Keywords: minimum cost tension, series-parallel graph, graph decomposition, series-parallel recognition. Résumé tension de coût minimum, graphe série-parallèle, décomposition de graphe, reconnaissance de graphe série-parallèle minimum cost tension, series-parallel graph, graph decomposition, seriesparallel recognition

This article proposes an extension, combined with the out-of-kilter technique, of the aggregation method (that solves the minimum convex piecewise linear cost tension problem, or CPLCT, on series-parallel graphs) to solve CPLCT on quasi series-parallel graphs. To make this algorithm efficient, the key point is to find a "good" way of decomposing the graph into series-parallel subgraphs. Decomposition techniques, based on the recognition of series-parallel graphs, are thoroughly discussed.

Introduction

 [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF]proposed an aggregation method to solve the minimum convex piecewise linear cost tension problem (or CPLCT) on series-parallel graphs (or SP-graphs). It was shown to be competitive on this class of graphs with the best dual cost-scaling algorithms (see [START_REF] Ahuja | Solving the Convex Cost Integer Dual Network Flow Problem[END_REF]). This article proposes to combine the aggregation method with the out-of-kilter approach (cf. [START_REF] Pla | An Out-of-Kilter Algorithm for Solving Minimum Cost Potential Problems[END_REF]) to provide an efficient method to solve CPLCT on a slightly more general family of graphs called quasi series-parallel.

Let π : X -→ R be a function that assigns a potential to each node of the graph G = (X; U). Let m = |U | and n = |X|. The tension θ u of an arc u = (x; y) is the difference of potentials θ u = π yπ x and is constrained to θ u ∈ [a u ; b u] ⊂ R. CPLCT can be modeled as a linear program:

(P)                minimize u∈U c u (θ u)
with π yπ x = θ (x;y) , ∀(x; y) ∈ U a u ≤ θ u ≤ b u , ∀u ∈ U where c u are convex piecewise linear functions. In this article, they will be defined as follows:

c u (θ u) = c 1 u (o u -θ u) , if θ u < o u c 2 u (θ u -o u) , if θ u ≥ o u
This problem is formally related to a minimum cost flow problem by duality (cf. [START_REF] Ahuja | Solving the Convex Cost Integer Dual Network Flow Problem[END_REF]). It arises for instance in the synchronization of hypermedia documents where each document u has an elastic duration θ u that can be adjusted around a referential value o u (see [START_REF] Buchanan | Specifying Temporal Behavior in Hypermedia Documents[END_REF]).

Section 1 proposes an overview of the SP-graphs and the aggregation method. It also defines quasi SP-graphs, that are not perfectly series-parallel. Section 2 presents an extension of the aggregation technique, called reconstruction, for quasi SP-graphs. To be efficient, this new algorithm rely on a "good" decomposition of the graph into SP-subgraphs. This is the key point of the procedure discussed in Sections 3 and 4. Section 5 presents comparative numerical results.

Aggregation Method 1.Series-Parallel Graphs

A common definition of series-parallel graphs is based on a recursive construction of the graphs (e.g. [START_REF] Duffin | Topology of Series-Parallel Networks[END_REF], [START_REF] Eppstein | Parallel Recognition of Series-Parallel Graphs[END_REF], [START_REF] Valdes | The Recognition of Series Parallel Digraphs[END_REF]) that is very intuitive and close to the way synchronization constraints are built in a hypermedia document. A graph is series-parallel, also called SP-graph, if it is obtained from a graph with only two nodes linked by an arc, applying recursively the two following operations:

• The series composition, applied upon an arc u = (x; y), creates a new node z and replaces u by two arcs u 1 = (x; z) and u 2 = (z; y) (cf. Figure 1a). We call series the relation that binds u 1 and u 2 and denote it u 1 + u 2 .

• The parallel composition, applied upon an arc u = (x; y), duplicates u by creating a new one v = (x; y) (cf. Figure 1b). We call parallel the relation that binds u and v and denote it u//v. The series and parallel relations are gathered under the term SP-relations. During the construction process, a SP-relation that binds two arcs can become a relation between two series-parallel subgraphs. Hence, the term single SP-relation is introduced to identify a SP-relation between two arcs. From the recursive definition of a SP-graph, it is easy to verify that a SP-graph has always at least a single SP-relation (the SP-relation created from the last composition).

The SP-relations are binary operations, so we can represent a SP-graph by a binary tree called decomposition binary tree or SP-tree (cf. [START_REF] Valdes | The Recognition of Series Parallel Digraphs[END_REF], [START_REF] Datta | An Efficient Scheme to Solve Two Problems for Two-Terminal Series Parallel Graphs[END_REF]). Figure 2 shows a SP-tree of a SP-graph. Section 3 explains how to find such a tree in linear time. Numerical results (cf. [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF]) showed that linear programming and the out-of-kilter method take advantage of the particular structure of the SP-graphs and behave really better on this class of graphs. However the dual cost-scaling approach does not work that well on these instances, whereas it proves to be the most efficient for non-specific graphs. Moreover, the aggregation method presents the best performance on SP-graphs.

Aggregation Method

The aggregation method, that allows to solve CPLCT only on SP-graphs, has been introduced in [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF]. The algorithm works on a SP-tree T of the SP-graph G and is recursive: considering a SPrelation in T , it assumes that the optimal tensions of the two subgraphs implied in the relation are known, and from them, it is possible to quickly build the optimal tension of the whole SP-relation. Hence, starting from the leaves of T , the optimal tension of each SP-relation is built to finally reach the root of the tree T .

