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This paper presents an original and generic numerical method for solving partial differential
equations. A new mathematical and systematic method stemming from the local very nature of
any differential problem is proposed: a custom tailored continuous automaton is purposely derived
from any given differential problem so that its steady state yields the solution in a quantitatively
correct way. The combined use of formal computing and continuous automata thus offers the unique
possibility to completely automate the process from formal problem specification to its numerical
solution.

PACS numbers: 02.30.Jr, 02.60.Cb, 02.60.Jh, 02.60.Lj

I. AUTOMATA AND PARTIAL DIFFERENTIAL

EQUATIONS

Ever since von Neumann[1], the question of mod-
elling continuous physics with a discrete set of cellu-
lar automata has been raised, whether they handle dis-
crete or continuous values. Many answers have been
brought forth through, for instance, the work of Stephen
Wolfram[2] summarized in a recent book[3]. This prob-
lem has been mostly tackled by rightfully considering
that modelling physics through Newton and Leibniz cal-
culus is fundamentally different from a discrete modeliza-
tion as implied by automata.

Indeed, the former implies that physics is considered
continuous either because materials and fields are con-
sidered continuous in classical physics or because quan-
tum physics wave functions are themselves continuous.
On the contrary, modelling physics through automata
implies modelling on a discrete basis, in which a unit
element called a cell, interacts with its surroundings ac-
cording to a given law derived from local physics consid-
erations. Such discretized automaton based models have
been successfully applied to various applications rang-
ing from reaction-diffusion systems[4] to forest fires[5],
through probably one of the most impressive achieve-
ments: the Lattice Gas Automata[6], where atoms or
molecules are considered individually. In this frame, sim-
ple point mechanics interaction rules lead to complex be-
haviors such as phase transition and turbulence. This
peculiar feature of automata, making complex group be-
havior emerge from fairly simple individual rules aroused
the interest around them for the past decades.

However, to the best of our knowledge, beside par-
ticular solutions[4, 7], the predictions of calculus based,
continuous models and those of discrete, automata based
ones, are seldom quantitatively identical, though qualita-
tive similarity is often obtained. This is mostly explained
by the fact that the two drastically different approaches

are applied to their own class of problems. Attempts at
a quantitative link have however been made by showing
connexions between an automaton and a particular dif-
ferential problem[8] or by designing methods for describ-
ing automata by differential equations[9, 10, 11] allowing
in the way to assess the performance of two different
implementation of the same problem, which are in fact
basically two different automata for the description of the
same physics.

That is the reason why this paper is devoted to the in-
troduction of a new and systematic method allowing to
derive a continuous automaton from any given differential
problem whose boundary conditions are of the Dirichlet
type. The process of derivation stems from the idea that
since differential problems are expressed in a purely lo-
cal manner, their solution can be computed in an equally
local way. However, as will be shown, the locality of the
computation is not an a priori hypothesis but rather a
consequence of the method. Nonetheless, the probably
most interesting aspect of it is the possibility to com-
pletely automate the way from the formal expression of
the differential problem down to its solution, thanks to
formal computing and to a cellular automata based envi-
ronment, analogous to previously reported ones[12, 13].

II. SOLVING PDE’S THANKS TO

CONTINUOUS AUTOMATA

The very characteristic of continuous physics is its in-
tensive use of fields which are, mathematically speak-
ing, mappings of a given vectorial physical quantity —
belonging to R

n— over a given physical space R
m, for

(m, n) ∈ N
2. Therefore, a particular local differential

problem P stemming from local relationships, can be ex-
pressed in terms of a functional equation Φ(ξ) = 0, where
Φ, represents the known differential relationships and
where the field ξ is the unknown. Φ is defined as fol-
lows, where p ∈ N can be thought of as the problem
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dimensionality —or the number of independent scalar

relationships— and where (A)
B

stands for the set of func-
tions from A to B:

Φ : (Rm)R
n

7→ (Rm)R
p

ξ → Φ(ξ) .

