theory of circuits for a few decades, be-
cause the Very-Large-Scale Integration (VLSI) compo-
nents offer a large amount of configurable processors, spa-
tially organized as a locally connected array of analogical
and numerical processing units. In this field, the concept
of Cellular Neural Network (CNN) has been proposed
[7], which extends cellular automata, allowing local cells,
that are dynamical systems, to deal with several contin-
uous values and local connections.

CNNs are good candidates for the numerical resolution
of partial differential equations (PDE), and a methodol-
ogy for the design of a CNN from a given PDE has been
proposed in [8]. This approach consists in performing a
spatial discretization of the PDE through the finite differ-
ence scheme, yielding an Ordinary Differential Equation
(ODE) on time that can be numerically solved by stan-
dard methods like Runge-Kutta.

This approach is widely used in this field, and drives
the design of simulators like SCNN 2000 [9], as well as
the design of actual VLSI components [10]. The partial
differential system is there implemented using analogic
VLSI components, the circuit temporal evolution being
then the temporal evolution of the initial PDE.

Two main difficulties arise in this framework. The first
one concerns the stability of the CNN dynamical sys-
tem. Some stability studies of CNNs for classical PDEs
can be found in [11] but stability has still to be ana-
lyzed when dealing with new specific problems, as it has
been done, for example, for the dynamics of nuclear re-
actors [12]. The second difficulty raised by transforming
PDE to ODE for resolution by CNNs is the actual fit-
ting of the CNN to the PDE, since the method is more a
heuristic one than a formal derivation of the CNN from
the PDE, as mentioned in [13]. Furthermore, the features

2

of the CNN cannot be easily associated to the physical
parameters involved in the PDE.

To cope with the lack of methods to formally derive a
CNN from a PDE, some parameter tunings can be per-
formed once the CNN is designed. This tuning can be
driven by a supervised learning process, as in [9, 13].
Some other a posteriori checks can be achieved if some
analytical solution of the PDE is known for particular
cases, as in [11], or if some behavior of the CNN can be
expected, as travelling waves or solitons [8, 14, 15]. In the
latter case, validation is based on a qualitative criterion.

Some other methods to derive automata from partic-
ular differential problems such as reaction-diffusion sys-
tems [4] or Maxwell’s equations [16] have been presented.
In the former, the automaton is constructed from a mov-
ing average paradigm, while the latter is a modified ver-
sion of the Lattice Gas Automaton [6].

C. Automata as quantitatively exact PDE solvers

In most cases, the predictions of calculus based, contin-
uous models and those of discrete, automata based ones,
are seldom quantitatively identical, though qualitative
similarity is often obtained. This is mostly explained by
the fact that the two drastically different approaches are
applied to their own class of problems.

Some attempts have recently been made to set up the
solution of a PDE by using a regression method [17]. The
idea there is to measure an error at each discrete point
of the system, and to drive an optimisation process in
order to find the function that minimises this error, this
function being taken in a parametrized set of continuous
functions defined by a multi-layer perceptron. This error
is null if the function that is found meets the EDP re-
quirements. Such regression processes, based on classical
empirical risk minimisation, are known to be sensitive to
overfitting [18]. The idea of error minimisation in EDP
requirements is also used in our approach, but we will
show that it rather leads to the definition of a relaxation
process that reaches a fixed point. This is completely dif-
ferent from searching a functionnal hypothesis space as
in supervised learning techniques, and thus avoids all the
generalization problems encountered in this field [18].

Other attempts at a quantitative link have however
been made by showing connexions between an automa-
ton and a particular differential problem [19] or by de-
signing methods for describing automata by differential
equations [20, 21, 22] allowing in the way to assess the
performance of two different implementations of the same
problem, which are in fact basically two different au-
tomata for the description of the same physics.

The interest of solving PDEs with cellular automata
is of course not limited to physics, since PDEs are also
intensively used in image processing [23], and some CNN-
based solutions have also been proposed in that field [24].
This stresses the need for generic tools for simulating
PDEs in many areas. In [24], an attempt has been made

to provide ready-to-use programming templates for the
design of CNNs, and previously mentioned softwares [9]
help to rationalize the design of CNNs for PDEs.

This paper is devoted to the introduction of a re-
cent systematic method allowing to derive a cellular neu-
ral network from any given differential problem whose
boundary conditions are of the Dirichlet type. It is an
attempt to bridge the present gap [13] between continu-
ous PDE and discrete CNN.

