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Abstract

This article proposes an extension, combined with the out-of-kilter technique, of the aggregation
method (that solves the minimum convex piecewise linear cost tension problem, or CPLCT, on
series-parallel graphs) to solve CPLCT on quasi series-parallel graphs. To make this algorithm
efficient, the key point is to find a "good" way of decomposing the graph into series-parallel
subgraphs. Decomposition techniques, based on the recognition of series-parallel graphs, are
thoroughly discussed.

Keywords: minimum cost tension, series-parallel graph, graph decomposition, series-parallel
recognition.

Résumé

Cet article propose une extension, combinée avec la technique de mise-à-conformité, de la mé-
thode d’agrégation (qui résout le problème de tension minimum à coûts convexes linéaires par
morceaux, ou CPLCT, sur des graphes série-parallèles) afin de résoudre CPLCT sur des graphes
quasi série-parallèles. Pour rendre cet algorithme efficace, le point clé est de trouver une "bonne"
décomposition du graphe en sous-graphes série-parallèles. Des techniques de décomposition, ba-
sées sur la reconnaissance de graphes série-parallèles, sont discutées en détails.

Mots clés :tension de coût minimum, graphe série-parallèle, décomposition de graphe, reconnais-
sance de graphe série-parallèle.
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Abstract

This article proposes an extension, combined with the out-of-kilter technique, of the ag-
gregation method (that solves the minimum convex piecewiselinear cost tension problem,
or CPLCT, on series-parallel graphs) to solve CPLCT on quasiseries-parallel graphs. To
make this algorithm efficient, the key point is to find a "good"way of decomposing the graph
into series-parallel subgraphs. Decomposition techniques, based on the recognition of series-
parallel graphs, are thoroughly discussed.

Keywords: minimum cost tension, series-parallel graph, graph decomposition, series-
parallel recognition.

Introduction

[4] proposed anaggregationmethod to solve theminimum convex piecewise linear cost tension
problem (orCPLCT) onseries-parallelgraphs (orSP-graphs). It was shown to be competitive on
this class of graphs with the bestdual cost-scalingalgorithms (see [1]). This article proposes to
combine the aggregation method with theout-of-kilter approach (cf. [10]) to provide an efficient
method to solve CPLCT on a slightly more general family of graphs calledquasi series-parallel.

Let π : X 7−→ R be a function that assigns a potential to each node of the graph G = (X;U).
Let m = |U | andn = |X|. The tensionθu of an arcu = (x; y) is the difference of potentials
θu = πy − πx and is constrained toθu ∈ [au; bu] ⊂ R. CPLCT can be modeled as a linear
program:

(P )































minimize
∑

u∈U

cu(θu)

with πy − πx = θ(x;y), ∀(x; y) ∈ U

au ≤ θu ≤ bu, ∀u ∈ U

wherecu are convex piecewise linear functions. In this article, they will be defined as follows:

cu(θu) =

{

c1
u(ou − θu) , if θu < ou

c2
u(θu − ou) , if θu ≥ ou

This problem is formally related to a minimum cost flow problem by duality (cf. [1]). It
arises for instance in the synchronization of hypermedia documents where each documentu has
an elastic durationθu that can be adjusted around a referential valueou (see [6]).

Section 1 proposes an overview of the SP-graphs and the aggregation method. It also de-
finesquasiSP-graphs, that are not perfectly series-parallel. Section 2 presents an extension of
the aggregation technique, calledreconstruction, for quasi SP-graphs. To be efficient, this new
algorithm rely on a "good" decomposition of the graph into SP-subgraphs. This is the key point of
the procedure discussed in Sections 3 and 4. Section 5 presents comparative numerical results.

1 Aggregation Method

1.1 Series-Parallel Graphs

A common definition of series-parallel graphs is based on a recursive construction of the graphs
(e.g. [8], [9], [13]) that is very intuitive and close to the way synchronization constraints are built
in a hypermedia document. A graph isseries-parallel, also calledSP-graph, if it is obtained from
a graph with only two nodes linked by an arc, applying recursively the two following operations:
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• Theseries composition, applied upon an arcu = (x; y), creates a new nodez and replaces
u by two arcsu1 = (x; z) andu2 = (z; y) (cf. Figure 1a). We callseriesthe relation that
bindsu1 andu2 and denote itu1 + u2.

• Theparallel composition, applied upon an arcu = (x; y), duplicatesu by creating a new
onev = (x; y) (cf. Figure 1b). We callparallel the relation that bindsu andv and denote it
u//v.

x y
u

x z y

(a)

x y
u

x y

u

v

(b)

u1 u2

Figure 1:Series and parallel compositions.

The series and parallel relations are gathered under the term SP-relations. During the construc-
tion process, a SP-relation that binds two arcs can become a relation between two series-parallel
subgraphs. Hence, the termsingle SP-relationis introduced to identify a SP-relation between two
arcs. From the recursive definition of a SP-graph, it is easy to verify that a SP-graph has always at
least a single SP-relation (the SP-relation created from the last composition).

The SP-relations are binary operations, so we can representa SP-graph by a binary tree called
decomposition binary treeor SP-tree(cf. [13], [7]). Figure 2 shows a SP-tree of a SP-graph.
Section 3 explains how to find such a tree in linear time.

//

u y

//

+

w x

u

w x
y

Figure 2:Example of SP-tree.

Numerical results (cf. [4]) showed that linear programmingand the out-of-kilter method take
advantage of the particular structure of the SP-graphs and behave really better on this class of
graphs. However the dual cost-scaling approach does not work that well on these instances,
whereas it proves to be the most efficient for non-specific graphs. Moreover, the aggregation
method presents the best performance on SP-graphs.