From the definition of a SP-graph, it is obvious that a SP-graph has only one source node and only one target node. Hence, the main tension θ of a SP-graph is defined as the tension between its source s and target t, i.e. θ = π tπ s . To get an efficient algorithm, the minimum cost function C G of a SP-graph G must be defined. This function represents the cost of the optimal tension where the main tension is forced to a given value:

C G (x) = min{ u∈U c u (θ u) | θ ∈ T G , θ = x}
As each function c u is convex, the minimum cost function is indeed convex. Let us consider two series-parallel subgraphs G 1 and G 2 , and suppose that their minimum cost functions C G 1 and

C G 2 are known. The minimum cost function C G 1 +G 2 of the SP-relation G 1 + G 2 is: C G 1 +G 2 (x) = min x=x 1 +x 2 C G 1 (x 1) + C G 2 (x 2) Thus, C G 1 +G 2 is the inf-convolution C G 1 C G 2 .
It is well known that this operation maintains convexity (e.g. [START_REF] Rockefellar | Convex Analysis[END_REF]). The minimum cost function

C G 1 //G 2 of the SP-relation G 1 //G 2 is: C G 1 //G 2 (x) = C G 1 (x) + C G 2 (x) Thus, C G 1 //G 2 is simply the sum C G 1 + C G 2 , which is convex if C G 1 and C G 2 are convex.
From this assessment, a simple recursive algorithm can be proposed to build the minimum cost function C G of a SP-graph G. As explained in [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF], it is preferred to deal with the t-centered minimum cost function C t G of G that makes the method both more efficient and easier to understand:

C t G (x) = C G (x + t) -C G (t)
This way C t G represents the minimum additional cost to increase or decrease the main tension θ G from a reference tension t. If t = θ * G , the minimum cost tension of a graph G, the cost function

C * G = C θ * G
G equals 0 at the optimal tension. Moreover we are interested in finding the minimum cost tension of G, thus the aggregation method provides the minimum cost function C * G with additional information on each of its pieces (cf. [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF] for details). It allows for instance to reach optimally a new main tension t from the reference tension θ * G in linear time (precisely O(m) operations). This facility is widely used in the further reconstruction approach. The whole aggregation method performs in O(m 3) operations.

Quasi SP-Graphs

A quasi SP-graph or QSP-graph G = (X; U) is such that the removal of a minimal subset U ⊂ U of arcs from G makes the remaining graph G = (X; U \ U) series-parallel. The ratio |U |/|U | is called the SP-perturbation of the graph G. This value indicates how many arcs of G are disturbing the series-parallel property of G. From this definition, any connected graph is a QSP-graph, but we prefer to use this term for graphs with a small SP-perturbation (in applications issued from the hypermedia field, 10 % seems a satisfying threshold).

Reconstruction Approach

As the aggregation method can not be used "as it is" on QSP-graphs and the dual cost scaling approach proves to be less efficient than the out-of-kilter on SP-graphs, we propose in this section a method called reconstruction to solve CPLCT on QSP-graphs. This new approach combines the aggregation and the out-of-kilter techniques based on a SP-decomposition of the graph.

Decomposition Phase

We call series-parallel component or SP-component of a graph G a SP-subgraph of G. A partition P of the arcs of G defines a series-parallel decomposition or SP-decomposition of G, where each set of arcs in P induces a SP-subgraph of G. A SP-decomposition of G is thus a set of arc-disjoint SP-components, whose union is G. Section 3 discusses ways to obtain a "good" SP-decomposition that fits the reconstruction process.

The reconstruction method starts with the search of a SP-decomposition D of the graph G. Then CPLCT is solved on each SP-component of D with the aggregation method. Thus, for each component D u ∈ D, its minimum cost function C * u and its optimal tension θ * u are known, so D u can be seen as a single aggregated arc u with a convex piecewise linear cost function c u = C * u and a tension θ u = θ * u .

Reconstruction Phase

The method attempts next to put the SP-components back together. An iterative process consists in adding one by one the aggregated arcs into a new graph, rebuilding the original graph G back.

Starting with H 0 = (X 0 ; U 0) = (∅; ∅), at each step an aggregated arc u = (x; y) is added, i.e. H k = (X k-1 ∪ {x; y}; U k-1 ∪ {u}). The newly added arc u is the only one that may be out-of-kilter.

We remind that the kilter curve is defined from the tension θ u and the flow ϕ u of the arc u, and roughly that ϕ u must equal c u (θ u) for the arc to be in-kilter. If all the arcs of H k are in-kilter, its tension θ is optimal. The idea of the out-of-kilter approach is to bring all the arcs on their kilter curve (e.g. [START_REF] Ahuja | Network Flows -Theory, Algorithms, and Applications[END_REF]).

The newly added arc u may be out-of-kilter because even if its tension is optimal, its flow must be set to 0 in order to keep the flow conservation constraints on the whole graph H k . Fortunately, as this arc is the only one out-of-kilter, repetitive search for a cycle or a cocycle to modify respectively either the flow or the tension of the arc u can be performed in O((A + B)m) operations, where A is the maximum tension and B the maximum flow (i.e. the maximum derivative of its cost function) for the arc u. Once the arc is in-kilter, the whole tension on H k is optimal and another aggregated arc v can be added.

