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Abstract

This article proposes an extension, combined with the &lther technique, of the aggregation
method (that solves the minimum convex piecewise linear osion problem, or CPLCT, on
series-parallel graphs) to solve CPLCT on quasi serieaiiphgraphs. To make this algorithm
efficient, the key point is to find a "good" way of decomposihg graph into series-parallel

subgraphs. Decomposition techniques, based on the rdéicogoif series-parallel graphs, are
thoroughly discussed.

Keywords: minimum cost tension, series-parallel graph, graph deocsitipn, series-parallel
recognition.

Résumé

Cet article propose une extension, combinée avec la taohrig mise-a-conformité, de la mé-
thode d’'agrégation (qui résout le probleme de tension minind colts convexes linéaires par
morceaux, ou CPLCT, sur des graphes série-paralléles) afiasdudre CPLCT sur des graphes
quasi série-paralléles. Pour rendre cet algorithme e#fidagoint clé est de trouver une "bonne"
décomposition du graphe en sous-graphes série-paral@Bdsgechniques de décomposition, ba-
sées sur la reconnaissance de graphes série-parall@ledjssmitées en détails.

Mots clés :tension de co(t minimum, graphe série-paralléle, décoitigosie graphe, reconnais-
sance de graphe série-paralléle.
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Abstract

This article proposes an extension, combined with the &kiter technique, of the ag-
gregation method (that solves the minimum convex piecelingar cost tension problem,
or CPLCT, on series-parallel graphs) to solve CPLCT on gseses-parallel graphs. To
make this algorithm efficient, the key point is to find a "goegdly of decomposing the graph
into series-parallel subgraphs. Decomposition techiig@sed on the recognition of series-
parallel graphs, are thoroughly discussed.

Keywords: minimum cost tension, series-parallel graph, graph deositipn, series-
parallel recognition.

Introduction

[4] proposed araggregationmethod to solve theninimum convex piecewise linear cost tension
problem (orCPLCT) onseries-parallelgraphs (oISP-graphi It was shown to be competitive on
this class of graphs with the bedial cost-scalingalgorithms (see [1]). This article proposes to
combine the aggregation method with tgt-of-kilter approach (cf. [10]) to provide an efficient
method to solve CPLCT on a slightly more general family ofoyscalledquasi series-parallel
Letr : X — R be a function that assigns a potential to each node of théan@rap (X;U).
Letm = |U| andn = |X|. The tensiorg,, of an arcu = (x;y) is the difference of potentials
¢, = m, — m, and is constrained t6, € [a,;b,] C R. CPLCT can be modeled as a linear
program:
minimize > ¢, (6,)

uelU

(P) with 7y — 7 = 04y, V(759) €U

ay <0y <by, VuelU

wherec, are convex piecewise linear functions. In this articleytivdl be defined as follows:

Ci(ou —0y),if 0, < oy

culfh) = { ? (O — 04) ,if 0, > 0y

u

This problem is formally related to a minimum cost flow probldy duality (cf. [1]). It
arises for instance in the synchronization of hypermed@udmnts where each documenhas
an elastic duratiofi,, that can be adjusted around a referential valyésee [6]).

Section 1 proposes an overview of the SP-graphs and thegagignre method. It also de-
finesquasi SP-graphs, that are not perfectly series-parallel. Se@ipresents an extension of
the aggregation technique, calleztonstruction for quasi SP-graphs. To be efficient, this new
algorithm rely on a "good" decomposition of the graph intessiBgraphs. This is the key point of
the procedure discussed in Sections 3 and 4. Section 5 pseg@nparative numerical results.

1 Aggregation Method

1.1 Series-Parallel Graphs

A common definition of series-parallel graphs is based orcarséve construction of the graphs
(e.q. [8], [9], [13]) that is very intuitive and close to theawsynchronization constraints are built
in a hypermedia document. A graphsisries-parallel also calledSP-graphif it is obtained from
a graph with only two nodes linked by an arc, applying resetgithe two following operations:

Research Report LIMOS/RR03-19
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.



e Theseries compositigrapplied upon an are = (z;y), creates a new nodeand replaces
u by two arcsu; = (x;z) andus = (z;y) (cf. Figure 1a). We caleriesthe relation that
bindsu; anduy, and denote ity + wuo.

e Theparallel compositionapplied upon an are = (z;y), duplicatesu by creating a new
onev = (x;y) (cf. Figure 1b). We calparallel the relation that binds andv and denote it

u//v.

u
u - u 1 u 2 u - @
@ .
(o))

Figure 1:Series and parallel compositions.

The series and parallel relations are gathered under timeSrrelations During the construc-
tion process, a SP-relation that binds two arcs can becoraiation between two series-parallel
subgraphs. Hence, the tesimgle SP-relatioris introduced to identify a SP-relation between two
arcs. From the recursive definition of a SP-graph, it is easttify that a SP-graph has always at
least a single SP-relation (the SP-relation created fraa$t composition).

The SP-relations are binary operations, so we can repraseRtgraph by a binary tree called
decomposition binary treer SP-tree(cf. [13], [7]). Figure 2 shows a SP-tree of a SP-graph.
Section 3 explains how to find such a tree in linear time.

Figure 2:Example of SP-tree.

Numerical results (cf. [4]) showed that linear programmamgl the out-of-kilter method take
advantage of the particular structure of the SP-graphs ahdve really better on this class of
graphs. However the dual cost-scaling approach does ndt that well on these instances,
whereas it proves to be the most efficient for non-specifiplgga Moreover, the aggregation
method presents the best performance on SP-graphs.