1.2 Aggregation Method

Theaggregationmethod, that allows to solve CPLCT only on SP-graphs, has been introduced in
[4]. The algorithm works on a SP-treeT of the SP-graphG and is recursive: considering a SP-
relation inT , it assumes that the optimal tensions of the two subgraphs implied in the relation are
known, and from them, it is possible to quickly build the optimal tension of the whole SP-relation.
Hence, starting from the leaves ofT , the optimal tension of each SP-relation is built to finally
reach the root of the treeT .

From the definition of a SP-graph, it is obvious that a SP-graph has only one source node and
only one target node. Hence, themain tensionθ of a SP-graph is defined as the tension between its
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sources and targett, i.e. θ = πt−πs. To get an efficient algorithm, theminimum cost functionCG

of a SP-graphG must be defined. This function represents the cost of the optimal tension where
the main tension is forced to a given value:

CG(x) = min{
∑

u∈U

cu(θu) | θ ∈ TG, θ̄ = x}

As each functioncu is convex, the minimum cost function is indeed convex. Let usconsider
two series-parallel subgraphsG1 andG2, and suppose that their minimum cost functionsCG1

and
CG2

are known. The minimum cost functionCG1+G2
of the SP-relationG1 + G2 is:

CG1+G2
(x) = min

x=x1+x2

CG1
(x1) + CG2

(x2)

Thus,CG1+G2
is the inf-convolutionCG1

� CG2
. It is well known that this operation maintains

convexity (e.g. [11]). The minimum cost functionCG1//G2
of the SP-relationG1//G2 is:

CG1//G2
(x) = CG1

(x) + CG2
(x)

Thus,CG1//G2
is simply the sumCG1

+ CG2
, which is convex ifCG1

andCG2
are convex.

From this assessment, a simple recursive algorithm can be proposed to build the minimum cost
functionCG of a SP-graphG. As explained in [4], it is preferred to deal with thet-centered mini-
mum cost functionCt

G of G that makes the method both more efficient and easier to understand:

Ct
G(x) = CG(x + t) − CG(t)

This wayCt
G represents the minimum additional cost to increase or decrease the main tension

θG from a reference tensiont. If t = θ∗G, the minimum cost tension of a graphG, the cost function

C∗G = C
θ∗
G

G equals0 at the optimal tension.

Moreover we are interested in finding the minimum cost tension of G, thus the aggregation
method provides the minimum cost functionC∗G with additional information on each of its pieces
(cf. [4] for details). It allows for instance to reach optimally a new main tensiont′ from the
reference tensionθ∗G in linear time (preciselyO(m) operations). This facility is widely used in the
further reconstruction approach. The whole aggregation method performs inO(m3) operations.

1.3 Quasi SP-Graphs

A quasi SP-graphor QSP-graphG = (X;U) is such that the removal of a minimal subsetU ′ ⊂ U
of arcs fromG makes the remaining graphG′ = (X;U \U ′) series-parallel. The ratio|U ′|/|U | is
called theSP-perturbationof the graphG. This value indicates how many arcs ofG are disturbing
the series-parallel property ofG. From this definition, any connected graph is a QSP-graph, but
we prefer to use this term for graphs with a small SP-perturbation (in applications issued from the
hypermedia field,10 % seems a satisfying threshold).

2 Reconstruction Approach

As the aggregation method can not be used "as it is" on QSP-graphs and the dual cost scaling
approach proves to be less efficient than the out-of-kilter on SP-graphs, we propose in this section
a method calledreconstructionto solve CPLCT on QSP-graphs. This new approach combines the
aggregation and the out-of-kilter techniques based on aSP-decompositionof the graph.
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2.1 Decomposition Phase

We callseries-parallel componentor SP-componentof a graphG a SP-subgraph ofG. A partition
P of the arcs ofG defines aseries-parallel decompositionor SP-decompositionof G, where each
set of arcs inP induces a SP-subgraph ofG. A SP-decomposition ofG is thus a set of arc-disjoint
SP-components, whose union isG. Section 3 discusses ways to obtain a "good" SP-decomposition
that fits the reconstruction process.

The reconstruction method starts with the search of a SP-decompositionD of the graphG.
Then CPLCT is solved on each SP-component ofD with the aggregation method. Thus, for each
componentDu ∈ D, its minimum cost functionC∗u and its optimal tensionθ∗u are known, soDu

can be seen as a single aggregated arcu with a convex piecewise linear cost functioncu = C∗u and
a tensionθu = θ∗u.

2.2 Reconstruction Phase

The method attempts next to put the SP-components back together. An iterative process consists
in adding one by one the aggregated arcs into a new graph, rebuilding the original graphG back.
Starting withH0 = (X0;U0) = (∅; ∅), at each step an aggregated arcu = (x; y) is added,
i.e. Hk = (Xk−1 ∪ {x; y};Uk−1 ∪ {u}). The newly added arcu is the only one that may be
out-of-kilter.

We remind that the kilter curve is defined from the tensionθu and the flowϕu of the arcu, and
roughly thatϕu must equalcu

′(θu) for the arc to be in-kilter. If all the arcs ofHk are in-kilter, its
tensionθ is optimal. The idea of the out-of-kilter approach is to bring all the arcs on their kilter
curve (e.g. [2]).

The newly added arcu may be out-of-kilter because even if its tension is optimal,its flow must
be set to 0 in order to keep the flow conservation constraints on the whole graphHk. Fortunately,
as this arc is the only one out-of-kilter, repetitive searchfor a cycle or a cocycle to modify respec-
tively either the flow or the tension of the arcu can be performed inO((A + B)m) operations,
whereA is the maximum tension andB the maximum flow (i.e. the maximum derivative of its
cost function) for the arcu. Once the arc is in-kilter, the whole tension onHk is optimal and
another aggregated arcv can be added.

2.3 Tension Adjustment

But adding an arc into the graph is not that obvious. Considerthe aggregated arcu = (x; y), the
optimal tensionθu of u may not be equal to the difference of potentialsπy − πx. The tension of
the arcu has to be optimally adjusted to be equal toπy − πx. That can be achieved using the
minimum cost functionC∗u of the arcu to adapt optimally the main tension of the SP-component
aggregated behindu. As said in Section 1, it can be performed inO(m) operations (cf. [4]).