The process of derivation stems from the idea that
since differential problems are expressed in a purely lo-
cal manner, their solution can be computed in an equally
local way. However, as will be shown, the locality of the
computation is not an a priori hypothesis but rather a
consequence of the method, which is essentially based
on a relaxation process which implements the multidi-
mensional Newton minimization method, thus ensuring
stability.

Furthermore, the most interesting aspect of it is the
possibility to completely automate the way from the for-
mal expression of the differential problem down to its
solution, thanks to formal computing and to a cellular
neural network based environment, analogous to previ-
ously reported ones [25, 26]. This would indeed allow to
save code development time for the numerical solving of
a given partial differential problem, and would also re-
duce the computer programming skills required for this
task.

II. FROM PDE TO CELLULAR NEURAL

NETWORK

In this section, we will show that the solution seek-
ing scheme of finding a field that meets the requirements
of a given differential problem can be transformed into a
minimization task. The latter can be implemented by for-
mally computing a cellular automaton which converges to
the sought solution.

For this demonstration to be precise, a mathematical
formalism which can at first seem quite abstract, has to
be used. To overcome this difficulty, let us particularize
the formalism, at each step, to a simple example: the

monodimensional Poisson equation, △V (x) = ∂2V
∂x2 =

ρ (x), V being the unknown electrostatic potential and ρ
a given repartition of charges. The example chosen has of
course a straightforward solution but it is simple enough
so that each step can be detailed in the paper.

A. Definitions

The very characteristic of continuous physics is its in-

tensive use of fields. If we note (A)
B

the set of functions

from A to B, a field ξ ∈ (Rm)
R

n

is a mapping of a given
vectorial physical quantity —belonging to R

n— over a
given physical space R

m, for (m, n) ∈ N
2. For instance,

our example electrostatic potential field in a 1D space is a

3

scalar mapping over R, as an electric field over a 3D space
would be a 3D vector mapping over R

3. Furhermore, if
time were present in this example, it would be treated
equally as just an additional dimension. For instance,
a time-resolved 3 dimensional problem is considered as
having 4 dimensions.

Therefore, a particular local differential problem P

stemming from local relationships, can be expressed in
terms of a functional equation Φ(ξ) = 0, where the field ξ
is the unknown, and where Φ represents the differential
relationships derived from physical considerations, that a
field ξ should satisfy to be the solution of P. Let us note
here that the functional equation Φ(ξ) = 0 merely rep-
resents any differential equation, or system of equations,
over a field ξ of one or more dimensions. In our example,
the field ξ is the association of an electrostatic potential
V (x) to each point x. The equation that has to be sat-
isfied is ∀x, △V (x) − ρ(x) = 0. This is better expressed
by the corresponding functional equation, △V − ρ = 0,
where the whole mapping V is the unknown.

Φ can thus be defined as follows, where p ∈ N can be
thought of as the number of independent real equations
necessary to express the local relationships which are to
be satisfied at any point of R

m (p = 1 in our example
since only one scalar equation describes the problem):

Φ : (Rm)
R

n

7→ (Rm)
R

p

ξ → Φ(ξ) .

In other words, Φ(ξ) is a mapping of a vector of p real
values over the physical space R

m. For any point x ∈ R
m

in space, the ith component of Φ(ξ)(x) ∈ R
p, which would

be zero if ξ was the solution of P, actually corresponds to
the local amount of violation of the ith real local equa-
tion used to describe the problem at x: in our example,
△V (x) − ρ (x), if not null, is the violation of Poisson
equation at x.

Using a functional equation instead of considering ξ as
a given numerical instantiation, leads us to stress that
the mapping Φ(ξ) depends on ξ intrinsically, whatever its
actual instantiation, or value, is. The functional formal-
ism allows to handle the dependency itself, i.e. the way
all violations Φ(ξ) over the physical space R

m depend on
the whole field ξ.

The original idea of this paper is that this formalism
allows to express, and exploit, the variations of Φ(ξ) when
ξ changes, by using functional derivatives of the mapping
Φ with respect to ξ, for driving the resolution process —
i.e. for finding ξ⋆ for which Φ(ξ⋆) = 0. Once again, let
us note here that the functional derivatives are not as
mathematically exotic as they may seem: they simply
correspond to the derivative of one side of a differential
equation with respect to the unknown field itself. In our
example, this means deriving △V − ρ with respect to V .