1.2 Aggregation Method

The aggregationmethod, that allows to solve CPLCT only on SP-graphs, has meduced in
[4]. The algorithm works on a SP-trée of the SP-grapiy and is recursive: considering a SP-
relation inT’, it assumes that the optimal tensions of the two subgrapplieichin the relation are
known, and from them, it is possible to quickly build the opdil tension of the whole SP-relation.
Hence, starting from the leaves @f the optimal tension of each SP-relation is built to finally
reach the root of the treE.

From the definition of a SP-graph, it is obvious that a SP{ytags only one source node and
only one target node. Hence, thmin tensiorg of a SP-graph is defined as the tension between its
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sources and target, i.e. § = m, —m,. To get an efficient algorithm, thminimum cost functiof’
of a SP-graplG must be defined. This function represents the cost of thenaptension where
the main tension is forced to a given value:

Ca(z) = min{z cu(By) |0 €Tg, 0 =x}

uelU

As each functiorr,, is convex, the minimum cost function is indeed convex. Letassider
two series-parallel subgraplis andGy, and suppose that their minimum cost functidns, and
Cg, are known. The minimum cost functidiy;, ¢, of the SP-relatiorG; + G is:

CG1+G2 (w) = min CG1 (1‘1) + CGz (1‘2)

T=x1+x2

Thus,Cg, 1+, is the inf-convolutionC, O Cg, . Itis well known that this operation maintains
convexity (e.g. [11]). The minimum cost functi@tt;, , ¢, of the SP-relatior, //Gs is:

CG1//G2 (z) = Cgy (2) + Ca, (x)

Thus,Cq, //c, is simply the sunCe, + Cg,, which is convex ifCg, andCg, are convex.
From this assessment, a simple recursive algorithm candmoged to build the minimum cost
functionC¢ of a SP-graplz. As explained in [4], it is preferred to deal with theentered mini-
mum cost functio®?, of G that makes the method both more efficient and easier to uadelrs

Cé(x) = Calz +1t) — Ca(t)

This wayC¢, represents the minimum additional cost to increase or deerthe main tension
0 from a reference tensian If t = 67, the minimum cost tension of a gragh the cost function

Cé = ng equals) at the optimal tension.

Moreover we are interested in finding the minimum cost tensibG, thus the aggregation
method provides the minimum cost functiofi, with additional information on each of its pieces
(cf. [4] for details). It allows for instance to reach optiligaa new main tensiort’ from the
reference tensiofy, in linear time (precisely)(m) operations). This facility is widely used in the
further reconstruction approach. The whole aggregatiothageperforms irO(m?) operations.

1.3 Quasi SP-Graphs

A quasi SP-graplor QSP-graphG = (X; U) is such that the removal of a minimal sub&étC U

of arcs fromG makes the remaining graghl = (X; U \ U’) series-parallel. The ratid’|/|U]| is
called theSP-perturbatiorof the graph(z. This value indicates how many arcs@fare disturbing
the series-parallel property ¢f. From this definition, any connected graph is a QSP-graph, bu
we prefer to use this term for graphs with a small SP-pertighdin applications issued from the
hypermedia field]10 % seems a satisfying threshold).

2 Reconstruction Approach

As the aggregation method can not be used "as it is" on QSfhgrand the dual cost scaling
approach proves to be less efficient than the out-of-killeBB-graphs, we propose in this section

a method calledeconstructionto solve CPLCT on QSP-graphs. This new approach combines the
aggregation and the out-of-kilter techniques based 8R-@lecompositionf the graph.
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2.1 Decomposition Phase

We callseries-parallel componeior SP-componerdf a graphG a SP-subgraph @. A partition

P of the arcs of defines aseries-parallel decompositioor SP-decompositioof G, where each
set of arcs inP induces a SP-subgraph@f A SP-decomposition aff is thus a set of arc-disjoint
SP-components, whose uniords Section 3 discusses ways to obtain a "good" SP-decompositi
that fits the reconstruction process.

The reconstruction method starts with the search of a SBrdgeasition D of the graphG.
Then CPLCT is solved on each SP-componenbafkith the aggregation method. Thus, for each
componentD,, € D, its minimum cost functior;, and its optimal tensiof are known, saD,,
can be seen as a single aggregated.avith a convex piecewise linear cost functiop= C;; and
atensiord,, = 6.

2.2 Reconstruction Phase

The method attempts next to put the SP-components backhtrgeén iterative process consists
in adding one by one the aggregated arcs into a new graphldiaebuhe original graphG back.
Starting with H° = (X%, U°) = (0;0), at each step an aggregated are= (z;y) is added,
ie. H* = (X1 U {x;y}; U1 U {u}). The newly added are is the only one that may be
out-of-kilter.

We remind that the kilter curve is defined from the tengigand the flowy,, of the arcu, and
roughly thaty,, must equat,’(6,,) for the arc to be in-kilter. If all the arcs df* are in-kilter, its
tensiond is optimal. The idea of the out-of-kilter approach is to bril the arcs on their kilter
curve (e.g. [2]).

The newly added are may be out-of-kilter because even if its tension is optirtsiflow must
be set to 0 in order to keep the flow conservation constramts®whole grapt*. Fortunately,
as this arc is the only one out-of-kilter, repetitive sediota cycle or a cocycle to modify respec-
tively either the flow or the tension of the anccan be performed i®((A + B)m) operations,
where A is the maximum tension an@ the maximum flow (i.e. the maximum derivative of its
cost function) for the are.. Once the arc is in-kilter, the whole tension & is optimal and
another aggregated arccan be added.

2.3 Tension Adjustment

But adding an arc into the graph is not that obvious. Conglieaggregated arc = (z;y), the
optimal tensiord,, of v may not be equal to the difference of potentiaJs— 7. The tension of
the arcu has to be optimally adjusted to be equalrtp— 7,. That can be achieved using the
minimum cost functiorC; of the arcu to adapt optimally the main tension of the SP-component
aggregated behind. As said in Section 1, it can be performedim) operations (cf. [4]).