Tension Adjustment

But adding an arc into the graph is not that obvious. Consider the aggregated arc u = (x; y), the optimal tension θ u of u may not be equal to the difference of potentials π yπ x . The tension of the arc u has to be optimally adjusted to be equal to π yπ x . That can be achieved using the minimum cost function C * u of the arc u to adapt optimally the main tension of the SP-component aggregated behind u. As said in Section 1, it can be performed in O(m) operations (cf. [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF]).

SP-Component Splitting

For the need of the reconstruction, we assume a partial order on the components of the SPdecomposition D, such that if the source node (i.e. without any predecessor) and/or the target node (i.e. without any successor) of a SP-component D u belong to component D v , then D v < D u . Decomposition methods presented in Section 3 prove that such an order exists for any graph. During the reconstruction phase, the SP-components are added following this partial order.

Another problem arises when adding an aggregated arc u = (x; y) into the graph H k : maybe the source node x and/or the target node y of u are not present in H k , because simply hidden in one of the aggregated arcs v of the graph H k . Hence we need to split the SP-component behind such an arc v to make the node visible. The easiest way is to bring back all the arcs of the SP-component

D v into the graph H k , (i.e. H k = H k-1 ∪ D v \ {v}).
The drawback of this technique is that the biggest SP-component, added behind a single aggregated arc at the first step, is certainly split at the second step, because nodes will obviously be needed for the secondly added arc. This approach reveals to be extremely inefficient, as most of the arcs will be brought back in the graph at the second step only. Thus, we need a smarter way than splitting totally a SP-component. This is the purpose of Section 4 that proposes a technique to split a SP-component into several pieces, reducing their numbers to the minimum necessary.

Conservation of the In-Kilter Property

After the splitting of an aggregated arc u = (x; y), the resulting arcs must be in-kilter to keep the whole graph H k optimal. Thus, knowing their tension, it is straightforward to find an interval in which their flow must be: indeed, with our assumptions, the kilter curve is a step function (cf. Figure 3). For each arc v of the SP-component D u , an interval [e v ; f v] can thus be defined. Let suppose an arc w from the source node x to the target node y of the SP-component with a capacity [ϕ u ; ϕ u], where ϕ u is the flow of u in the whole graph H k . Find a flow ϕ v for each arc v of the SPcomponent D u turns to find a feasible flow ϕ in the SP-component (with the added loop arc w). We propose to solve it in O(m 3) operations with a technique using the SP-tree of the SPcomponent like the aggregation (cf. [START_REF] Bachelet | Modélisation et optimisation de problèmes de synchronisation dans les documents hypermédia[END_REF]). However, as this phase is not critical in terms of time consumption, any well-known method is suitable to solve this flow problem.

Complexity

Algorithm 1 summarizes the whole process of the reconstruction method. Let k = |D| and p u be the number of arcs of a SP-component D u . The reconstruction algorithm needs, for each SPcomponent of D, eventually a splitting (with the tension adjustment and the conservation of the in-kilter property), an aggregation (O(p 3 u) operations) and an out-of-kilter iteration (O(m(A+B)) operations). The whole splitting phase need O(min{n; 2k}m 3) operations (cf. Section 4). Thus, the reconstruction method requires O(min{n; 2k}m 3 + km(A + B)) operations.

Series-Parallel Decomposition

The recognition of a SP-graph is known for long as an easy problem that can be solved in linear time (cf. [START_REF] Valdes | The Recognition of Series Parallel Digraphs[END_REF]). The various algorithms proposed by many authors can immediately be adapted and without altering their complexity to build the SP-tree during the recognition phase. These methods being very efficient, our discussion will not be on their complexity, but on the way they recognize a SP-graph, our goal being to find for any graph the "best" SP-decomposition suitable for the reconstruction process.

The characterization of such a decomposition is not that obvious. If it is too compact, i.e. with few SP-components, that will tend to produce a lot of splittings during the reconstruction (like the phenomenon explained for the first SP-component in Section 2). At the opposite if the decomposition is scattered, i.e. with many SP-components, the aggregation phase will become useless and the reconstruction will tend to a single out-of-kilter algorithm.

We choose to study here two recognition methods, the reduction and the path approaches, and propose heuristic extensions to find a "good" SP-decomposition. To present these algorithms, a recursive notation of the SP-trees is introduced. A tree with a root a, a left subtree T l and a right subtree T r is represented by (a; T l ; T r). The reverse operations of the series and parallel compositions, called SP-reductions, are defined as follows:

• The series reduction, noted S -1

x , replaces the SP-relation (y; x) + (x; z) by an arc (y; z).

• The parallel reduction, noted P -1 u , replaces the SP-relation u//v by the arc u.

Reduction Approach, Recognition

This recognition approach is widespread because very intuitive. As explained in Section 1, a SPgraph has at least one single SP-relation. The idea is to find one, apply the associated SP-reduction and repeat until the graph is reduced to a single arc. If there is no more single SP-relation and the graph is not a single arc, that means the graph is not series-parallel.

This method has been proposed first in [START_REF] Valdes | The Recognition of Series Parallel Digraphs[END_REF]. It appears then in [START_REF] Schoenmakers | A New Algorithm for the Recognition of Series Parallel Graphs[END_REF] with some improvement: all the multiple arcs are first removed (no single parallel relation exist anymore), then series and parallel-and-series (composition of a parallel relation with a series relation) relations are detected and reduced. The detection is easier (only the nodes are checked) and the reduction is more efficient (because with the parallel-and-series relation, two arcs and one node are removed in one step). However, this improvement does not change fundamentally the way the algorithm performs. A similar variant is proposed in [START_REF] Bodlaender | Parallel Algorithms for Series Parallel Graphs[END_REF] which proposes 18 reductions, most of them working only on non-directed graphs. These improvements are difficult to take into account with our goal of finding a SP-decomposition, because our graphs have non-specific structures, so the occurrences of these special reductions dedicated to SP-graphs will be rare.