To make this approach computationally tractable, we
need to discretize the problem. This is performed by
discretizing Φ on a finite mesh Ω ⊂ R

m, the discretized

problem being then expressed as Φ̃(ξ̃) = 0, where ξ̃ is the
unknown and Φ̃ is defined as follows:

Φ̃ : (Ω)R
n

7→ (Ω)R
p

ξ̃ → Φ̃(ξ̃) . (1)

Usually, Ω will often be a set of regularly spaced points
which is suppposed to describe R

m with enough precision,
as is often done for the numerical solving of differential
equations. Moreover, if a boundary condition stands at

some ω ∈ Ω, we have Φ̃(ξ̃)(ω) = 0, ∀ξ̃. It means that the
satisfaction of the equations at boundary conditions has
to be ensured by the formulation of Φ̃ itself, whatever
ξ̃. Having boundary conditions hard-wired at the level of
functional Φ̃ in our formulation is of primary importance
in the resolution process, as detailed further.

In our example, let us solve the 1D Poisson equation on
a monodimensional mesh Ω of N regularly spaced points
x1, · · · , xN . In the following, the value V (xi) associated
by the mapping V at the point xi will be shortened to
V i. The same stands for the charge ρ(xi) at the point
xi, that will be written as ρi. The discretized problem
can then be found by finite difference as the following,
provided V 1 and V N are defined as boundary conditions
and d is the sampling step :

∀i ∈ N, 1 < i < N,
1

d2

(

V i−1 − 2V i + V i+1
)

− ρi = 0.

Once again, let us us stress here that the whole expres-
sion, including all space points is seen as depending on a
single functional parameter V , which is a function over
the discrete set {x1, · · · , xN}. This function V is what is

actually generally formalized above as ξ̃.

B. General method

Getting back to the general case, solving the problem
means finding ξ⋆ for which Φ(ξ⋆) = 0, which means find-

ing a field ξ̃ for which Φ̃(ξ̃) is as close to the 0 map-
ping as possible given a distance on the functional space

(Ω)
R

p

. This, in turn, is equivalent to zeroing all p rela-

tions Φ̃(ξ̃)(ω) for all ω ∈ Ω. Finally, this can be equiva-
lently done by similarly zeroing

E(ξ̃) =
∑

ω∈Ω

∣

∣

∣
Φ̃(ξ̃)(ω)

∣

∣

∣
(2)

where | | is any given norm on R
p. Let us note that E(ξ̃)

can here be understood as a functional that measures the
sum of the violations of the physical relationships P̃ by
a field ξ̃ given as the formal parameter. In other words,
equation (2) means that a given discretized differential

problem is solved by a given field ξ̃ if, and only if, at each
point in space, the values of the field meet the differential
problem.

4

The computation of E(ξ̃) produces a scalar from a given
state ξ̃ of the discretized problem variables. This scalar
can be viewed as an evaluation of this state. For further
purpose, let us define more generally an evaluation as a

function ζ ∈
(

(Ω)
R

n
)R

. E is precisely an evaluation that

is suited for quantifying the satisfaction of Φ̃ by some
state ξ̃.

In our example, if the norm is chosen as the simple
square, equation (2) translates to

E(V) =

N−1
∑

i=2

(

1

d2

(

V i−1 − 2V i + V i+1
)

− ρi

)2

.

As mentioned previously, we have to set Φ̃ so that it
forces intrinsically the satisfaction of differential equa-
tions at boundary conditions. This has been done here
easily by just a priori removing boundary terms 1 and N
from the sum, because their values are known from the
Dirichlet conditions and thus no error can be commit-
ted on them. As the resolution process described below
is grounded on the formulation of this error, boundary
conditions will implicitly influence the resolution process
via our specific formulation of error.

The straightforward method for numerically evaluat-
ing the solution ξ̃⋆ to P̃, i.e. the value of ξ̃ that best ze-

roes —i.e. that minimizes— E(ξ̃), is the standard New-
ton method applied to a multidimensional optimization
problem. Let us note here however that this minimiza-

tion process does not ensure the zeroing of E(ξ̃), which is

to be verified a posteriori by evaluating E(ξ̃⋆).
To undertake this optimization task, we previously

need to define a canonical basis of the functional space

(Ω)
R

n

with respect to which the gradient and Hessian

will be taken. If δ is the Kronecker symbol and {r}i
is the canonical basis of R

n, let us define {e}(ω,i), the

canonical basis of (Ω)R
n

as the set of functions e(ω,i), for
all ω ∈ Ω and all 1 ≤ (i ∈ N) ≤ n:

e(ω,i) : Ω 7→ R
n

ω′ → δωω′ri
(3)