2.4 SP-Component Splitting

For the need of the reconstruction, we assume a partial andehe components of the SP-
decompositiorD, such that if thesourcenode (i.e. without any predecessor) and/ortérgetnode
(i.e. without any successor) of a SP-compon@ptbelong to componenb,,, thenD,, < D,,. De-
composition methods presented in Section 3 prove that suohdzr exists for any graph. During
the reconstruction phase, the SP-components are addedifadl this partial order.

Another problem arises when adding an aggregated atq(z; y) into the graphi7*: maybe
the source node and/or the target nodgof « are not present iff ¥, because simply hidden in one
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of the aggregated aresof the graphH*. Hence we need to split the SP-component behind such
an arcv to make the node visible. The easiest way is to bring backalitcs of the SP-component
D, into the graphi*, (i.e. H* = H*=1 U D, \ {v}).

The drawback of this technique is that the biggest SP-coemtomdded behind a single ag-
gregated arc at the first step, is certainly split at the sestep, because nodes will obviously be
needed for the secondly added arc. This approach reveatsdatiemely inefficient, as most of
the arcs will be brought back in the graph at the second stp ©hus, we need a smarter way
than splitting totally a SP-component. This is the purpdsBextion 4 that proposes a technique
to split a SP-component into several pieces, reducing theibers to the minimum necessary.

2.5 Conservation of the In-Kilter Property

After the splitting of an aggregated anc= (z;y), the resulting arcs must be in-kilter to keep
the whole graph* optimal. Thus, knowing their tension, it is straightforaido find an interval
in which their flow must be: indeed, with our assumptions, kifter curve is a step function (cf.
Figure 3).

eLI
A
R >
R >
S O °
YV VY v > O
u

Figure 3:Kilter flow building.

For each are of the SP-componeri®,,, an intervale,; f,] can thus be defined. Let suppose an
arcw from the source node to the target nodg of the SP-component with a capacity,,; ¢.],
where g, is the flow ofu in the whole graphH*. Find a flow, for each arcv of the SP-
componentD,, turns to find a feasible flow in the SP-component (with the added loop arc
w). We propose to solve it i)(m?) operations with a technique using the SP-tree of the SP-
component like the aggregation (cf. [3]). However, as tliage is not critical in terms of time
consumption, any well-known method is suitable to solve tlow problem.

2.6 Complexity

Algorithm 1 summarizes the whole process of the reconstughethod. Letc = |D| andp,

be the number of arcs of a SP-componé&nt The reconstruction algorithm needs, for each SP-
component ofD, eventually a splitting (with the tension adjustment anel ¢onservation of the
in-kilter property), an aggregatio®)(p? ) operations) and an out-of-kilter iteratio® (m(A+ B))
operations). The whole splitting phase n&2@nin{n; 2k}m?) operations (cf. Section 4). Thus,
the reconstruction method requi@$min{n; 2k}m3 + km(A + B)) operations.
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Algorithm 1 Reconstruction method.
find SP-deconposition D = {Dy}Yu—1. &
let H be an enpty graph;

for all SP-conponent D, € D do
find m nimum cost tension for D, using aggregation;
let uw=(x;y) be the aggregated arc of Dy;

while 3D, with D, <D, and (z€ D, or ye€ D,) do
split D, (add each arc and node of D, in H);
find tension for each arc of D, using Cj;

find flow for each arc of D,;

end while;

add arc v in H;
find mnimumcost tension for H using out-of-kilter;
end for;

for all aggregated arc we H do

split D, (add each arc and node of D, in H);
find tension for each arc of D, using C3;
end for;

3 Series-Parallel Decomposition

The recognition of a SP-graph is known for long as an easyl@mothat can be solved in linear

time (cf. [13]). The various algorithms proposed by manyhaté can immediately be adapted
and without altering their complexity to build the SP-tragidg the recognition phase. These
methods being very efficient, our discussion will not be agirthkomplexity, but on the way they

recognize a SP-graph, our goal being to find for any graphtibet” SP-decomposition suitable
for the reconstruction process.

The characterization of such a decomposition is not thatoolsv If it is too compact, i.e.
with few SP-components, that will tend to produce a lot oftpys during the reconstruction
(like the phenomenon explained for the first SP-compone&teiction 2). At the opposite if the
decomposition is scattered, i.e. with many SP-componéimsaggregation phase will become
useless and the reconstruction will tend to a single owiltdr algorithm.

We choose to study here two recognition methods,réiieictionand thepath approaches,
and propose heuristic extensions to find a "good" SP-decsitigrn To present these algorithms,
a recursive notation of the SP-trees is introduced. A tréb wiroota, a left subtreel; and a
right subtreeT,. is represented bya;7;;T,). The reverse operations of the series and parallel
compositions, calle&P-reductionsare defined as follows:

e Theseriesreduction, noted; !, replaces the SP-relatidp; =) + (z; z) by an ard(y; z).

e Theparallel reduction, noted®; !, replaces the SP-relatiary /v by the arcu.

3.1 Reduction Approach, Recognition

This recognition approach is widespread because venyiirduiAs explained in Section 1, a SP-

graph has at least one single SP-relation. The idea is to fiadapply the associated SP-reduction
and repeat until the graph is reduced to a single arc. If tisame more single SP-relation and the
graph is not a single arc, that means the graph is not seaiediqd.