Reduction Approach, Decomposition

A generic version of the method is presented in Algorithm 2. It builds at the same time a SPdecomposition of the graph where each SP-component is represented by its SP-tree. For this purpose, a function t is defined that associates a SP-tree t u with each arc u of the graph G. At the beginning, each arc possesses a SP-tree with a single node that is the arc itself. We sketch below what happens during a SP-reduction.

• The series reduction S -1

x removes the two arcs u = (y; x) and v = (x; z) of the relation u + v, and creates an arc w = (y; z). The SP-tree of w is then (+; t u ; t v), the old t u and t v are removed.

• The parallel reduction P -1 u removes the arc v of the relation u//v. The SP-tree of u becomes (//; t u ; t v), the old t u and t v are removed.

Algorithm 2 SP-decomposition, with the reduction approach.

for all arc u ∈ U do tu ← (u; ∅; ∅); To recognize a SP-graph, the method reduces successively each single SP-relation until there is either only one arc in the graph or no more single SP-relation to reduce. To find a whole SPdecomposition of any graph, the algorithm repeats until it blocks, so an arc must be removed to reveal SP-relations and allow to continue the reductions. When suppressing an arc, no parallel relation can appear, only series relations can. So the intuitive idea, whenever a blocking occur, is to remove the arc that reveals the most series relations, and if none exist the one that will contribute in revealing the most series relations. We propose a heuristic approach that assigns two scores to each node x: one used when x is source of an arc (s +

while |U | =
x) and another used when x is the target of an arc (s -

x). The score of an arc u = (x; y) is s + x + s - y , and is calculated as follows: Here d + x represents the number of arcs outgoing x and d - x the number of arcs incoming x. Intuitively, a node x with d + x = 2 and d - x = 1 is the best candidate to be the source of the arc to remove because it reveals a series relation, its score is 2. The same way, an arc y with d - y = 2 and d + y = 1 is the best candidate to be the target of the arc to remove. The best candidate arc has a score of 4. This score tends to decrease first for the extremities of the arcs having important numbers of incoming and outgoing arcs, because that means numerous arc suppressions are needed before they can become series relations. Removals that alter the connectivity of the graph are penalized with a negative score, hence if a node would have no incoming or outgoing arc after the suppression, its score is set to -M , with M such that even the best score for the other extremity will not make the score of the arc positive, any M > 2 is suitable. Figure 4 shows an example of scoring. In the case of scores equality, the arc that hides the smallest SP-component is removed, with the hope of revealing finally the biggest SP-component. If we consider no specific data structure for the graph, the complexity of Algorithm 2 is O(m 2) operations, at each step the selection of the arc to be removed requires O(m) operations (to assign a score to each remaining arc of the graph).

s + x =    -M , if d + x = 1 0, if d + x > 1 and d - x = 0 1/(d + x -1) + 1/d - x , if d + x > 1 and d - x > 0 s - x =    -M , if d - x = 1 0, if d - x > 1 and d + x = 0 1/(d - x -1) + 1/d + x , if d - x > 1 and d + x > 0 A B C D -M | 2 2 | -M -M | 2 4/3 | 1 4

Path Approach, Recognition

The paths of a SP-graph are organized in a very specific way. In [START_REF] Eppstein | Parallel Recognition of Series-Parallel Graphs[END_REF], this is formalized by the concept of ear decomposition. We propose here a quite different approach based on two kinds of nodes: the branching nodes (with more than one outgoing arc) and the synchronization nodes (with more than one incoming arc).

In a SP-graph, such nodes represent respectively the beginning and the end of parallel relations. We call branching two arcs outgoing a branching node (i.e. the beginning of a parallel relation).

In the same way, a synchronization represents two arcs incoming a synchronization node (i.e. the end of a parallel relation). By mean of clarity, we sometimes identify a branching (respectively synchronization) by its branching (respectively synchronization) node.

The approach proposed here is based on a search through the graph in the topological order of the nodes (i.e. a node is visited only after all its predecessors). Let S k be the set of nodes marked during the process until iteration k. A branching will be said closed at iteration k if there is a synchronization node y ∈ S k such that two arc-distinct directed paths P 1 and P 2 between x and y exist and contain each one of the two arcs of the branching; the two arcs incoming y that belong each to one of the paths form a synchronization y that closes x. A closed branching is associated with the first synchronization encountered during the search that closes it. The paths that allow the closure of the branching (in our definition P 1 and P 2) are called the closure paths of the branching. Proposition 1 A graph is series-parallel if and only if at each iteration of the topological search through the graph, for each closed branching x, there are two closure paths between the branching x and its associated synchronization y that do not possess any open branching.