2.4 SP-Component Splitting

For the need of the reconstruction, we assume a partial orderon the components of the SP-
decompositionD, such that if thesourcenode (i.e. without any predecessor) and/or thetargetnode
(i.e. without any successor) of a SP-componentDu belong to componentDv, thenDv < Du. De-
composition methods presented in Section 3 prove that such an order exists for any graph. During
the reconstruction phase, the SP-components are added following this partial order.

Another problem arises when adding an aggregated arcu = (x; y) into the graphHk: maybe
the source nodex and/or the target nodey of u are not present inHk, because simply hidden in one
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of the aggregated arcsv of the graphHk. Hence we need to split the SP-component behind such
an arcv to make the node visible. The easiest way is to bring back all the arcs of the SP-component
Dv into the graphHk, (i.e. Hk = Hk−1 ∪ Dv \ {v}).

The drawback of this technique is that the biggest SP-component, added behind a single ag-
gregated arc at the first step, is certainly split at the second step, because nodes will obviously be
needed for the secondly added arc. This approach reveals to be extremely inefficient, as most of
the arcs will be brought back in the graph at the second step only. Thus, we need a smarter way
than splitting totally a SP-component. This is the purpose of Section 4 that proposes a technique
to split a SP-component into several pieces, reducing theirnumbers to the minimum necessary.

2.5 Conservation of the In-Kilter Property

After the splitting of an aggregated arcu = (x; y), the resulting arcs must be in-kilter to keep
the whole graphHk optimal. Thus, knowing their tension, it is straightforward to find an interval
in which their flow must be: indeed, with our assumptions, thekilter curve is a step function (cf.
Figure 3).

θu

ϕ u

Figure 3:Kilter flow building.

For each arcv of the SP-componentDu, an interval[ev ; fv] can thus be defined. Let suppose an
arcw from the source nodex to the target nodey of the SP-component with a capacity[ϕu;ϕu],
whereϕu is the flow of u in the whole graphHk. Find a flowϕv for each arcv of the SP-
componentDu turns to find a feasible flowϕ in the SP-component (with the added loop arc
w). We propose to solve it inO(m3) operations with a technique using the SP-tree of the SP-
component like the aggregation (cf. [3]). However, as this phase is not critical in terms of time
consumption, any well-known method is suitable to solve this flow problem.

2.6 Complexity

Algorithm 1 summarizes the whole process of the reconstruction method. Letk = |D| andpu

be the number of arcs of a SP-componentDu. The reconstruction algorithm needs, for each SP-
component ofD, eventually a splitting (with the tension adjustment and the conservation of the
in-kilter property), an aggregation (O(p3

u) operations) and an out-of-kilter iteration (O(m(A+B))
operations). The whole splitting phase needO(min{n; 2k}m3) operations (cf. Section 4). Thus,
the reconstruction method requiresO(min{n; 2k}m3 + km(A + B)) operations.
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Algorithm 1 Reconstruction method.
find SP-decomposition D = {Du}u=1...k;
let H be an empty graph;

for all SP-component Du ∈ D do
find minimum cost tension for Du using aggregation;
let u = (x; y) be the aggregated arc of Du;

while ∃Dv with Dv < Du and (x ∈ Dv or y ∈ Dv) do
split Dv (add each arc and node of Dv in H);
find tension for each arc of Dv using C∗

v;
find flow for each arc of Dv;

end while;

add arc u in H;
find minimum cost tension for H using out-of-kilter;

end for;

for all aggregated arc u ∈ H do
split Du (add each arc and node of Du in H);
find tension for each arc of Du using C∗

u;
end for;

3 Series-Parallel Decomposition

The recognition of a SP-graph is known for long as an easy problem that can be solved in linear
time (cf. [13]). The various algorithms proposed by many authors can immediately be adapted
and without altering their complexity to build the SP-tree during the recognition phase. These
methods being very efficient, our discussion will not be on their complexity, but on the way they
recognize a SP-graph, our goal being to find for any graph the "best" SP-decomposition suitable
for the reconstruction process.

The characterization of such a decomposition is not that obvious. If it is too compact, i.e.
with few SP-components, that will tend to produce a lot of splittings during the reconstruction
(like the phenomenon explained for the first SP-component inSection 2). At the opposite if the
decomposition is scattered, i.e. with many SP-components,the aggregation phase will become
useless and the reconstruction will tend to a single out-of-kilter algorithm.

We choose to study here two recognition methods, thereductionand thepath approaches,
and propose heuristic extensions to find a "good" SP-decomposition. To present these algorithms,
a recursive notation of the SP-trees is introduced. A tree with a roota, a left subtreeTl and a
right subtreeTr is represented by(a;Tl;Tr). The reverse operations of the series and parallel
compositions, calledSP-reductions, are defined as follows:

• Theseriesreduction, notedS−1
x , replaces the SP-relation(y;x) + (x; z) by an arc(y; z).

• Theparallel reduction, notedP−1
u , replaces the SP-relationu//v by the arcu.

3.1 Reduction Approach, Recognition

This recognition approach is widespread because very intuitive. As explained in Section 1, a SP-
graph has at least one single SP-relation. The idea is to find one, apply the associated SP-reduction
and repeat until the graph is reduced to a single arc. If thereis no more single SP-relation and the
graph is not a single arc, that means the graph is not series-parallel.

This method has been proposed first in [13]. It appears then in[12] with some improvement:
all the multiple arcs are first removed (no single parallel relation exist anymore), then series and
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parallel-and-series(composition of a parallel relation with a series relation)relations are detected
and reduced. The detection is easier (only the nodes are checked) and the reduction is more
efficient (because with the parallel-and-series relation,two arcs and one node are removed in one
step). However, this improvement does not change fundamentally the way the algorithm performs.
A similar variant is proposed in [5] which proposes 18 reductions, most of them working only on
non-directed graphs. These improvements are difficult to take into account with our goal of finding
a SP-decomposition, because our graphs have non-specific structures, so the occurrences of these
special reductions dedicated to SP-graphs will be rare.