The partial derivative of an evaluation ζ at point
ξ̃ according to basis vector e(ω,i) is by definition

limh∈R→0

(

ζ
(

ξ̃ + he(ω,i)

)

− ζ
(

ξ̃
))

/h. This value is, by

definition of the gradient, the actual (ω, i) component of

grad
(ζ)

|{e}(ω,i)

(

ξ̃
)

. Such consideration supports two ma-

jor aspects in the resolution process presented in this
paper. First, gradients are used to compute a rule
for iteratively driving current state toward the solution
of the differential problem. This is discussed next in
this section. Secondly, it can be noticed that having

∀ξ̃, grad
(ζ)

|{e}(ω,i)

(

ξ̃
)

= 0 means that the i-th variable

at point ω, that is the i-th component of ξ̃(ω), is not
used in the computation of evaluation ζ. This helps to

identify the variables that are useful for some evaluation,
which is central for ensuring the locality of our resolution
process, as will be discussed further in next section.

In our example, the basis vector e(ω,i) is reduced to
e(ω,1) since p = 1. As ω is a given xi, this basis vector
is the mapping with 0 potential everywhere, except at xi

where the value V i equals 1. Let us write this e(xi,1) as
vi.

Using these definitions of derivation and getting back
to the general case, the Newton method consists in build-
ing a series ξ̃t defined as follows, the limit of which should
be the sought solution ξ̃⋆ to P̃, the field which is solution
to our initial differential problem:

ξ̃t+1 = ξ̃t − µ
(E)

|{e}(ω,i)

(

ξ̃t

)

µ
(E)

|{e}(ω,i)

(

ξ̃t

)

= H̄
(E)

|{e}(ω,i)

(

ξ̃t

)

.grad
(E)

|{e}(ω,i)

(

ξ̃t

)

where H̄ is the inverse of the Hessian matrix.

(4)

The above expression requires some derivability con-
ditions on E , and thus on both Φ̃ and the chosen norm
on R

n. The former is assumed, since it stems from the
problem P itself: the differential problem is here assumed
to be derivable with respect to the unknown field. The
latter is ensured by the appropriate choice of the used
norm. As another precaution to be taken on that choice,
the used norm must ensure that no component of the
gradient – and thus of the Hessian inverse – neither su-
persedes the others nor is superseded by them, for this
is known to create stability problems in the iteration de-
fined by (4). The conventional | |2 norm, or its square,
is for instance a good choice, provided P is conveniently
normalized, i.e. that the unknown of the initial differen-
tial problem is a normalized quantity which has an order
of magnitude around 1.

Equation (4) can be applied to our example by sim-

ply replacing ξ̃t by Vt and {e}(ω,i) by the set of all {v}i.

This yields a complex expression for µ
(E)

|{v}
i

(Vt), too com-

plicated too show here, that involves all V i, 1 ≤ i ≤ N .

C. Local only computations

The effective computation of such a series as defined
by (4) implies to compute, for each step t, the gradient
and inverse Hessian with respect to {e}(ω,i), which im-

plies getting access to the whole Ω, in contradiction with
our initial goal which was to design a local-only compu-
tational method. To overcome this limitation, we present
in the following a method inspired from the stochas-
tic gradient descent method [27], the locality of which
will be established in the next section. The stochastic
gradient method consists in updating ξ̃ by considering
only a few of its components at a time. We choose to
consider a single ω in Ω at each step, thus modifying

5

only ξ̃ω, the ω-related components of ξ̃, i.e. the val-
ues of the field at a given point in the mesh. There-
fore, the gradient and Hessian appearing in (4) are taken
not with respect to the whole {e}(ω,i) but rather with

a subset {e}ω of it, restricted to ω, defined as the set
{

e(ω′,i) : ω′ = ω and 1 ≤ i ≤ n
}

. The system of interde-
pendant equations resulting from the problem discretiza-
tion is thus derived with respect to the field values at a
given point at a time only. One such step is therefore
defined as follows:

ξ̃ω
t+1 = ξ̃ω

t − µ
(E)

|{e}
ω

(

ξ̃t

)

, (5)

which, in the frame of our example, translates to:

V i
t+1 = V i

t − µ
(E)
|vi

(Vt).