This method has been proposed first in [13]. It appears th§tRijnwith some improvement:
all the multiple arcs are first removed (no single parall&tien exist anymore), then series and
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parallel-and-seriegfcomposition of a parallel relation with a series relaticeglations are detected
and reduced. The detection is easier (only the nodes ardeatleand the reduction is more
efficient (because with the parallel-and-series relatian,arcs and one node are removed in one
step). However, this improvement does not change fundaihettie way the algorithm performs.
A similar variant is proposed in [5] which proposes 18 rethrd, most of them working only on
non-directed graphs. These improvements are difficultd® itato account with our goal of finding

a SP-decomposition, because our graphs have non-spegifituses, so the occurrences of these
special reductions dedicated to SP-graphs will be rare.

3.2 Reduction Approach, Decomposition

A generic version of the method is presented in Algorithm ©2buiilds at the same time a SP-
decomposition of the graph where each SP-component isseed by its SP-tree. For this
purpose, a functionis defined that associates a SP-trgavith each ara. of the graphGz. At the
beginning, each arc possesses a SP-tree with a single reitds the arc itself. We sketch below
what happens during a SP-reduction.

e The series reductios; ! removes the two arcs = (y;z) andv = (z;2) of the relation
u + v, and creates an atc = (y; z). The SP-tree ofv is then(+;¢,;t,), the old¢,, andt,
are removed.

e The parallel reductio®; ' removes the arc of the relation://v. The SP-tree ofi becomes
(//;tu; ty), the oldt, andt, are removed.

Algorithm 2 SP-decomposition, with the reduction approach.

for all arc weU do t, < (u;0;0);

while |Ul#1 do
if relation (y;x)+ (z;z) found then apply SP-reduction Syt
else if relation u//v found then apply SP-reduction P;l;
el se
find v with the biggest score and the small est SP-tree;
remove u from G,
end if;

end whil e;

all the remaining trees are the conmponents of a SP-deconposition;

To recognize a SP-graph, the method reduces successivdlysiegle SP-relation until there
is either only one arc in the graph or no more single SP-melat reduce. To find a whole SP-
decomposition of any graph, the algorithm repeats untildtks, so an arc must be removed to
reveal SP-relations and allow to continue the reductionhef\suppressing an arc, no parallel
relation can appear, only series relations can. So thdiigudea, whenever a blocking occur, is
to remove the arc that reveals the most series relationsf aode exist the one that will contribute
in revealing the most series relations. We propose a heuaigproach that assigns two scores to
each node:: one used whem is source of an arcs() and another used whenis the target of an
arc (). The score of an are = (z;y) is s} + s,/, and is calculated as follows:

M, ifdf =1
sh = 0, if df >1andd, =0
1/(df —1)+1/d;, if & >1andd, >0
—M,ifd; =1
Sy = 0, ifd; >1andd} =0

1/(d; —1)+1/d}, if d; >1andd; >0 Figure 4:Example of scoring.
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Here d! represents the number of arcs outgoingndd, the number of arcs incoming.
Intuitively, a nodezr with d = 2 andd, = 1 is the best candidate to be the source of the arc to
remove because it reveals a series relation, its score is€sdme way, an agcwith d, = 2 and
d; = 1isthe best candidate to be the target of the arc to removebd$tecandidate arc has a score
of 4. This score tends to decrease first for the extremiti¢seoéircs having important numbers of
incoming and outgoing arcs, because that means numerosispmessions are needed before they
can become series relations. Removals that alter the ctivibeof the graph are penalized with
a negative score, hence if a node would have no incoming gomg arc after the suppression,
its score is set te- M, with M such that even the best score for the other extremity wilhmake
the score of the arc positive, afly > 2 is suitable. Figure 4 shows an example of scoring. In the
case of scores equality, the arc that hides the smalleso8ipanent is removed, with the hope
of revealing finally the biggest SP-component. If we consiute specific data structure for the
graph, the complexity of Algorithm 2 i©(m?) operations, at each step the selection of the arc to
be removed require®(m) operations (to assign a score to each remaining arc of tipdagra

3.3 Path Approach, Recognition

The paths of a SP-graph are organized in a very specific waj9]/nhis is formalized by the
concept ofear decomposition We propose here a quite different approach based on twe kind
of nodes: théranching nodegwith more than one outgoing arc) and thynchronization nodes
(with more than one incoming arc).

In a SP-graph, such nodes represent respectively the liegiamnd the end of parallel relations.
We call branchingtwo arcs outgoing a branching node (i.e. the beginning ofralighrelation).
In the same way, aynchronizatiorrepresents two arcs incoming a synchronization node (iee. t
end of a parallel relation). By mean of clarity, we sometindEntify a branching (respectively
synchronization) by its branching (respectively synciration) node.

The approach proposed here is based on a search througlagheigthe topological order of
the nodes (i.e. a node is visited only after all its predems3sLetS), be the set of nodes marked
during the process until iteratiok. A branching will be saicclosedat iterationk if there is a
synchronization nodg € S;, such that two arc-distinct directed patRsand P, betweenz andy
exist and contain each one of the two arcs of the branchimgtwib arcs incoming that belong
each to one of the paths form a synchronizatidhat closesz. A closed branching is associated
with the first synchronization encountered during the detrat closes it. The paths that allow the
closure of the branching (in our definitia, and.) are called thelosurepaths of the branching.

o e
Tl

Figure 5:Example of branchings.

To illustrate these definitions, consider Figure 5. The gragles represent visited nodes at
iterationk. A and B are branching nodes¢; and H are synchronization nodeéa; b) is a closed
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branching, the associated synchronizatiorfeigy). On the contrary, branchingr;d) is open.
Closure paths for branchin@; b) are(a;d; g) and(b; e). The graph of the example is not series-
parallel. Intuitively, the problem comes from the open lotdng (c; d). Let us prove the following
proposition.