3.2 Reduction Approach, Decomposition

A generic version of the method is presented in Algorithm 2. It builds at the same time a SP-
decomposition of the graph where each SP-component is represented by its SP-tree. For this
purpose, a functiont is defined that associates a SP-treetu with each arcu of the graphG. At the
beginning, each arc possesses a SP-tree with a single node that is the arc itself. We sketch below
what happens during a SP-reduction.

• The series reductionS−1
x removes the two arcsu = (y;x) andv = (x; z) of the relation

u + v, and creates an arcw = (y; z). The SP-tree ofw is then(+; tu; tv), the oldtu andtv
are removed.

• The parallel reductionP−1
u removes the arcv of the relationu//v. The SP-tree ofu becomes

(//; tu; tv), the oldtu andtv are removed.

Algorithm 2 SP-decomposition, with the reduction approach.
for all arc u ∈ U do tu ← (u; ∅; ∅);

while |U | 6= 1 do
if relation (y; x) + (x; z) found then apply SP-reduction S−1

x ;
else if relation u//v found then apply SP-reduction P−1

u ;
else
find u with the biggest score and the smallest SP-tree;
remove u from G;

end if;
end while;

all the remaining trees are the components of a SP-decomposition;

To recognize a SP-graph, the method reduces successively each single SP-relation until there
is either only one arc in the graph or no more single SP-relation to reduce. To find a whole SP-
decomposition of any graph, the algorithm repeats until it blocks, so an arc must be removed to
reveal SP-relations and allow to continue the reductions. When suppressing an arc, no parallel
relation can appear, only series relations can. So the intuitive idea, whenever a blocking occur, is
to remove the arc that reveals the most series relations, andif none exist the one that will contribute
in revealing the most series relations. We propose a heuristic approach that assigns two scores to
each nodex: one used whenx is source of an arc (s+

x ) and another used whenx is the target of an
arc (s−x ). The score of an arcu = (x; y) is s+

x + s−y , and is calculated as follows:

s+
x =







−M, if d+
x = 1

0, if d+
x > 1 andd−x = 0

1/(d+
x − 1) + 1/d−x , if d+

x > 1 andd−x > 0

s−x =







−M, if d−x = 1
0, if d−x > 1 andd+

x = 0
1/(d−x − 1) + 1/d+

x , if d−x > 1 andd+
x > 0

A

B

C

D

−M | 2

2 | −M

−M | 2

4/3 | 1
4

10/3<0

4

<0

x

sx
− |sx

+

Figure 4:Example of scoring.
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Hered+
x represents the number of arcs outgoingx andd−x the number of arcs incomingx.

Intuitively, a nodex with d+
x = 2 andd−x = 1 is the best candidate to be the source of the arc to

remove because it reveals a series relation, its score is 2. The same way, an arcy with d−y = 2 and
d+

y = 1 is the best candidate to be the target of the arc to remove. Thebest candidate arc has a score
of 4. This score tends to decrease first for the extremities ofthe arcs having important numbers of
incoming and outgoing arcs, because that means numerous arcsuppressions are needed before they
can become series relations. Removals that alter the connectivity of the graph are penalized with
a negative score, hence if a node would have no incoming or outgoing arc after the suppression,
its score is set to−M , with M such that even the best score for the other extremity will notmake
the score of the arc positive, anyM > 2 is suitable. Figure 4 shows an example of scoring. In the
case of scores equality, the arc that hides the smallest SP-component is removed, with the hope
of revealing finally the biggest SP-component. If we consider no specific data structure for the
graph, the complexity of Algorithm 2 isO(m2) operations, at each step the selection of the arc to
be removed requiresO(m) operations (to assign a score to each remaining arc of the graph).

3.3 Path Approach, Recognition

The paths of a SP-graph are organized in a very specific way. In[9], this is formalized by the
concept ofear decomposition. We propose here a quite different approach based on two kinds
of nodes: thebranching nodes(with more than one outgoing arc) and thesynchronization nodes
(with more than one incoming arc).

In a SP-graph, such nodes represent respectively the beginning and the end of parallel relations.
We callbranchingtwo arcs outgoing a branching node (i.e. the beginning of a parallel relation).
In the same way, asynchronizationrepresents two arcs incoming a synchronization node (i.e. the
end of a parallel relation). By mean of clarity, we sometimesidentify a branching (respectively
synchronization) by its branching (respectively synchronization) node.

The approach proposed here is based on a search through the graph in the topological order of
the nodes (i.e. a node is visited only after all its predecessors). LetSk be the set of nodes marked
during the process until iterationk. A branching will be saidclosedat iterationk if there is a
synchronization nodey ∈ Sk such that two arc-distinct directed pathsP1 andP2 betweenx andy
exist and contain each one of the two arcs of the branching; the two arcs incomingy that belong
each to one of the paths form a synchronizationy thatclosesx. A closed branching is associated
with the first synchronization encountered during the search that closes it. The paths that allow the
closure of the branching (in our definitionP1 andP2) are called theclosurepaths of the branching.

A

B

C

D

E

G

F

H

a

b

c

d

e

f

g

h

i

Figure 5:Example of branchings.

To illustrate these definitions, consider Figure 5. The graynodes represent visited nodes at
iterationk. A andB are branching nodes,G andH are synchronization nodes.(a; b) is a closed
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branching, the associated synchronization is(e; g). On the contrary, branching(c; d) is open.
Closure paths for branching(a; b) are(a; d; g) and(b; e). The graph of the example is not series-
parallel. Intuitively, the problem comes from the open branching(c; d). Let us prove the following
proposition.