The above relationship describes a series for a given
point ω of Ω. For the series (4) to be completely approx-
imated by the stochastic method, the relationship (5) is
of course to be iterated over Ω with a random choice of
ω ∈ Ω at each step: for the derivative to be complete,
it is here taken successively with respect to the field val-

ues at each point in the mesh. Thus, provided µ
(E)

|{e}
ω

is somehow local, an issue that will be addressed in the
next section, the above considerations allow to consider
(5), at ω, as the definition of a continuous automaton,
or CNN, which is an extension of classical cellular au-
tomata for which the cell states are allowed to take their
values in R

n. This automaton can be implemented for

any given differential problem P by evaluating µ
(E)

|{e}
ω

for

this particular problem. Evaluating µ
(E)

|{e}
ω

can be done,

as equation (4) suggests, by taking the proper gradient
and Hessian of the discretized problem at each point in
the mesh. Applied to our example, this method allows to
calculate, for each point in the monodimensional mesh,
the update rule to be applied to that point. 4 different
rules are found, which are given in table I.

As can also be inferred from table I, the automaton
described by (5) for each ω departs from the strict defi-
nition of a cellular automaton by the fact that the update
rule for all cells ω are only the same for a vast majority of
them, but not strictly all. Indeed, because of the existing
boundary conditions, the H and grad operators will not
give the same result for all points, since the boundary
conditions are considered as constants. Hence, a Dirich-
let boundary is described in the automaton by a constant
cell, the value of which is given by the automaton initial
state.

At this point of the paper, we have defined an automa-
ton that can be automatically generated from any given
differential problem, thanks to automated formal deriva-
tive computing that applies equation (5) at each point of
the mesh. To ensure the computational efficiency of the
automaton, the next section is devoted to showing that

equation (5) actually defines an automaton whose cells
can be updated using the values of their neighbors only,
so that an implementation on a local classical Cellular
Automaton can be undertook.

III. LOCALIZATION OF EACH CELL

NEIGHBORHOOD

A. Neighborhood definition

The definition of the neighborhood V(ζ) of a given eval-

uation ζ (see section II B for a definition) is to be under-
stood as being the set of all the points ω needed in the
computation of ζ.

V :
(

(Ω)
R

n
)R

7→ P (Ω)

ζ →

{

ω ∈ Ω : ∃ξ̃ : grad
(ζ)

|{e}
ω

(

ξ̃
)

6= 0

}

(6)
The automaton described in the previous section is

thus practically usable if the calculations needed to eval-
uate it are local, i.e. expression (5) can be evaluated
without requiring access to Ω as a whole. This can be

formally stated as V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

6= Ω. This can happen

only if some kind of locality condition on P is assumed,
i.e. if the initial differential problem is expressed in a
local manner, as it is usually the case. For instance, in

the frame of our example, the values of V
(∣

∣

∣µ
(E)
|vi

∣

∣

∣

)

for all

points in the mesh are given in table II. In other words,
the last row of table II and the last row of table I mean
that only the reading of potential at xi−2, xi−1, xi+1, xi+2

is required to update the potential at xi.

B. Neighborhood size

To show that the automaton is indeed local in the gen-
eral case, let us first consider the specific case of the eval-

uation
∣

∣

∣Φ̃(ω)
∣

∣

∣, that is the error measurement at point ω.

The global error evaluation E is a summation of such
terms (see (2)). For further use, let us define the depen-

dency D
(

ω, Φ̃
)

of a given ω ∈ Ω involved in a problem

Φ̃ as the set of point ω′ for which ω belongs to the neigh-
borhood of ω′:

D
(

ω, Φ̃
)

=
{

ω′ : ω ∈ V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)}

.

Given the definition (4) of µ
(E)

|{e}
ω

, the gradient can be

linearly distributed over the additive components of E as
in (8). The summation term appearing in (7) has been
restricted to those ω′ in Ω for which the gradient does

not vanish, i.e. those ω′ ∈ D
(

ω, Φ̃
)

. The summations

6

i = 1 or i = N V i

t+1 = V i

t

i = 2 V i

t+1 = 1
5

(

2V i−1
t

+ 4V i+1
t

− V i+2
t

+ d2 ∗
(

ρi+1 − 2ρi
))

i = N − 1 V i

t+1 = 1
5

(

2V i+1
t

+ 4V i−1
t

− V i−2
t

+ d2 ∗
(

ρi−1 − 2ρi
))

3 ≤ i ≤ N − 2 V i

t+1 = 1
6

(

−V i−2
t

+ 4V i−1
t

+ 4V i+1
t

− V i+2
t

+ d2 ∗
(

ρi−1 − 2ρi + ρi+1
))

TABLE I: Update rules for the monodimensional automaton which solves the monodimensional Poisson equation, as computed
from (5).

i = 1 or i = N {xi}

i = 2 {xi−1, xi+1, xi+2}

i = N − 1 {xi−2, xi−1, xi+1}

3 ≤ i ≤ N − 2 {xi−2, xi−1, xi+1, xi+2}

TABLE II: Neighborhoods V

(∣

∣

∣

∣

µ
(E)

|{v}i

∣

∣

∣

∣

)

for all points of a

cellular automaton which solves the monodimensional Poisson
Equation

product in (8) is obtained by similarly distributing the
Hessian.