Proposition 1 A graph is series-parallel if and only if at each iterationtbe topological search
through the graph, for each closed branchinghere are two closure paths between the branching
x and its associated synchronizatigrthat do not possess any open branching.

Proof: (=) At a given iteration, suppose there is an open branchimp one of the closure
paths of a closed branchingassociated with its synchronizatign That gives a graph with the
general aspect presented by Figure 6a. Attempting a reduetith Algorithm 2 (with no arc
suppression), the best that can be found is the graph dbestiby Figure 6b. The reduction can
thus not be terminated without any arc suppression, so Hyhgs not series-parallel.

(«=) Suppose now that no such open branching exist, the reqag®itgorithm 3 presented further
proves that it is possible to find (with no arc suppressioa)3R-tree associated with the graph, so
it is series-parallel.

(a) Open branching (b) Graphafter SP-reduction

Figure 6:Example of open branching on closure path.

To verify the proposition (in order to determine if a graphs&ies-parallel), we propose a
marking process that allows to identify, arriving on a sywclization, the branchings that are
closing and if a branching is open in one of the closure pdies A, be the signature of an arc
u, A, = x meanse is the last (according to the topological order of the nodgmn branching
between the source node of the graph and theiarcet A, be the signature of a node it is
a coupleA, = (I,;d,). If the node is not a branching node thép = 0, elsed, indicates the
number of branchings located at nad¢hat are openl,. indicates the level of branching, e.g. if
I = 2 then there are two open branchings (includign the paths between the source node of
the graph and the node

/@\@\ /O\@\ |

()] @y

(a) Iterationk (b) Iterationk+1

Figure 7:Example of signature change.

The signature of an arc or a node can change while searchingréph in the topological
order of the nodes. When two argsandv with the same signature (at iterationk) meet at a
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synchronization nodg (at iterationk+1), they form a synchronization and closes thus a branching
of nodex (cf. Figure 7a). The signature of their branching is then ifiedt d, is decreased of

1. If d, equals 0, that means all the branchings of nodee closed. The signature of the arcs
u andv must change, it becomes the open branching befoiiee. the signature of one of the
incoming arcs of branching (cf. Figure 7b). Ideally, the signature of all the arcs ohsityrex
must change, but for the needs of the algorithm (that seatttieegraph in the topological order of
the nodes and thus never come back on already used arcs)dtiication is not necessary.

Algorithm 3 SP-decomposition, with the path approach.
for all arc weU do t, < (u;0;0);

while |[Ul#1 do
choose z in X such that all predecessors of z are visited yet;

if d; =0 then Ay « 0;

el se

if dz >1 then closeBranchings(z, A, t);
let u=(bjx) €U,

if df =1 then apply SP-reduction Sz
else Ay «— Ap+1;

end if;

end while;

Algorithm 3 proposes to search the graph following the togilal order of the nodes, marking
progressively the nodes and the arcs with the signaturét is supposed that the graph has only
one source and at least one arc, else it is sure that it is riesgmarallel. From the source of the
graph, the algorithm marks the nodes and the arcs of the gdmach synchronization nodg it
modifies certain signatures to represent the closure otded branchings (cf. Algorithm 4). If
at the end of this step, two incoming arcsandu, are not marked with the same signature, that
means the graph is not series-parallel, because there aggativsP; and P, between the source
and respectively;; anduy. These paths have at least one branching node in commormagatte
source). Lete be the last node (in the topological order) verifying theditan. If there were no
open branching on the closure paths betweandy, v; andus should have the same signature
If they do not, that means at least one of the closure pathgeleet: andy has an open branching,
which signature is carried by; or us.

Algorithm 4 Branchings closure.
let y be the synchronizati on node;
D « {u=(z;y) € X}
sort D in the decreasing order of the signatures;

while |D|>1 do

let w1 =(x1;y) and uz = (x2;y) the two first arcs of D,
if 1 #22 then G is not series-parallel; stop;

apply SP-reduction P l;

D «— D\ {u2};

if df, =1 then
apply SP-reduction S;ll and let v be the resulting arc;
D« D\{u}U{v};
sort D in the decreasing order of the signatures;

end if;

end while;

Algorithm 4 performs the closure of the branchings at a gisgmchronization nodg, and
modifies consequently the signatures. It must check twoaloythe arcs incoming and if they
have identical signatures, close the corresponding biragéhnot already done. For an efficient
search among the arcs, we propose to sort them in B siet the decreasing order of their signa-
tures, i.e.u beforev = In, > la, OF (Ao, = Ia, andA, > A,) (we suppose any order on the
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nodes, the idea is that arcs with the same signature ardgidele). Hence, when looking the first
two arcs ofD, the priority is given to the branching with the highest levehich must absolutely
be closed before any lower level branching. This processinesO(m log m) operations. So the
whole Algorithm 3 require®) (nm log m) operations.

Algorithm 3 can easily be adapted, without altering its ctamipy, to build also the SP-tree
associated with the graph, as in the reduction approach.idBaeconsists in reducing the graph
with a series reduction each time a node with only one incgraimd one outgoing arcs is visited.
When a branching is closed, that means a parallel operatierbben detected, it must then be
reduced. The SP-tree is built once the whole graph is vigttezte will remain then only a single
arc). The management of the signatures of the arcs and thes m@then facilitated, because the
SP-reductions imply automatically the signatures. Fomimse, the signaturd, of a nodex is
limited to /. (becausel, is always equal ta;” — 1), and the signature of an auc= (z;y) is not
necessary anymore, because it is always equal to

3.4 Path Approach, Decomposition

This approach offers a new way of recognition of a SP-grapbket on a single search through the
graph in the topological order of the nodes. We explain now toomodify this method to build a
SP-decomposition of the graph. With this algorithm, theestavo ways to discover that a graph is
not series-parallel. First, during the search through tiea according to their topological order,
if a circuit exists, the process loops (in Algorithm 3). Bhetcircuit contains one of the nodes
visited at last (i.e. nodes for which the successors havbeasn all visited yet), le$' be the set of
these nodes. In fact, no more nodes can be visited becausmtlgs at least &f are predecessors
of each other, directly or indirectly. The process will berito find such a circuit by looking one
by one the incoming arcs of each nodeSfOnce the circuit is found, the implied incoming arc
is removed and the recognition algorithm can go on.