Proof: (⇒) At a given iteration, suppose there is an open branching z on one of the closure paths of a closed branching x associated with its synchronization y. That gives a graph with the general aspect presented by Figure 6a. Attempting a reduction with Algorithm 2 (with no arc suppression), the best that can be found is the graph illustrated by Figure 6b. The reduction can thus not be terminated without any arc suppression, so the graph is not series-parallel. (⇐) Suppose now that no such open branching exist, the recognition Algorithm 3 presented further proves that it is possible to find (with no arc suppression) the SP-tree associated with the graph, so it is series-parallel. To verify the proposition (in order to determine if a graph is series-parallel), we propose a marking process that allows to identify, arriving on a synchronization, the branchings that are closing and if a branching is open in one of the closure paths. Let ∆ u be the signature of an arc u, ∆ u = x means x is the last (according to the topological order of the nodes) open branching between the source node of the graph and the arc u. Let ∆ x be the signature of a node x, it is a couple ∆ x = (l x ; d x). If the node is not a branching node then d x = 0, else d x indicates the number of branchings located at node x that are open. l x indicates the level of branching, e.g. if l x = 2 then there are two open branchings (including x) in the paths between the source node of the graph and the node x. The signature of an arc or a node can change while searching the graph in the topological order of the nodes. When two arcs u and v with the same signature x (at iteration k) meet at a synchronization node y (at iteration k+1), they form a synchronization and closes thus a branching of node x (cf. Figure 7a). The signature of their branching is then modified: d x is decreased of 1. If d x equals 0, that means all the branchings of node x are closed. The signature of the arcs u and v must change, it becomes the open branching before x, i.e. the signature of one of the incoming arcs of branching x (cf. Figure 7b). Ideally, the signature of all the arcs of signature x must change, but for the needs of the algorithm (that searches the graph in the topological order of the nodes and thus never come back on already used arcs) this modification is not necessary.

Algorithm 3 SP-decomposition, with the path approach.

for all arc u ∈ U do tu ← (u; ∅; ∅); while |U | = 1 do choose x in X such that all predecessors of x are visited yet;

if d - x = 0 then ∆x ← 0; else if d - x > 1 then closeBranchings(x,∆,t); let u = (b; x) ∈ U ; if d + x = 1 then apply SP-reduction S -1 x ; else ∆x ← ∆ b + 1; end if; end while;
Algorithm 3 proposes to search the graph following the topological order of the nodes, marking progressively the nodes and the arcs with the signature ∆. It is supposed that the graph has only one source and at least one arc, else it is sure that it is not series-parallel. From the source of the graph, the algorithm marks the nodes and the arcs of the graph. At each synchronization node y, it modifies certain signatures to represent the closure of associated branchings (cf. Algorithm 4). If at the end of this step, two incoming arcs u 1 and u 2 are not marked with the same signature, that means the graph is not series-parallel, because there are two paths P 1 and P 2 between the source and respectively u 1 and u 2 . These paths have at least one branching node in common (at least the source). Let x be the last node (in the topological order) verifying the condition. If there were no open branching on the closure paths between x and y, u 1 and u 2 should have the same signature x. If they do not, that means at least one of the closure paths between x and y has an open branching, which signature is carried by u 1 or u 2 .

Algorithm 4 Branchings closure.

let y be the synchronization node; D ← {u = (x; y) ∈ X}; sort D in the decreasing order of the signatures; while |D| > 1 do let u 1 = (x 1 ; y) and u 2 = (x 2 ; y) the two first arcs of D; if x 1 = x 2 then G is not series-parallel; stop; apply SP-reduction

P -1 u 1 ; D ← D \ {u 2 }; if d + x 1 = 1 then apply SP-reduction S -1
x 1 and let v be the resulting arc; D ← D \ {u 1 } ∪ {v}; sort D in the decreasing order of the signatures; end if; end while; Algorithm 4 performs the closure of the branchings at a given synchronization node y, and modifies consequently the signatures. It must check two-by-two the arcs incoming y and if they have identical signatures, close the corresponding branching if not already done. For an efficient search among the arcs, we propose to sort them in a set D, in the decreasing order of their signatures, i.e. u before v ⇒ l ∆u > l ∆v or (l ∆u = l ∆v and ∆ u > ∆ v) (we suppose any order on the nodes, the idea is that arcs with the same signature are side-by-side). Hence, when looking the first two arcs of D, the priority is given to the branching with the highest level, which must absolutely be closed before any lower level branching. This process requires O(m log m) operations. So the whole Algorithm 3 requires O(nm log m) operations.

Algorithm 3 can easily be adapted, without altering its complexity, to build also the SP-tree associated with the graph, as in the reduction approach. The idea consists in reducing the graph with a series reduction each time a node with only one incoming and one outgoing arcs is visited. When a branching is closed, that means a parallel operation has been detected, it must then be reduced. The SP-tree is built once the whole graph is visited (there will remain then only a single arc). The management of the signatures of the arcs and the nodes is then facilitated, because the SP-reductions imply automatically the signatures. For instance, the signature ∆ x of a node x is limited to l x (because d x is always equal to d +

x -1), and the signature of an arc u = (x; y) is not necessary anymore, because it is always equal to x.

Path Approach, Decomposition

This approach offers a new way of recognition of a SP-graph, based on a single search through the graph in the topological order of the nodes. We explain now how to modify this method to build a SP-decomposition of the graph. With this algorithm, there are two ways to discover that a graph is not series-parallel. First, during the search through the nodes according to their topological order, if a circuit exists, the process loops (in Algorithm 3). But the circuit contains one of the nodes visited at last (i.e. nodes for which the successors have not been all visited yet), let S be the set of these nodes. In fact, no more nodes can be visited because two nodes at least of S are predecessors of each other, directly or indirectly. The process will be then to find such a circuit by looking one by one the incoming arcs of each node of S. Once the circuit is found, the implied incoming arc is removed and the recognition algorithm can go on. Another way to find that a graph is not series-parallel is when it is impossible to establish a synchronization y, i.e. an incoming arc u = (x; y) has a signature different of the signatures of all the other arcs incoming y. Two intuitive possibilities remain then: either remove this arc (cf. Figure 8a) or if x has precisely two outgoing arcs (u and another v) as in Figures 8b and8c, verify that the suppression of v can not offer to u the same signature than one of the other incoming arcs of y. Thus, we check that the signature of the incoming arc of x is identical with at least one of the signatures of the incoming arcs of y. To sum up, when an arc u = (x; y) blocks the recognition, either it is removed, or its neighbor at branching x is removed, which allows the synchronization of u with one of its neighbor at synchronization y. These modifications to build the SP-decomposition of the graph does not alter the complexity of the recognition Algorithm 3, because it is only punctual checks at the signatures of nodes.