µ
(E)

|{e}
ω

=
∑

ω′∈D(ω,Φ̃)

H̄
(|E|)

|{e}
ω

grad
(|Φ̃(ω′)|)
|{e}

ω

(7)

= H̄
(|E|)

|{e}
ω

∑

ω′∈D(ω,Φ̃)

grad
(|Φ̃(ω′)|)
|{e}

ω

=

∑

ω′∈D(ω,Φ̃)

H
(|Φ̃(ω′)|)
|{e}

ω

−1

∑

ω′∈D(ω,Φ̃)

grad
(|Φ̃(ω′)|)
|{e}

ω

(8)

The neighborhood of a product being included in the
union of its operands neighborhoods, from (6), the neigh-

borhood of µ
(E)

|{e}
ω

, according to (8), can be limited to

V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

⊂ V

∣

∣

∣

∣

∣

∣

∣

∑

ω′∈D(ω,Φ̃)

H
(|Φ̃(ω′)|)
|{e}

ω

−1∣
∣

∣

∣

∣

∣

∣

⋃

V

∣

∣

∣

∣

∣

∣

∣

∑

ω′∈D(ω,Φ̃)

grad
(|Φ̃(ω′)|)
|{e}

ω

∣

∣

∣

∣

∣

∣

∣

(9)

From definition (6), it can be shown that the neigh-
borhood of a derivative, or a gradient, is included in the
neighborhood of its operand. The same holds for the
neighborhood of a Hessian since any line or column of
the Hessian is a derivative of the gradient. Therefore,
the right-hand term of the above union is included in
⋃

ω′∈D(ω,Φ̃) V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)

.

Furthermore, the neighborhood of a matrix norm |M |
is obviously included in the union of the neighborhoods of
all its components. The same holds for the inverse matrix
∣

∣

∣(M)
−1

∣

∣

∣ since each of its components can be obtained by

a combination of the components of M . We can therefore
conclude that the left-hand term of the union in (9) is also

a subset of
⋃

ω′∈D(ω,Φ̃) V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)

.

Therefore, provided we can assume that V
(∣

∣

∣Φ̃(ω)
∣

∣

∣

)

is

small enough for all ω ∈ Ω —which is ensured if the dif-
ferential problem P is defined locally—, the calculations

to be undertaken to evaluate µ
(E)

|{e}
ω

for each cell ω are

local to some extended neighborhood of that cell:

V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

⊂
⋃

ω′∈D(ω,Φ̃)

V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)

From the definition of the neighborhood, the above in-
clusion means that the calculations involved in comput-

ing the update rule µ
(E)

|{e}
ω

at a given point in the mesh

only involve the field values of the dependent points ω′

in the sense of D, the actual number and repartition of
those points being dependent on the differential problem
itself.

Therefore, any differential problem defined locally can
by this method be transformed into a cellular automa-
ton involving local computations only, the fixed point of
which is the quantitative solution to the differential prob-
lem. This is of primary importance if the computation
is to be parallelized on clusters, for which having local
computation is the key to efficiency. This latter point,
currently at work, is out of the scope of this paper.

In the frame of our example, the automaton obtained
by our formal resolution process is given in table I.

IV. APPLICATION EXAMPLES

As hinted before, we have implemented the continuous
automaton described in the previous sections with the
help of an off-the-shelf formal computing software, es-
sentially used to formally evaluate the update rule from
the differential problem through equation (5), and a cel-
lular automata environment analogous to those reported
in [25, 26]. We have thus automated the computation

7

from the specification of the discrete differential problem
P̃ to the design of the adequate continuous automaton,
the fixed point of which is the solution to P̃.

Let us now illustrate this process with two examples.
The first one in the generalization to 3 dimensions of
the example used in the previous sections. The monodi-
mensional example was trivial, as it possessed a straight-
froward solution. The 3D one is a little trickier but
can still be solved numerically by other known methods.
That is the reason why a more physically realistic exam-
ple will be shown: the application of strictly the same
method to the non-paraxial beam propagation equation,
which is not so easy to solve numerically.