Following and using the finite difference scheme, the same
problem P can be expressed in a discretized way on a

finite mesh Ω ⊂ R
m as Φ̃(ξ̃) = 0 where

Φ̃ : (Ω)
R

n

7→ (Ω)
R

p

ξ̃ → Φ̃(ξ̃) (1)

In this context, solving the discretized differential prob-

lem P̃ means finding a field ξ̃ for which Φ̃(ξ̃) is as close to

0 as possible over (Ω)
R

p

, given a distance on (Ω)
R

p

. This,
in turn, is equivalent to zeroing —in the same sense as

previously— Φ̃(ξ̃)(ω) for all ω ∈ Ω, given a distance on
R

p. Finally, this can be equivalently done by similarly
zeroing

E(ξ̃) =
∑

ω∈Ω

∣

∣

∣Φ̃(ξ̃)(ω)
∣

∣

∣ (2)

where | | is any given norm on R
p. Let us note that E(ξ̃)

can here be understood as a measure of the violation of
the physical relationships P̃ by a given field ξ̃.

The straightforward method for numerically evaluat-
ing the solution ξ̃⋆ to P̃, i.e. the value of ξ̃ that best ze-

roes —i.e. that minimizes— E(ξ̃), is the standard New-
ton method applied to a multidimensional optimization
problem. Let us note here however that this minimiza-

tion process does not ensure the zeroing of E(ξ̃), which is

to be verified a posteriori by evaluating E(ξ̃⋆).
To undertake this optimization task, we previously

need to define a canonical basis of (Ω)
R

n

with respect
to which the gradient and Hessian will be taken. If δ
is the Kronecker symbol and {r}i is the canonical ba-
sis of R

n, let us define {e}(ω,i), the canonical basis of

(Ω)
R

n

as the set of functions e(ω,i), for all ω ∈ Ω and all
1 ≤ (i ∈ N) ≤ n:

e(ω,i) : Ω 7→ R
n

ω′ → δωω′ri
(3)

Therefore and using these definitions, the Newton

method consists in building a series
{

ξ̃i

}

i
defined as fol-

lows, the limit of which should be the sought solution ξ̃⋆

to P̃:

ξ̃t+1 = ξ̃t − µ
(E)

|{e}(ω,i)

(

ξ̃t

)

with µ
(E)

|{e}(ω,i)

(

ξ̃t

)

= H̄
(E)

|{e}(ω,i)

(

ξ̃t

)

.grad
(E)

|{e}(ω,i)

(

ξ̃t

)

where H̄ is the inverse of the Hessian matrix.
(4)

The above expression requires some derivability con-
ditions on E , and thus on both Φ̃ and the chosen norm
on R

n. The former is assumed, since it stems from the
differential problem P itself. The latter is ensured by the
appropriate choice of the used norm. As another pre-
caution to be taken on that choice, the used norm must
ensure that no component of the gradient – and thus of
Hessian inverse – neither supersedes the others nor is su-
perseded by them, for this is known to create stability
problems in the iteration defined by (4). The conven-
tional | |2 norm, or its square, is for instance a good
choice, provided P is conveniently normalized.

However, the effective computation of such a series im-
plies to compute, for each step t, the gradient and inverse
Hessian with respect to {e}(ω,i), which implies getting ac-

cess to the whole Ω, in contradiction with our initial goal
which was to design a local-only computationnal method.
Therefore, we will now present a method inspired from
the stochastic gradient descent method [14], the locality
of which will be established in the next section.

The stochastic gradient method consists in updating ξ̃
by considering only a few of its components at a time. We
choose to consider a single ω in Ω at each step, thus mod-
ifying only ξ̃ω, the ω-related components of ξ̃. Therefore,
the gradient and Hessian appearing in (4) are taken not
with respect to {e}(ω,i) but rather with a subset {e}ω of

it, defined as the set of the e(ω,i)’s restricted to ω. One
such step is therefore defined as follows:

ξ̃ω
t+1 = ξ̃ω

t − µ
(E)

|{e}
ω

(

ξ̃t

)

(5)

The above relationship describes a series for a given
point ω of Ω. For the series (4) to be completely approx-
imated by the stochastic method, the relationship (5) is
of course to be iterated with a random choice of ω ∈ Ω
at each step. Thus, provided µ

(E)

|{e}
ω

is somehow local, an

issue that will be addressed in the next section, the above
considerations allow to consider (5), at ω, as the defini-
tion of a continuous automaton, which is an extension of
classical cellular automata for which the cell states are
allowed to take their values in R

n.