SP-Component Splitting

Reconstruction Method Extension

As explained in Section 2.4, the reconstruction approach adds one by one the aggregated arcs in the graph H k . However, when adding a new arc u = (x; y), x and/or y may not exist, because hidden behind an aggregated arc of H k . The node x is said inside the component

D v = (X v ; U v) if and only if x ∈ X v
and is neither the source nor the target of D v .

Suppose now that x is inside the SP-component D v . The first idea in Section 2.4 was to remove the aggregated arc v from H k and replace it by the whole component D v (i.e. all the arcs of D v are added into H k , this way x is not inside a component anymore), but this approach is not making the reconstruction very efficient as it does not benefits really from the aggregation.

The second idea we present here is to minimally split the component D v , i.e. find a SPdecomposition E v of D v so x is not inside a SP-component anymore with |E v | minimal, in order to preserve aggregated arcs as long as possible during the reconstruction process. In this case, D v will be replaced in H k by E v where each component of E v will be represented by an aggregated arc.

Algorithm 5 Reconstruction method, with the minimal splitting approach. for all component Dw ∈ Ev do find minimum cost tension for Dw using aggregation; find main tension θw of Dw in H (using values from [START_REF] Ahuja | Solving the Convex Cost Integer Dual Network Flow Problem[END_REF]); find main flow ϕw of Dw in H (using values from [START_REF] Ahuja | Network Flows -Theory, Algorithms, and Applications[END_REF]); add arc w aggregating Dw with tension θw and ϕw in H; end for; end while; add arc u in H; find minimum cost tension for H using out-of-kilter; end for; for all aggregated arc u ∈ H do split Du (add each arc and node of Du in H); find tension for each arc of Du using C * u ; end for; Algorithm 5 proposes modifications for the reconstruction Algorithm 1 of Section 2, in order to consider a minimal splitting of the SP-components instead of their whole splitting. When a component is split, the flow and tension of all its arcs are still computed. And for each SPcomponent D w of the splitting, its cost function C * w is determined using the aggregation method. To insert the arc w aggregating D w into the graph H k , w must have a valid flow and tension. They are computed directly from the values (worked out from [START_REF] Ahuja | Solving the Convex Cost Integer Dual Network Flow Problem[END_REF] and [START_REF] Ahuja | Network Flows -Theory, Algorithms, and Applications[END_REF] in Algorithm 5) of the single arcs in the component D w .

Minimal Splitting

This section presents a technique to perform the minimal splitting of a SP-component. First, we can notice that x will always originate from a series composition, simply because parallel compositions never create a new node. [START_REF] Ahuja | Solving the Convex Cost Integer Dual Network Flow Problem[END_REF] The first step will be to identify in the SP-tree T v associated with the SP-component D v which series composition generates x. (2) Then the two subgraphs of this series composition are extracted from D v , they form thus the two first SP-components of E v . However by the way they have been extracted, their source and target nodes (except x) stay inside D v , so the problem has been moved from x to two other nodes z 1 and z 2 . (3) The last step consists thus in going up the SP-tree until the root, and split some of the series compositions so that z 1 and z 2 (and later the nodes these new splittings will generate) so they are not inside any SP-component.

Phase 1: Splitting Pivot Search

The series composition that generates x must be identified. The SP-tree is explored from its root to its leaves, taking care of memorizing (using for instance a stack) the path that leads us to an arc a that has x as source or target. Once this arc is identified, we follow the path back to the root of the SP-tree, but during this trip we will try to find which series composition generates x. Supposing x inside D v , the idea of Algorithm 6 is that if x is the source of a, then a is part of the right member of a series composition. On the opposite, if x is the target of a, then a is part of the left member of a series composition. Algorithm 6 results with p as the pivot of the splitting, i.e. the SP-tree of the series composition that generates x. SP-component after the extraction. But if the parent of p is a series composition, T v will not be a SP-tree anymore. The idea of the second phase is to go on following the path up to the root of T v , while neither a parallel composition, nor the root of T is found. Once it happens, the last series composition t encountered is split by the P S1 ("Parallel Splitting I") operation illustrated by Figure 9 But t is not necessary the pivot of the splitting for x, hence on the path up to the root of T v , for each series composition, rotations must be performed to maintain the pivot as the current series composition. Algorithm 7 uses, depending on the situation, the operation LR1 ("Left Rotation 1", cf. Figure 10) or the operation RR1 ("Right Rotation I", cf. Figure 11) to perform the rotations.

Phase 3: Second Splitting

During P S1(t), two subtrees b and c are extracted from T v . x is no more inside T v , because it is target of b and source of c. If t is the root of the SP-tree T v , then the splitting is over, but on the other cases, the source node z 1 of b and the target node z 2 of c are inside the remains of T v .