A. Poisson equation

The first example, simple and academic, is thus the
solving of Poisson Equation for V in the three dimensions
of space: △V (x, y, z) = ρ (x, y, z) for any given ρ, the
Dirichlet boundary conditions being set on the sides of
the computing cube window. The corresponding discrete
problem is straightforward and is obtained through finite
difference centered second derivatives on each dimensions
of space, for the same space step d.

The automaton obtained through the evaluation of (5)
on each point of the mesh has 28 different update rules.
The update rule obtained for ω such as the boundaries

conditions are not in V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

concerns the vast ma-

jority of the mesh nodes ω and is shown below. It is
a centro-symmetric three dimensional convolution ker-
nel involving V and ρ. Only middle and lower parts of
these kernels are shown, the upper part being obtained
by symmetry.

V ←
1

42

V

12

12
12 12

−2

−2 −2

−2

−2

−2

−1 −1

−1

−1

−1

0

+ d2.ρ

1

1
11

1

−6

.

The 27 other update rules account for the boundary
conditions. When launched, the system converges to a
fixed point, corresponding to the result that, in that case,
can also be obtained with more conventional methods.

As stated above, the result has to be checked valid a

posteriori by evaluating the remaining error as defined
by (2). For a better assessment of the performance,
we will provide two values of the remaining error. the

first one is the mean error, which is simply E(ξ̃) when
ξ̃ takes the value of the solution found, all divided by
the number of points, to get the mean error per mesh
point. The other one, the maximum error, is defined as

EM
(ξ̃) = maxω∈Ω

∣

∣

∣Φ̃(ξ̃)(ω)
∣

∣

∣ and yields the maximum er-

10

20

30

10

20

30

0

0.25

0.5

0.75

1

10

20

30

10

20

30

10

20

30

0

0.5

1

1.5

10

20

FIG. 1: Left : laser beam Gaussian profile to be coupled in
the waveguide (black) and waveguide (grey) (A.U.). Right
: beam profile after a 3mm propagation. The window size
is 30µm and the beam wavelength is 250µm. The highest
peak on the right evidences the light which is coupled into
the waveguide.

ror per point. Both will be normalized to the maximum
component of ξ̃.

For a 20 × 20 × 20 mesh and for a value of ρ varying
from 1 to 0 from one side of the cube to the other, the
a posteriori computed mean and maximum errors are
7×10−3 and 4×10−1 respectively for d = 1 and decrease
with it. The maximum error, that can seem large, is due
to strong gradients in the solution close to the boundary
conditions and the very crude mesh used. The strong
gradients are caused by the non realistic values taken
for ρ. However, the mean error shows that the solution
found, aside from a few points, is still acceptable, despite
the sparse mesh.

B. Non paraxial laser beam propagation

Furthermore, as we will show now, a better assessment
of the performance of this method will be established by
solving a physically realistic problem, which is not so easy
to solve by other conventional methods. Indeed, we now
aim to compute the coupling of a Gaussian laser beam of
width W into a Gaussian shaped waveguide of width W

2

and modulation depth 10−4. The centers of both beam
and waveguide are set to a distance of W

2 , both being
aligned in the same direction. In the computation pro-
cess, we will not make the standard simplifying parax-
ial approximation, which makes our problem difficult to
solve by conventional methods.

The non-paraxial propagation equation to be solved is
thus the following, where A is the wave electric field to
be found, z is the propagation direction, k is the wave
vector, n and δn are the given refraction index and a
small variation of it:

∂A

∂z
−

i

2k
△A =

ik

n
δnA. (10)

The problem is solved by deriving two real equations
from (10), discretizing them with finite difference cen-
tered derivatives except along z where left-handed deriva-

8

tives are needed because of the impossibility to give a
boundary condition on one side of the propagation axis.

The adequate continuous automaton (it also has 28
update rules but is too complicated to show here) is then
computed from the discretized problem. When launched
on a 30 × 30 × 30 network, it stabilizes to a fixed point
shown on figure 1, where the light is found to be coupled
into the waveguide. The a posteriori remaining mean and
maximum errors are now computed to be 2× 10−12 and
9×10−12 respectively, proving that the obtained solution
does indeed meet the differential problem requirements.