Proposition 1 A graph is series-parallel if and only if at each iteration ofthe topological search
through the graph, for each closed branchingx, there are two closure paths between the branching
x and its associated synchronizationy that do not possess any open branching.

Proof: (⇒) At a given iteration, suppose there is an open branchingz on one of the closure
paths of a closed branchingx associated with its synchronizationy. That gives a graph with the
general aspect presented by Figure 6a. Attempting a reduction with Algorithm 2 (with no arc
suppression), the best that can be found is the graph illustrated by Figure 6b. The reduction can
thus not be terminated without any arc suppression, so the graph is not series-parallel.
(⇐) Suppose now that no such open branching exist, the recognition Algorithm 3 presented further
proves that it is possible to find (with no arc suppression) the SP-tree associated with the graph, so
it is series-parallel.

x

z

y

x

z

y

(b) Graph after SP−reduction(a) Open branching

Figure 6:Example of open branching on closure path.

To verify the proposition (in order to determine if a graph isseries-parallel), we propose a
marking process that allows to identify, arriving on a synchronization, the branchings that are
closing and if a branching is open in one of the closure paths.Let ∆u be the signature of an arc
u, ∆u = x meansx is the last (according to the topological order of the nodes)open branching
between the source node of the graph and the arcu. Let ∆x be the signature of a nodex, it is
a couple∆x = (lx; dx). If the node is not a branching node thendx = 0, elsedx indicates the
number of branchings located at nodex that are open.lx indicates the level of branching, e.g. if
lx = 2 then there are two open branchings (includingx) in the paths between the source node of
the graph and the nodex.

z

x y

z

x

x

x

x

z

x y

x

x
z

z

z

(a) Iteration k (b) Iteration k+1

z

z

z

(1,1)

(1,0)(2,1)

(1,1)

Figure 7:Example of signature change.

The signature of an arc or a node can change while searching the graph in the topological
order of the nodes. When two arcsu andv with the same signaturex (at iterationk) meet at a
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synchronization nodey (at iterationk+1), they form a synchronization and closes thus a branching
of nodex (cf. Figure 7a). The signature of their branching is then modified: dx is decreased of
1. If dx equals 0, that means all the branchings of nodex are closed. The signature of the arcs
u andv must change, it becomes the open branching beforex, i.e. the signature of one of the
incoming arcs of branchingx (cf. Figure 7b). Ideally, the signature of all the arcs of signaturex
must change, but for the needs of the algorithm (that searches the graph in the topological order of
the nodes and thus never come back on already used arcs) this modification is not necessary.

Algorithm 3 SP-decomposition, with the path approach.
for all arc u ∈ U do tu ← (u; ∅; ∅);

while |U | 6= 1 do
choose x in X such that all predecessors of x are visited yet;

if d−x = 0 then ∆x ← 0;
else
if d−x > 1 then closeBranchings(x,∆,t);
let u = (b; x) ∈ U;

if d+
x = 1 then apply SP-reduction S−1

x ;
else ∆x ← ∆b + 1;

end if;
end while;

Algorithm 3 proposes to search the graph following the topological order of the nodes, marking
progressively the nodes and the arcs with the signature∆. It is supposed that the graph has only
one source and at least one arc, else it is sure that it is not series-parallel. From the source of the
graph, the algorithm marks the nodes and the arcs of the graph. At each synchronization nodey, it
modifies certain signatures to represent the closure of associated branchings (cf. Algorithm 4). If
at the end of this step, two incoming arcsu1 andu2 are not marked with the same signature, that
means the graph is not series-parallel, because there are two pathsP1 andP2 between the source
and respectivelyu1 andu2. These paths have at least one branching node in common (at least the
source). Letx be the last node (in the topological order) verifying the condition. If there were no
open branching on the closure paths betweenx andy, u1 andu2 should have the same signaturex.
If they do not, that means at least one of the closure paths betweenx andy has an open branching,
which signature is carried byu1 or u2.

Algorithm 4 Branchings closure.
let y be the synchronization node;
D ← {u = (x; y) ∈ X};
sort D in the decreasing order of the signatures;

while |D| > 1 do
let u1 = (x1; y) and u2 = (x2; y) the two first arcs of D;
if x1 6= x2 then G is not series-parallel; stop;
apply SP-reduction P−1

u1
;

D ← D \ {u2};

if d+
x1

= 1 then

apply SP-reduction S−1
x1

and let v be the resulting arc;
D ← D \ {u1} ∪ {v};
sort D in the decreasing order of the signatures;

end if;
end while;

Algorithm 4 performs the closure of the branchings at a givensynchronization nodey, and
modifies consequently the signatures. It must check two-by-two the arcs incomingy and if they
have identical signatures, close the corresponding branching if not already done. For an efficient
search among the arcs, we propose to sort them in a setD, in the decreasing order of their signa-
tures, i.e.u beforev ⇒ l∆u

> l∆v
or (l∆u

= l∆v
and∆u > ∆v) (we suppose any order on the
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nodes, the idea is that arcs with the same signature are side-by-side). Hence, when looking the first
two arcs ofD, the priority is given to the branching with the highest level, which must absolutely
be closed before any lower level branching. This process requiresO(m log m) operations. So the
whole Algorithm 3 requiresO(nm log m) operations.

Algorithm 3 can easily be adapted, without altering its complexity, to build also the SP-tree
associated with the graph, as in the reduction approach. Theidea consists in reducing the graph
with a series reduction each time a node with only one incoming and one outgoing arcs is visited.
When a branching is closed, that means a parallel operation has been detected, it must then be
reduced. The SP-tree is built once the whole graph is visited(there will remain then only a single
arc). The management of the signatures of the arcs and the nodes is then facilitated, because the
SP-reductions imply automatically the signatures. For instance, the signature∆x of a nodex is
limited to lx (becausedx is always equal tod+

x − 1), and the signature of an arcu = (x; y) is not
necessary anymore, because it is always equal tox.