/®X T e

Figure 8:Examples of cases for arc deletion.

Another way to find that a graph is not series-parallel is wités impossible to establish
a synchronizatiory, i.e. an incoming are = (z;y) has a signature different of the signatures
of all the other arcs incoming. Two intuitive possibilities remain then: either removiésthrc
(cf. Figure 8a) or ifx has precisely two outgoing arca &nd anothemw) as in Figures 8b and
8c, verify that the suppression ofcan not offer tou the same signature than one of the other
incoming arcs ofy. Thus, we check that the signature of the incoming are igfidentical with at
least one of the signatures of the incoming arcg.ofo sum up, when an anc = (x;y) blocks
the recognition, either it is removed, or its neighbor anbrangx is removed, which allows the
synchronization of; with one of its neighbor at synchronizatign These modifications to build
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the SP-decomposition of the graph does not alter the coiitypleikthe recognition Algorithm 3,
because it is only punctual checks at the signatures of nodes

4 SP-Component Splitting

4.1 Reconstruction Method Extension

As explained in Section 2.4, the reconstruction approacdts atie by one the aggregated arcs in
the graphH*. However, when adding a new anc= (z;y), z and/ory may not exist, because
hidden behind an aggregated arddf. The noder is saidinsidethe componenD,, = (X,;U,,)

if and only if x € X, and is neither the source nor the targefnf

Suppose now thatis inside the SP-componehX,. The firstidea in Section 2.4 was to remove
the aggregated arcfrom H* and replace it by the whole componeBt, (i.e. all the arcs oD,
are added intdf*, this wayz is not inside a component anymore), but this approach is aging
the reconstruction very efficient as it does not benefitdyé&am the aggregation.

The second idea we present here is to minimally split the covapt D,, i.e. find a SP-
decomposition®, of D, sox is not inside a SP-component anymore with | minimal, in order
to preserve aggregated arcs as long as possible duringcibrestaeuction process. In this cade,
will be replaced inH* by E, where each component &, will be represented by an aggregated
arc.

Algorithm 5 Reconstruction method, with the minimal splitting apptoac

find SP-deconposition D = {Dy}Yu—1. &
let H be an enpty graph;

for all SP-conmponent D, € D do
find m nimum cost tension for D, using aggregation;
let uw=(x;y) be the aggregated arc of Dy;

while 3D, with D, <D, and (z€ D, or ye€ D,) do
find mnimal splitting of D, into E,;

find tension for each arc of D, using C}; [1]
find flow for each arc of D,; [2]

for all component D, € E, do
find m ni mum cost tension for D, using aggregation;
find main tension 6, of D, in H (using values from/[1]);
find main flow ¢, of Dy, in H (using values from|[2]);
add arc w aggregating D, with tension 6, and ¢, in H,;
end for;

end while;

add arc v in H;
find mnimum cost tension for H using out-of-kilter;
end for;

for all aggregated arc we€ H do

split D, (add each arc and node of D, in H);
find tension for each arc of D, using C};
end for;

Algorithm 5 proposes modifications for the reconstructidgokithm 1 of Section 2, in order
to consider a minimal splitting of the SP-components irsteftheir whole splitting. When a
component is split, the flow and tension of all its arcs arkk atimputed. And for each SP-
componentD,, of the splitting, its cost functiod’;; is determined using the aggregation method.
To insert the are aggregatingD,, into the graphH*, w must have a valid flow and tension. They
are computed directly from the values (worked out fidfhand[2] in Algorithm 5) of the single
arcs in the componern®,,.
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4.2 Minimal Splitting

This section presents a technique to perform the minimdtiggl of a SP-component. First, we
can notice that will always originate from a series composition, simply &ese parallel compo-
sitions never create a new node. (1) The first step will beeatify in the SP-tred’, associated
with the SP-componenb,, which series composition generates (2) Then the two subgraphs
of this series composition are extracted frdpy, they form thus the two first SP-components of
E,. However by the way they have been extracted, their sourddaaget nodes (excepd stay
inside D,,, so the problem has been moved franto two other nodes; andz,. (3) The last step
consists thus in going up the SP-tree until the root, and spine of the series compositions so
that z; and z, (and later the nodes these new splittings will generatehey &re not inside any
SP-component.