To get them out, the parallel peer a of the subtree b + c (cf. Figure 9) has to be extracted too, depending on the situation, with the operation LS ("Left Splitting", cf. Figure 12) or the operation RS ("Right Splitting", cf. Figure 13). Now there is a "hole" in the SP-tree. But this hole is not different of the one made if x were removed in phase [START_REF] Ahuja | Network Flows -Theory, Algorithms, and Applications[END_REF]. So like we maintained the current series composition t as pivot of x along the path back to the root of T v in phase (2), Algorithm 8 maintains the current series composition t as pivot of the "hole". Depending on the situation, operation LR2 ("Left Rotation II", cf. Figure 14) or operation RR2 ("Right Rotation II", cf. Figure 15) are used to perform rotations in the SP-tree T v . As in phase (1), once a parallel composition is found, the subtrees b and c of the last series composition t encountered on the path back up to the root of T v are extracted from T v to become SP-components of E v , using the operation P S2 ("Parallel Splitting II", cf. Figure 16). Once this splitting achieved, the "hole" problem remains, hence the process of phase (3), cf. Algorithm 8, loops until the root of T v is reached. The operations LR2, RR2 and P S2 of phase (3) are quite different from the operations LR1, RR1 and P S1 of phase (2), only because one of the subtrees (b or c) of the current series composition t can be empty (due to the splitting from LS or RS at the beginning of the phase). The whole splitting process, regrouping the three phases, only needs O(m) operations, the worst it can do is to visit all the nodes of the SP-tree T v , which has 2m -1 nodes (m -1 for the SP-relations and m for the arcs). All the operations LR1, LR2... need O(1) operations. v) operations, and it is clear that no more than min{n-2; 2(k -1)} splittings will be needed (no more than one per node and no more than 2 per SP-component of D). Thus, the whole splitting phase requires O(min{n; 2k}m 3) operations.

Numerical Results

Tables 1 and 2 present a practical comparison of methods, which is always difficult because of all kinds of biases. But the goal here is to get an idea of how the methods behave on QSP-graphs. Table 1 shows results when the size of the graphs varies and their SP-perturbation is set to 4 %. Table 2 points the performances of the methods for various SP-perturbation, the graph size being set to n = 500 and m = 3000. Results are expressed in seconds on a Celeron 500 MHz processor under a Linux operating system. We used GNU C++ 2.95 compiler and its object-oriented features to implement the methods. The results are means of series of 10 tests on randomly generated graphs. Both A and B are fixed to 1000. The cardinality of the SP-decomposition, for both the reduction and the path approaches, is also presented. The reconstruction method appears to be more efficient when the path approach is used to decompose. In fact, the reduction technique provides a more compact SP-decomposition that reveals less adapted for the reconstruction. Moreover, the minimal splitting appears to be a key to the good performances of the reconstruction algorithm. To conclude, the efficiency of the various methods depends on both the SP-perturbation and the size of the graph. The reconstruction method is well suited for a SP-perturbation below 8 % and for large QSP-graphs, whereas the dual costscaling method is better suited for non-specific graphs or small QSP-graphs.

Conclusion

This article proposes a new algorithm to solve CPLCT on QSP-graphs that proves to be competitive with existing methods. It also describes a new way of recognizing a SP-graph and proposes two heuristic approaches to decompose a graph into SP-subgraphs. To find a "best" SPdecomposition of a graph needs to be formulated, e.g. to minimize the number of SP-components, and the complexity of the problem discussed.

2 Figure 1 :

 21 Figure 1: Series and parallel compositions.

Figure 2 :

 2 Figure 2: Example of SP-tree.

Figure 3 :

 3 Figure 3: Kilter flow building.

Algorithm 1

 1 Reconstruction method. find SP-decomposition D = {Du} u=1...k ; let H be an empty graph; for all SP-component Du ∈ D do find minimum cost tension for Du using aggregation; let u = (x; y) be the aggregated arc of Du; while ∃Dv with Dv < Du and (x ∈ Dv or y ∈ Dv) do split Dv (add each arc and node of Dv in H); find tension for each arc of Dv using C * v ; find flow for each arc of Dv; end while; add arc u in H; find minimum cost tension for H using out-of-kilter; end for; for all aggregated arc u ∈ H do split Du (add each arc and node of Du in H); find tension for each arc of Du using C * u ; end for;

Figure 4 :

 4 Figure 4: Example of scoring.

Figure 5 :

 5 Figure 5: Example of branchings.

Figure 6 :

 6 Figure 6: Example of open branching on closure path.

Figure 7 :

 7 Figure 7: Example of signature change.

Figure 8 :

 8 Figure 8: Examples of cases for arc deletion.

 find SP-decomposition D = {Du} u=1...k ; let H be an empty graph; for all SP-component Du ∈ D do find minimum cost tension for Du using aggregation; let u = (x; y) be the aggregated arc of Du; while ∃Dv with Dv < Du and (x ∈ Dv or y ∈ Dv) do find minimal splitting of Dv into Ev; find tension for each arc of Dv using C * v ; [1] find flow for each arc of Dv; [2]

Figure 9 :

 9 Figure 9: Parallel Splitting I.

Figure 10 :

 10 Figure 10: Left Rotation I.

Figure 11 :

 11 Figure 11: Right Rotation I.

Figure 13 :

 13 Figure 12: Left Splitting.

Figure 14 :

 14 Figure 14: Left Rotation II.

Figure 15 :

 15 Figure 15: Right Rotation II.

Figure 16 :