3.4 Path Approach, Decomposition

This approach offers a new way of recognition of a SP-graph, based on a single search through the
graph in the topological order of the nodes. We explain now how to modify this method to build a
SP-decomposition of the graph. With this algorithm, there are two ways to discover that a graph is
not series-parallel. First, during the search through the nodes according to their topological order,
if a circuit exists, the process loops (in Algorithm 3). But the circuit contains one of the nodes
visited at last (i.e. nodes for which the successors have notbeen all visited yet), letS be the set of
these nodes. In fact, no more nodes can be visited because twonodes at least ofS are predecessors
of each other, directly or indirectly. The process will be then to find such a circuit by looking one
by one the incoming arcs of each node ofS. Once the circuit is found, the implied incoming arc
is removed and the recognition algorithm can go on.

x

y

x

y

x

y

(a)
(b)

(c)

Figure 8:Examples of cases for arc deletion.

Another way to find that a graph is not series-parallel is whenit is impossible to establish
a synchronizationy, i.e. an incoming arcu = (x; y) has a signature different of the signatures
of all the other arcs incomingy. Two intuitive possibilities remain then: either remove this arc
(cf. Figure 8a) or ifx has precisely two outgoing arcs (u and anotherv) as in Figures 8b and
8c, verify that the suppression ofv can not offer tou the same signature than one of the other
incoming arcs ofy. Thus, we check that the signature of the incoming arc ofx is identical with at
least one of the signatures of the incoming arcs ofy. To sum up, when an arcu = (x; y) blocks
the recognition, either it is removed, or its neighbor at branchingx is removed, which allows the
synchronization ofu with one of its neighbor at synchronizationy. These modifications to build
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the SP-decomposition of the graph does not alter the complexity of the recognition Algorithm 3,
because it is only punctual checks at the signatures of nodes.

4 SP-Component Splitting

4.1 Reconstruction Method Extension

As explained in Section 2.4, the reconstruction approach adds one by one the aggregated arcs in
the graphHk. However, when adding a new arcu = (x; y), x and/ory may not exist, because
hidden behind an aggregated arc ofHk. The nodex is saidinsidethe componentDv = (Xv;Uv)
if and only if x ∈ Xv and is neither the source nor the target ofDv.

Suppose now thatx is inside the SP-componentDv . The first idea in Section 2.4 was to remove
the aggregated arcv from Hk and replace it by the whole componentDv (i.e. all the arcs ofDv

are added intoHk, this wayx is not inside a component anymore), but this approach is not making
the reconstruction very efficient as it does not benefits really from the aggregation.

The second idea we present here is to minimally split the componentDv, i.e. find a SP-
decompositionEv of Dv sox is not inside a SP-component anymore with|Ev| minimal, in order
to preserve aggregated arcs as long as possible during the reconstruction process. In this case,Dv

will be replaced inHk by Ev where each component ofEv will be represented by an aggregated
arc.

Algorithm 5 Reconstruction method, with the minimal splitting approach.
find SP-decomposition D = {Du}u=1...k;
let H be an empty graph;

for all SP-component Du ∈ D do
find minimum cost tension for Du using aggregation;
let u = (x; y) be the aggregated arc of Du;

while ∃Dv with Dv < Du and (x ∈ Dv or y ∈ Dv) do
find minimal splitting of Dv into Ev;
find tension for each arc of Dv using C∗

v; [1]
find flow for each arc of Dv; [2]

for all component Dw ∈ Ev do
find minimum cost tension for Dw using aggregation;
find main tension θw of Dw in H (using values from [1]);
find main flow ϕw of Dw in H (using values from [2]);
add arc w aggregating Dw with tension θw and ϕw in H;

end for;
end while;

add arc u in H;
find minimum cost tension for H using out-of-kilter;

end for;

for all aggregated arc u ∈ H do
split Du (add each arc and node of Du in H);
find tension for each arc of Du using C∗

u;
end for;

Algorithm 5 proposes modifications for the reconstruction Algorithm 1 of Section 2, in order
to consider a minimal splitting of the SP-components instead of their whole splitting. When a
component is split, the flow and tension of all its arcs are still computed. And for each SP-
componentDw of the splitting, its cost functionC∗w is determined using the aggregation method.
To insert the arcw aggregatingDw into the graphHk, w must have a valid flow and tension. They
are computed directly from the values (worked out from[1] and[2] in Algorithm 5) of the single
arcs in the componentDw.
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4.2 Minimal Splitting

This section presents a technique to perform the minimal splitting of a SP-component. First, we
can notice thatx will always originate from a series composition, simply because parallel compo-
sitions never create a new node. (1) The first step will be to identify in the SP-treeTv associated
with the SP-componentDv which series composition generatesx. (2) Then the two subgraphs
of this series composition are extracted fromDv, they form thus the two first SP-components of
Ev. However by the way they have been extracted, their source and target nodes (exceptx) stay
insideDv, so the problem has been moved fromx to two other nodesz1 andz2. (3) The last step
consists thus in going up the SP-tree until the root, and split some of the series compositions so
that z1 andz2 (and later the nodes these new splittings will generate) so they are not inside any
SP-component.

4.2.1 Phase 1: Splitting Pivot Search

The series composition that generatesx must be identified. The SP-tree is explored from its root to
its leaves, taking care of memorizing (using for instance a stack) the path that leads us to an arca
that hasx as source or target. Once this arc is identified, we follow thepath back to the root of the
SP-tree, but during this trip we will try to find which series composition generatesx. Supposingx
insideDv, the idea of Algorithm 6 is that ifx is the source ofa, thena is part of the right member
of a series composition. On the opposite, ifx is the target ofa, thena is part of the left member
of a series composition. Algorithm 6 results withp as thepivot of the splitting, i.e. the SP-tree of
the series composition that generatesx.