Furthermore, the automata described by (5) for each
ω also departs from the strict definition of a cellular au-
tomaton by the fact that the update rule for all cells ω
are only the same for a vast majority of them, but not
strictly all. Indeed, because of the existing boundary con-
ditions, the H and grad operators will not give the same
result for all points, since the boundary conditions are
considered as constants. Hence, a Dirichlet boundary is
described in the automaton by a constant cell, the value
of which is given by the automaton initial state.
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III. LOCALIZATION OF EACH CELL

NEIGHBORHOOD

The definition of the neighborhood V of a given function

ζ ∈
(

(Ω)
R

n
)R

is to be understood as being the set of all

the points ω needed in the evaluation of ζ:

V :
(

(Ω)
R

n
)R

7→ P (Ω)

ζ →

{

ω ∈ Ω : ∃ ξ̃ : grad
(ζ)

|{e}
ω

(

ξ̃
)

6= 0

}

The automaton described in the previous section is
thus practically usable if the calculations needed to eval-
uate it are local, i.e. expression (5) can be evaluated
without requiring access to Ω as a whole. This can be

formally stated as V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

6= Ω.This can happen

only if some kind of locality condition on P is assumed.
To show that this is indeed the case, let us first define

the reciprocal neighborhood V̄ for a given ω ∈ Ω and a

given Φ̃ as in (1): V̄
(

ω, Φ̃
)

=
{

ω′ : ω ∈ V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)}

.

Given the definition (4) of µ
(E)

|{e}
ω

, the gradient can be

linearly distributed over the additive components of E :

µ
(E)

|{e}
ω

=
∑

ω′∈V̄(ω,Φ̃)

H̄
(|E|)

|{e}
ω

grad
(|Φ̃(ω′)|)
|{e}

ω

(6)

=







∑

ω′∈V̄(ω,Φ̃)

H
(|Φ̃(ω′)|)
|{e}

ω







−1

∑

ω′∈V̄(ω,Φ̃)

grad
(|Φ̃(ω′)|)
|{e}

ω

(7)

The leftmost summation term appearing in the above
equation has been restricted to those ω′ in Ω for which
the gradient does not vanish. The rightmost summations
product is obtained by similarly distributing the Hessian.
The neighborhood of a product being included in the
union of its operands neighborhoods, the neighborhood

of µ
(E)

|{e}
ω

can be limited to

V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

⊂ V

∣

∣

∣

∣

∣

∣

∣







∑

ω′∈V̄(ω,Φ̃)

H
(|Φ̃(ω′)|)
|{e}

ω







−1∣
∣

∣

∣

∣

∣

∣

(8)

⋃

V

∣

∣

∣

∣

∣

∣

∣

∑

ω′∈V̄(ω,Φ̃)

grad
(|Φ̃(ω′)|)
|{e}

ω

∣

∣

∣

∣

∣

∣

∣

(9)

For obvious reasons, the neighborhood of a deriva-
tive, or a gradient, is included in the neighborhood of its
operand. The same holds for the neighborhood of a Hes-
sian since any line or column of the Hessian is a deriva-
tive of the gradient. Therefore, the right-hand term of

the above union is included in
∑

ω′∈V̄(ω,Φ̃) V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)

.

Furthermore, the neighborhood of a matrix norm |M |
is obviously included in the union of the neighborhoods of
all its components. The same holds for the inverse matrix
∣

∣

∣(M)
−1

∣

∣

∣ since each of its components can be obtained by

a combination of the components of M . We can therefore
conclude that the left-hand term of the union in (9) is also

a subset of
∑

ω′∈V̄(ω,Φ̃) V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)

.