4.2.1 Phase 1: Splitting Pivot Search

The series composition that generataaust be identified. The SP-tree is explored from its root to
its leaves, taking care of memorizing (using for instanctaeld the path that leads us to an arc
that hase as source or target. Once this arc is identified, we followptl back to the root of the
SP-tree, but during this trip we will try to find which seriemaposition generates. Supposing:
inside D,,, the idea of Algorithm 6 is that if is the source of;, thena is part of the right member
of a series composition. On the oppositer iis the target of:, thena is part of the left member
of a series composition. Algorithm 6 results wjilas thepivot of the splitting, i.e. the SP-tree of
the series composition that generates

Algorithm 6 Splitting pivot search.

push T, and 0 in S; p «— 0
f <0 if f=0 then stop;
while S#0 and f=0 do while S#0 and p# 0 do
let t=(r;t;;t-) and ¢ be the top of S; let t=(r;t;;t) and ¢ be the top of S;
i — 1+ 1,
if r=4+ then
if ¢=1 then [Firstvisitoft.] let ¢ = (r';t};t.) be the parent of ¢
if ris an arc (y;z) then if f=1and t=¢, then p=¢;
if z=y then f « 1; if f=2and t=t; then p=1t;
if =2z then f « 2 end if;
pop t and ¢ from S,
el se push ¢; and 0 in S; if p=0 then pop t and i from S;
else if i=2 then [Leftsubtree of visited. ] end while;

push ¢. and 0 in S;

el se [Right subtree ot visited. ] if p£0 then

pop t and ¢ from S; z is inside Dy;

end if; pis the pivot of the splitting;
end whil e; end if;

4.2.2 Phase 2: First Splitting
Now the pivot is identified, the SP-trdé has to be split. We can extragt andp,, the subtrees

of p, from T,,. If the parent ofp is a parallel composition or if is the root ofT;,, T, remains a
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SP-component after the extraction. But if the parent f a series compositior;, will not be a
SP-tree anymore.

Algorithm 7 First splitting.

while S#0 do
pop t= (r;t;;t-) and ¢ fromthe top of S,
let ¢ =(r',t);t.) be the parent of ¢;

if r=+ then
if ¢ =0 then apply PS1(t) (with a fictive parent for t);
elseif r=// then
apply PS1(t);
st op;
else if t=t then apply RRI(t);
el se apply LRI(t);
end if;
end while;

The idea of the second phase is to go on following the path tipetooot ofT;,, while neither
a parallel composition, nor the root @fis found. Once it happens, the last series composition
encountered is split by th2S1 ("Parallel Splitting I") operation illustrated by Figure 9, its two
subtree$ andc being the first components @f,.

®
® & . & b =
ol Rolca R Qi?

pivot pivot

Figure 9:Parallel Splitting I.

Butt is not necessary the pivot of the splitting farhence on the path up to the rootky, for
each series composition, rotations must be performed tataiaithe pivot as the current series
composition. Algorithm 7 uses, depending on the situatiloa operation. R1 ("Left Rotation 1
cf. Figure 10) or the operatioRR1 ("Right Rotation I’ cf. Figure 11) to perform the rotations.

®
LRI(t) RRL(Y)
OB OL — ®r @
® | © & | ©
pivot pivot
Figure 10:Left Rotation I. Figure 11:Right Rotation I.
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4.2.3 Phase 3: Second Splitting

During PS1(t), two subtree$ andc are extracted fronT,,. = is no more insidel,, because it
is target ofb and source of. If ¢ is the root of the SP-tre€,,, then the splitting is over, but on
the other cases, the source nagleof b and the target node, of ¢ are inside the remains @f,.
To get them out, the parallel peerof the subtreé + ¢ (cf. Figure 9) has to be extracted too,
depending on the situation, with the operatiofi ("Left Splitting", cf. Figure 12) or the operation
RS ("Right Splitting’; cf. Figure 13).

@

L) Rt
t t
come from here come from here
Figure 12:Left Splitting. Figure 13:Right Splitting.

Now there is a "hole" in the SP-tree. But this hole is not défé of the one made if were
removed in phase (2). So like we maintained the currentsedmpositiort as pivot ofz along
the path back to the root @f, in phase (2), Algorithm 8 maintains the current series casitiom
t as pivot of the "hole". Depending on the situation, operafid2 ("Left Rotation I, cf. Figure
14) or operationRR2 ("Right Rotation II', cf. Figure 15) are used to perform rotations in the
SP-tre€rl,.

LR2(t)

e ©

if bisempty

@ O

pivot

EERORNC

if cisempty

pivot

Figure 15:Right Rotation II.
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As in phase (1), once a parallel composition is found, thereabb andc of the last series
compositiont encountered on the path back up to the rodf pare extracted frorT, to become
SP-components df,, using the operatio®S2 ("Parallel Splitting II", cf. Figure 16). Once this
splitting achieved, the "hole" problem remains, hence tloegss of phase (3), cf. Algorithm 8,
loops until the root off’, is reached. The operatiorisk?2, RR2 and P.S2 of phase (3) are quite
different from the operation& R1, RR1 and PS1 of phase (2), only because one of the subtrees
(b or ¢) of the current series compositigrcan be empty (due to the splitting fromS or RS at
the beginning of the phase).

o

PSZ1)

Q t or t Q :>

(if not empty)

Ol EOREENGH RO R7

pivot pivot

Figure 16:Parallel Splitting II.

The whole splitting process, regrouping the three phasdy, reedsO(m) operations, the
worst it can do is to visit all the nodes of the SP-tiiée which has2m — 1 nodes {n — 1 for the
SP-relations and: for the arcs). All the operationsR1, LR2... need)(1) operations.