Algorithm 6 Splitting pivot search.

push Tv and 0 in S;

f ← 0;

while S 6= ∅ and f = 0 do

let t = (r; tl; tr) and i be the top of S;

i ← i + 1;

if i = 1 then [ First visit of t. ]

if r is an arc (y; z) then

if x = y then f ← 1;

if x = z then f ← 2;

pop t and i from S;

else push tl and 0 in S;

else if i = 2 then [ Left subtree oft visited. ]

push tr and 0 in S;

else [ Right subtree oft visited. ]

pop t and i from S;

end if;

end while;

p ← ∅;

if f = 0 then stop;

while S 6= ∅ and p 6= ∅ do

let t = (r; tl; tr) and i be the top of S;

if r = + then

let t′ = (r′; t′
l
; t′r) be the parent of t;

if f = 1 and t = t′r then p = t′;

if f = 2 and t = t′
l
then p = t′;

end if;

if p = ∅ then pop t and i from S;

end while;

if p 6= ∅ then

x is inside Dv;

p is the pivot of the splitting;

end if;

4.2.2 Phase 2: First Splitting

Now the pivot is identified, the SP-treeTv has to be split. We can extractpl andpr, the subtrees
of p, from Tv. If the parent ofp is a parallel composition or ifp is the root ofTv, Tv remains a
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SP-component after the extraction. But if the parent ofp is a series composition,Tv will not be a
SP-tree anymore.

Algorithm 7 First splitting.
while S 6= ∅ do
pop t = (r; tl; tr) and i from the top of S;
let t′ = (r′, t′

l
; t′r) be the parent of t;

if r = + then
if t′ = ∅ then apply PS1(t) (with a fictive parent for t);
else if r′ = // then
apply PS1(t);
stop;

else if t = t′
l
then apply RR1(t);

else apply LR1(t);
end if;

end while;

The idea of the second phase is to go on following the path up tothe root ofTv, while neither
a parallel composition, nor the root ofT is found. Once it happens, the last series compositiont
encountered is split by thePS1 ("Parallel Splitting I") operation illustrated by Figure 9, its two
subtreesb andc being the first components ofEv.

//

a

b c

+ t

pivot

a

b c

Ev

//

a

b c

+ t

pivot

or

PS1(t)

Figure 9:Parallel Splitting I.

But t is not necessary the pivot of the splitting forx, hence on the path up to the root ofTv, for
each series composition, rotations must be performed to maintain the pivot as the current series
composition. Algorithm 7 uses, depending on the situation,the operationLR1 ("Left Rotation 1",
cf. Figure 10) or the operationRR1 ("Right Rotation I", cf. Figure 11) to perform the rotations.

+

a

b c

+ t

pivot

+

c

a b

+

pivot

LR1(t)

Figure 10:Left Rotation I.

+

a

b c

+ t

pivot

+

b

c a

+

pivot

RR1(t)

Figure 11:Right Rotation I.
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4.2.3 Phase 3: Second Splitting

During PS1(t), two subtreesb andc are extracted fromTv. x is no more insideTv, because it
is target ofb and source ofc. If t is the root of the SP-treeTv, then the splitting is over, but on
the other cases, the source nodez1 of b and the target nodez2 of c are inside the remains ofTv.
To get them out, the parallel peera of the subtreeb + c (cf. Figure 9) has to be extracted too,
depending on the situation, with the operationLS ("Left Splitting", cf. Figure 12) or the operation
RS ("Right Splitting", cf. Figure 13).

+

ba

S

b

pivot

LS(t)

t

a

Ev

come from here

Figure 12:Left Splitting.

+

ab

S

b

pivot

RS(t)

t a

Ev

come from here

Figure 13:Right Splitting.

Now there is a "hole" in the SP-tree. But this hole is not different of the one made ifx were
removed in phase (2). So like we maintained the current series compositiont as pivot ofx along
the path back to the root ofTv in phase (2), Algorithm 8 maintains the current series composition
t as pivot of the "hole". Depending on the situation, operation LR2 ("Left Rotation II", cf. Figure
14) or operationRR2 ("Right Rotation II", cf. Figure 15) are used to perform rotations in the
SP-treeTv.

+

a

b c

S t

pivot

S

c

a b

+

pivot

LR2(t)

S

ca

i f b i s empty

or

Figure 14:Left Rotation II.

+

a

b c

S t

pivot

S

b

c a

+

pivot

RR2(t)

S

ab

i f c i s empty

or

Figure 15:Right Rotation II.
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As in phase (1), once a parallel composition is found, the subtreesb andc of the last series
compositiont encountered on the path back up to the root ofTv are extracted fromTv to become
SP-components ofEv, using the operationPS2 ("Parallel Splitting II", cf. Figure 16). Once this
splitting achieved, the "hole" problem remains, hence the process of phase (3), cf. Algorithm 8,
loops until the root ofTv is reached. The operationsLR2, RR2 andPS2 of phase (3) are quite
different from the operationsLR1, RR1 andPS1 of phase (2), only because one of the subtrees
(b or c) of the current series compositiont can be empty (due to the splitting fromLS or RS at
the beginning of the phase).

//

a

b c

S t

pivot

a

b c

Ev

//

a

b c

S t

pivot

or

PS2(t)

(i f not empty)

Figure 16:Parallel Splitting II.

The whole splitting process, regrouping the three phases, only needsO(m) operations, the
worst it can do is to visit all the nodes of the SP-treeTv, which has2m − 1 nodes (m − 1 for the
SP-relations andm for the arcs). All the operationsLR1, LR2... needO(1) operations.