Therefore, provided we can assume that both V̄
(

ω, Φ̃
)

and V
(∣

∣

∣Φ̃(ω)
∣

∣

∣

)

are small enough for all ω ∈ Ω —which is

ensured if the differential problem P is defined locally—,

the calculations to be undertaken to evaluate µ
(E)

|{e}
ω

for

each cell ω are local to some extended neighborhood of
that cell:

V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

⊂
⋃

ω′∈V̄(ω,Φ̃)

V
(∣

∣

∣Φ̃(ω′)
∣

∣

∣

)

IV. APPLICATION EXAMPLES

As hinted before, we have implemented the continu-
ous automaton described in the previous sections with
the help of an off-the-shelf formal computing software
and a cellular automata environment analogous to those
reported in [12, 13]. We have thus automated the com-
putation from the specification of the discrete differential
problem P̃ to the design of the adequate continuous au-
tomaton.

To better understand this process, we will now pro-
vide a simple academic example of the solving of Pois-
son Equation for V in the three dimensions of space:
△V (x, y, z) = ρ (x, y, z) for any given ρ, the boundary
conditions being set on the sides of the computing cube
window. The corresponding discrete problem is straight-
forward and is obtained through finite difference centered
second derivatives on each dimensions of space, for the
same space step δ.

The automaton obtained has 28 different update rules,
to account for the boundary conditions. The update rule
obtained for ω such as the boundaries conditions are not

in V

(∣

∣

∣

∣

µ
(E)

|{e}
ω

∣

∣

∣

∣

)

concerns the vast majority of the mesh

nodes ω and is shown below. It is a centro-symmetric
three dimensional convolution kernel, a two-dimensional
slice of which is as follows:

V ←−
1

42
∗













V













-1
-2 12 -2

-1 12 0 12 -1

-2 12 -2

-1













+ δ2 ∗ ρ







1

1 -6 1

1



















When launched, the system converges to a fixed point,
corresponding to the result that, in that case, can also be
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FIG. 1: Left : laser beam Gaussian profile to be coupled in
the waveguide (A.U.). Right : beam profile after a 3mm prop-
agation. The window size is 30µm and the beam wavelength
is 250µm. The highest peak on the right evidences the light
which is coupled into the waveguide.

obtained with more conventional methods. For a 20×20×
20 mesh and for a value of ρ varying from 1 to 0 from one
side of the cube to the other, the a posteriori computed
remaining error E (after normalization) is 7 × 10−3 for
δ = 1 and decreases with it.

However, as we will show now, a better assessment of
the performance of this new method will be established
by solving a physically realistic problem, which is not
so easy to solve by other conventional methods. Indeed,
we now aim to compute the coupling of a Gaussian laser
beam of width W into a Gaussian shaped waveguide of
width W

2 and modulation depth 10−2. The centers of

both beam and waveguide are set to a distance of W
2 ,

both being aligned in the same direction. In the compu-
tation process, we will not make the standard simplifying
paraxial approximation, which makes our problem diffi-
cult to solve by conventional methods.

The non-paraxial propagation equation to be solved is
thus the following, where A is the wave electric field to

be found, z is the propagation direction, k is the wave
vector, n and δn are the given refraction index and a
small variation of it:

∂A

∂z
−

i

2k
△A =

ik

n
δnA. (10)

The problem is solved by deriving two real equations
from (10), discretizing them with finite difference cen-
tered derivatives except along z where left-handed deriva-
tives are needed because of the impossibility to give a
boundary condition on both sides of the propagation axis.
The adequate continuous automaton (it also has 28 up-
date rules but is too complicated to show here) is then
computed from the discretized problem. When launched
on a 30× 30× 30 network, it stabilizes to a steady state
shown on figure 1. The a posteriori remaining error is
now computed to be less than 10−10.

V. CONCLUSION

We have described and successfully assessed what we
believe to be the first method allowing to tailor a Con-
tinuous Automaton so that its steady state quantitatively

solves a given differential problem. We believe that this
method can be applied to most continuous differential
problems. The accompanying automation thus offers the
unique possibility to reduce differential problem solving
to the mere specification of the problem with an adequate
formal language and its feeding to a specifically designed
Continuous Automaton. Future work will have to assess
the possibilities of the here proposed method against dif-
ferential problems which solutions lead to chaotic behav-
iors, a possible difficulty for our multidimensional New-
ton method.
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