Algorithm 8 Second splitting.

s «— false;

while S#0 do
pop t= (r;t;;t-) and ¢ fromthe top of S,
let ¢ =(r',t;;t.) be the parent of ¢

if r=+ then
if =0 then apply PS2(t) (with a fictive parent for t);
elseif r=// then
apply PS2(t);
s <« false;
else if not s then
if ¢=1 then apply LS(t); else apply LR(t);
s «— true;
else if t=t then apply RR2(t);
el se apply LR2(t);
end if;
end whil e;

4.3 Complexity

Consider now the complexity of the whole splitting phaset ke= |D| andp, be the number

of arcs of a SP-componei,,. The splitting of a SP-componeit, into a SP-decompositioR,
requiresO(p,,) operations for the splitting itself)(p?) operations for the aggregations that follow
(because, for each componddy, of E,,, O(p?)) operations are needed, hyt= " DuweE, Pws SO

P2 > > p.cr, Py, andO(p,) operations to find the flow and the tension of each SP-componen
of E,. To conclude, the complexity of a splitting i¥(p3) operations, and it is clear that no more
thanmin{n—2;2(k—1)} splittings will be needed (no more than one per node and ne than2

per SP-component dP). Thus, the whole splitting phase requi@émin{n; 2k}m?) operations.
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5 Numerical Results

Tables 1 and 2 present a practical comparison of methodshvidhialways difficult because of all
kinds of biases. But the goal here is to get an idea of how thhede behave on QSP-graphs.
Table 1 shows results when the size of the graphs varies a@rd3R-perturbation is set t©%.
Table 2 points the performances of the methods for varioupeé®irbation, the graph size being
set ton = 500 andm = 3000. Results are expressed in seconds on a Celeron 500 MHz pooces
under a Linux operating system. We used GNU C++ 2.95 comaildrits object-oriented features
to implement the methods. The results are means of serie® t#sis on randomly generated
graphs. BothA and B are fixed t01000. The cardinality of the SP-decomposition, for both the
reduction and the path approaches, is also presented.

Nodes | Arcs | Kilter Dual Reconstruction (Total Split) Reconstruction (Min Split) Components
Cost-Scaling| Reduction Path Reduction Path Reduction | Path
50 100 0.01 0.02 0.01 0.01 0.02 0.02 5 6
50 200 | 0.02 0.03 0.03 0.03 0.05 0.05 9 10
50 300 0.03 0.04 0.04 0.04 0.08 0.08 13 16
50 400 | 0.04 0.07 0.06 0.06 0.12 0.10 16 19
50 500 | 0.06 0.08 0.07 0.08 0.16 0.13 21 23
100 200 0.03 0.06 0.03 0.03 0.05 0.05 12 11
100 400 | 0.07 0.09 0.07 0.07 0.13 0.12 20 21
100 600 0.10 0.15 0.12 0.12 0.20 0.18 29 31
100 800 | 0.16 0.18 0.20 0.18 0.30 0.24 37 39
100 1000 | 0.23 0.26 0.25 0.24 0.41 0.34 43 48
500 1000 | 0.67 0.84 0.71 0.70 0.47 0.44 55 61
500 2000 1.48 1.57 2.11 1.97 1.21 0.95 107 116
500 3000 | 2.31 2.20 3.43 3.35 1.90 1.38 153 170
500 4000 | 3.21 3.24 4.58 4.63 2.65 1.97 198 220
500 5000 | 4.21 3.84 5.93 5.88 3.36 2.25 245 278
1000 | 2000 | 2.34 2.65 3.35 3.21 141 1.22 110 124
1000 | 4000 | 5.27 4.54 7.83 7.70 3.46 2.70 212 227
1000 | 6000 | 8.17 7.16 12.47 12.78 5.39 3.95 310 344
1000 | 8000 | 11.43 8.70 19.27 19.03 8.03 5.62 411 450

Table 1:Numerical results, graph size influence.

SP-Perturbation| Kilter Dual Reconstruction (Total Split] Reconstruction (Min Split) Components
(%) Cost-Scaling| Reduction Path Reduction Path Reduction | Path
2 1,85 2,28 1,80 1,87 1,37 1,13 79 85
3 2,02 2,30 2,62 2,55 1,68 1,27 117 129
4 2,21 2,45 3,20 3,07 1,85 1,45 154 166
5 2,43 2,34 3,82 3,70 2,04 1,55 196 211
6 2,63 2,27 4,50 4,49 2,35 1,78 225 242
7 2,80 2,11 5,38 5,10 2,66 2,03 264 279
8 2,83 2,12 5,45 5,48 2,80 2,26 299 321
9 3,07 2,11 6,02 5,68 3,04 2,42 333 360
10 3,27 2,12 6,82 6,42 3,42 2,78 369 393
11 3,31 2,18 6,86 6,85 3,49 2,97 401 423
12 3,49 2,14 7,65 7,39 4,05 3,40 435 466
13 3,52 2,16 7,84 7,60 4,07 3,59 467 499
14 3,88 2,11 8,67 8,34 4,61 3,98 495 525
15 3,86 2,06 8,94 8,63 4,81 4,41 535 568
20 4,47 2,02 11,70 11,38 6,69 6,43 690 719
30 5,95 1,91 17,14 16,06 11,27 10,72 1000 1036
40 6,41 1,89 20,39 19,16 14,92 14,41 1305 1333

Table 2:Numerical results, SP-perturbation influence.

The reconstruction method appears to be more efficient winempath approach is used to
decompose. In fact, the reduction technique provides a momgpact SP-decomposition that
reveals less adapted for the reconstruction. Moreovemihamal splitting appears to be a key to
the good performances of the reconstruction algorithm.oflkude, the efficiency of the various

Research Report LIMOS/RR03-19
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBetrand, France, 2003.



18

methods depends on both the SP-perturbation and the size gifdph. The reconstruction method
is well suited for a SP-perturbation bel@ and for large QSP-graphs, whereas the dual cost-
scaling method is better suited for non-specific graphs @llS@SP-graphs.

Conclusion

This article proposes a new algorithm to solve CPLCT on Q&pitgs that proves to be com-
petitive with existing methods. It also describes a new wiasecognizing a SP-graph and pro-
poses two heuristic approaches to decompose a graph insul®Paphs. To find a "best" SP-
decomposition of a graph needs to be formulated, e.g. tamdrithe number of SP-components,
and the complexity of the problem discussed.
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