Algorithm 8 Second splitting.
s ← false;

while S 6= ∅ do
pop t = (r; tl; tr) and i from the top of S;
let t′ = (r′, t′

l
; t′r) be the parent of t;

if r = + then
if t′ = ∅ then apply PS2(t) (with a fictive parent for t);
else if r′ = // then
apply PS2(t);
s ← false;

else if not s then
if i = 1 then apply LS(t); else apply LR(t);
s ← true;

else if t = t′
l
then apply RR2(t);

else apply LR2(t);
end if;

end while;

4.3 Complexity

Consider now the complexity of the whole splitting phase. Let k = |D| andpu be the number
of arcs of a SP-componentDu. The splitting of a SP-componentDv into a SP-decompositionEv

requiresO(pv) operations for the splitting itself,O(p3
v) operations for the aggregations that follow

(because, for each componentDw of Ev, O(p3
w) operations are needed, butpv =

∑

Dw∈Ev
pw, so

p3
v >

∑

Dw∈Ev
p3

w), andO(pv) operations to find the flow and the tension of each SP-component
of Ev. To conclude, the complexity of a splitting isO(p3

v) operations, and it is clear that no more
thanmin{n−2; 2(k−1)} splittings will be needed (no more than one per node and no more than2
per SP-component ofD). Thus, the whole splitting phase requiresO(min{n; 2k}m3) operations.
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5 Numerical Results

Tables 1 and 2 present a practical comparison of methods, which is always difficult because of all
kinds of biases. But the goal here is to get an idea of how the methods behave on QSP-graphs.
Table 1 shows results when the size of the graphs varies and their SP-perturbation is set to4 %.
Table 2 points the performances of the methods for various SP-perturbation, the graph size being
set ton = 500 andm = 3000. Results are expressed in seconds on a Celeron 500 MHz processor
under a Linux operating system. We used GNU C++ 2.95 compilerand its object-oriented features
to implement the methods. The results are means of series of 10 tests on randomly generated
graphs. BothA andB are fixed to1000. The cardinality of the SP-decomposition, for both the
reduction and the path approaches, is also presented.

Nodes Arcs Kilter Dual Reconstruction (Total Split) Reconstruction (Min Split) Components
Cost-Scaling Reduction Path Reduction Path Reduction Path

50 100 0.01 0.02 0.01 0.01 0.02 0.02 5 6
50 200 0.02 0.03 0.03 0.03 0.05 0.05 9 10
50 300 0.03 0.04 0.04 0.04 0.08 0.08 13 16
50 400 0.04 0.07 0.06 0.06 0.12 0.10 16 19
50 500 0.06 0.08 0.07 0.08 0.16 0.13 21 23
100 200 0.03 0.06 0.03 0.03 0.05 0.05 12 11
100 400 0.07 0.09 0.07 0.07 0.13 0.12 20 21
100 600 0.10 0.15 0.12 0.12 0.20 0.18 29 31
100 800 0.16 0.18 0.20 0.18 0.30 0.24 37 39
100 1000 0.23 0.26 0.25 0.24 0.41 0.34 43 48
500 1000 0.67 0.84 0.71 0.70 0.47 0.44 55 61
500 2000 1.48 1.57 2.11 1.97 1.21 0.95 107 116
500 3000 2.31 2.20 3.43 3.35 1.90 1.38 153 170
500 4000 3.21 3.24 4.58 4.63 2.65 1.97 198 220
500 5000 4.21 3.84 5.93 5.88 3.36 2.25 245 278
1000 2000 2.34 2.65 3.35 3.21 1.41 1.22 110 124
1000 4000 5.27 4.54 7.83 7.70 3.46 2.70 212 227
1000 6000 8.17 7.16 12.47 12.78 5.39 3.95 310 344
1000 8000 11.43 8.70 19.27 19.03 8.03 5.62 411 450

Table 1:Numerical results, graph size influence.

SP-Perturbation Kilter Dual Reconstruction (Total Split) Reconstruction (Min Split) Components
(%) Cost-Scaling Reduction Path Reduction Path Reduction Path

2 1,85 2,28 1,80 1,87 1,37 1,13 79 85
3 2,02 2,30 2,62 2,55 1,68 1,27 117 129
4 2,21 2,45 3,20 3,07 1,85 1,45 154 166
5 2,43 2,34 3,82 3,70 2,04 1,55 196 211
6 2,63 2,27 4,50 4,49 2,35 1,78 225 242
7 2,80 2,11 5,38 5,10 2,66 2,03 264 279
8 2,83 2,12 5,45 5,48 2,80 2,26 299 321
9 3,07 2,11 6,02 5,68 3,04 2,42 333 360
10 3,27 2,12 6,82 6,42 3,42 2,78 369 393
11 3,31 2,18 6,86 6,85 3,49 2,97 401 423
12 3,49 2,14 7,65 7,39 4,05 3,40 435 466
13 3,52 2,16 7,84 7,60 4,07 3,59 467 499
14 3,88 2,11 8,67 8,34 4,61 3,98 495 525
15 3,86 2,06 8,94 8,63 4,81 4,41 535 568
20 4,47 2,02 11,70 11,38 6,69 6,43 690 719
30 5,95 1,91 17,14 16,06 11,27 10,72 1000 1036
40 6,41 1,89 20,39 19,16 14,92 14,41 1305 1333

Table 2:Numerical results, SP-perturbation influence.

The reconstruction method appears to be more efficient when the path approach is used to
decompose. In fact, the reduction technique provides a morecompact SP-decomposition that
reveals less adapted for the reconstruction. Moreover, theminimal splitting appears to be a key to
the good performances of the reconstruction algorithm. To conclude, the efficiency of the various
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methods depends on both the SP-perturbation and the size of the graph. The reconstruction method
is well suited for a SP-perturbation below8 % and for large QSP-graphs, whereas the dual cost-
scaling method is better suited for non-specific graphs or small QSP-graphs.

Conclusion

This article proposes a new algorithm to solve CPLCT on QSP-graphs that proves to be com-
petitive with existing methods. It also describes a new way of recognizing a SP-graph and pro-
poses two heuristic approaches to decompose a graph into SP-subgraphs. To find a "best" SP-
decomposition of a graph needs to be formulated, e.g. to minimize the number of SP-components,
and the complexity of the problem discussed.
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