V. CONCLUSION

We have described and successfully assessed what we
believe to be an original method allowing to tailor a Cel-
lular Neural Network so that its fixed point quantitatively

solves a given differential problem. We believe that this

method can be applied to most continuous differential
problems. Since time and space are considered equally,
it does not have the stability issues encountered in clas-
sical CNNs [8], as the dynamic process described in this
paper is an explicit energy minimization, the energy con-
sidered here being the error E .

An accompanying formal computing automation can
thus offer the unique possibility to reduce differential
problem solving to the mere specification of the prob-
lem with an adequate formal language and its feeding
to a specifically designed Continuous Automaton. This
work can therefore be used for the design of an automated
piece of software able to solve differential problems while
sparing the user the need to get involved in actual nu-
merical mathematics and computer programming, thus
sparing code development time. This can be particularly
useful for the simulation of new differential problems for
which no off-the-shelf software is available.

[1] A. W. Burks, Von Neumann’s Self-reproducing Automata

(University of Michigan, 1969).
[2] S. Wolfram, Rev. Mod. Phys. 55, 61 (1983).
[3] S. Wolfram, A new kind of science (Wolfram Media,

Champaign, 2002).
[4] J. R. Weimar and J. P. Boon, Phys.Rev.E 49, 1749

(1994).
[5] B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629

(1992).
[6] D. H. Rothman and S. Zaleski, Rev. Mod. Phys. 66, 1417

(1994).
[7] L. O. Chua and L. Yang, IEEE Transactions on Circuits

and Systems 35, 1257 (1988).
[8] T. Roska, L. O. Chua, D. Wolf, T. Kozek, R. Tetzlaff, and

F. Puffer, IEEE Transactions on Circuits and Systems–I:
Fundamental theory and applications 42, 807 (1995).

[9] A. Lonkar, R. Kuntz, and R. Tetzlaff, in 6th EEE In-

ternational Workshop on Cellular Neural Networks and

Their Applications (2000), pp. 123–128.
[10] F. Sargeni and V. Bonaiuto, Analog Integrated Circuits

and Signal Processing 44, 283 (2005).
[11] A. Slavova, Journal of Computational and Applied Math-

ematics pp. 387–404 (2000).
[12] K. Hadad and A. Piroozmand, Annals of Nuclear Energy

(2007).
[13] O. Bandmann, Future Generation Computer Systems pp.

737–745 (2002).
[14] T. Kozek, L. O. Chua, T. Roska, D. Wolf, R. Tetzlaff,

F. Puffer, and K. Lotz, IEEE Transactions on Circuits
and Systems–I: Fundamental theory and applications 42,
807 (1995).

[15] A. Slavova and P. Zecca, Journal of Computational and
Applied Mathematics pp. 13–24 (2003).

[16] N. R. S. Simons, G. E. Bridges, and M. Cuhaci, J. Com-
put. Phys. 151, 816 (1999), ISSN 0021-9991.

[17] X. Zhou, B. Liu, and B. Shi, in Proceedings of the 7th

World Multiconference on Systemics, Cybernetics and In-

formatics (2003), vol. V of Computer Science and Engi-

neering: I, pp. 240–244.
[18] V. N. Vapnik, The Nature of Statistical Learning The-

ory, Statistics for Engineering and Information Science
(Springer, 2000).

[19] T. Tokihiro, D. Takahashi, J. Matsukidaira, and J. Sat-
suma, Phys Rev. Lett. 76, 3247 (1996).

[20] A. Doeschl, M. Davison, H. Rasmussen, and G. Reid,
Math. Comp. Mod. 40, 977 (2004).

[21] W. Kunishima, A. Nishiyama, H. Tanaka, and T. Toki-
hiro, Journ. Phys Soc. Japan 73, 2033 (2004).

[22] S. Omohundro, Physica D 10D, 128 (1984).
[23] G. Aubert and P. Kornprobst, Mathematical Problems in

Image Processing Partial Differential Equations and the

Calculus of Variations, vol. 147 of Applied Mathematical

Sciences (Springer, 2006), 2nd ed.
[24] C. Rekeczky, International Journal of CVircuit Theory

and Applications pp. 313–348 (2002).
[25] M. Cannataro, S. D. Gregorio, R. Rongo, W. Spataro,

G. Spezzano, and D. Talia, Parallel Computing 21, 803
(1995).

[26] G. Spezzano and D. Talia, in Virtual shared memory for

distributed architectures (Nova Science Publishers, Inc.,
Commack, NY, USA, 2001), pp. 51–68.

[27] J. C. Spall, Introduction to Stochastic Search and Opti-

mization: Estimation, Simulation, and Control (Wiley-
Interscience, 2003).