 16 Figure 16: Parallel Splitting II.

4. 3 Complexity

 3 Consider now the complexity of the whole splitting phase. Let k = |D| and p u be the number of arcs of a SP-component D u . The splitting of a SP-component D v into a SP-decomposition E v requires O(p v) operations for the splitting itself, O(p 3 v) operations for the aggregations that follow (because, for each component D w of E v , O(p 3 w) operations are needed, but p v = Dw∈Ev p w , so p 3 v > Dw∈Ev p 3 w), and O(p v) operations to find the flow and the tension of each SP-component of E v . To conclude, the complexity of a splitting is O(p 3

Algorithm 7

 7 First splitting.while S = ∅ do pop t = (r; t l ; tr) and i from the top of S; let t = (r , t l ; t r) be the parent of t;

	if r = + then
	if t = ∅ then apply P S1(t) (with a fictive parent for t);
	else if r = // then
	apply P S1(t);
	stop;
	else if t = t l then apply RR1(t);
	else apply LR1(t);
	end if;
	end while;

Algorithm 8

 8 Second splitting.

	else if r = // then
	apply P S2(t);
	s ← f alse;
	else if not s then
	if i = 1 then apply LS(t); else apply LR(t);
	s ← true;
	else if t = t l then apply RR2(t);
	else apply LR2(t);
	end if;
	end while;

s ← f alse; while S = ∅ do pop t = (r; t l ; tr) and i from the top of S; let t = (r , t l ; t r) be the parent of t;

if r = + then if t = ∅ then apply P S2(t) (with a fictive parent for t);

Table 1 :

 1 Numerical results, graph size influence.

	Nodes	Arcs	Kilter	Dual	Reconstruction (Total Split)	Reconstruction (Min Split)	Components
				Cost-Scaling	Reduction	Path	Reduction	Path	Reduction	Path
	50	100	0.01	0.02	0.01	0.01	0.02	0.02	5	6
	50	200	0.02	0.03	0.03	0.03	0.05	0.05	9	10
	50	300	0.03	0.04	0.04	0.04	0.08	0.08	13	16
	50	400	0.04	0.07	0.06	0.06	0.12	0.10	16	19
	50	500	0.06	0.08	0.07	0.08	0.16	0.13	21	23
	100	200	0.03	0.06	0.03	0.03	0.05	0.05	12	11
	100	400	0.07	0.09	0.07	0.07	0.13	0.12	20	21
	100	600	0.10	0.15	0.12	0.12	0.20	0.18	29	31
	100	800	0.16	0.18	0.20	0.18	0.30	0.24	37	39
	100	1000	0.23	0.26	0.25	0.24	0.41	0.34	43	48
	500	1000	0.67	0.84	0.71	0.70	0.47	0.44	55	61
	500	2000	1.48	1.57	2.11	1.97	1.21	0.95	107	116
	500	3000	2.31	2.20	3.43	3.35	1.90	1.38	153	170
	500	4000	3.21	3.24	4.58	4.63	2.65	1.97	198	220
	500	5000	4.21	3.84	5.93	5.88	3.36	2.25	245	278
	1000	2000	2.34	2.65	3.35	3.21	1.41	1.22	110	124
	1000	4000	5.27	4.54	7.83	7.70	3.46	2.70	212	227
	1000	6000	8.17	7.16	12.47	12.78	5.39	3.95	310	344
	1000	8000	11.43	8.70	19.27	19.03	8.03	5.62	411	450
	SP-Perturbation	Kilter	Dual	Reconstruction (Total Split)	Reconstruction (Min Split)	Components
	(%)			Cost-Scaling	Reduction	Path	Reduction	Path	Reduction	Path
	2		1,85	2,28	1,80	1,87	1,37	1,13	79	85
	3		2,02	2,30	2,62	2,55	1,68	1,27	117	129
	4		2,21	2,45	3,20	3,07	1,85	1,45	154	166
	5		2,43	2,34	3,82	3,70	2,04	1,55	196	211
	6		2,63	2,27	4,50	4,49	2,35	1,78	225	242
	7		2,80	2,11	5,38	5,10	2,66	2,03	264	279
	8		2,83	2,12	5,45	5,48	2,80	2,26	299	321
	9		3,07	2,11	6,02	5,68	3,04	2,42	333	360
	10		3,27	2,12	6,82	6,42	3,42	2,78	369	393
	11		3,31	2,18	6,86	6,85	3,49	2,97	401	423
	12		3,49	2,14	7,65	7,39	4,05	3,40	435	466
	13		3,52	2,16	7,84	7,60	4,07	3,59	467	499
	14		3,88	2,11	8,67	8,34	4,61	3,98	495	525
	15		3,86	2,06	8,94	8,63	4,81	4,41	535	568
	20		4,47	2,02	11,70	11,38	6,69	6,43	690	719
	30		5,95	1,91	17,14	16,06	11,27	10,72	1000	1036
	40		6,41	1,89	20,39	19,16	14,92	14,41	1305	1333

Table 2 :

 2 Numerical results, SP-perturbation influence.

Acknowledgements / Remerciements

This project was partially funded by France-Brazil cooperation project CAPES-COFECUB 398/02.

Algorithm 6 Splitting pivot search.

push Tv and 0 in S; f ← 0; while S = ∅ and f = 0 do let t = (r; t l ; tr) and i be the top of S;

pop t and i from S; else push t l and 0 in S;

Phase 2: First Splitting

Now the pivot is identified, the SP-tree T v has to be split. We can extract p l and p r , the subtrees of p, from T v . If the parent of p is a parallel composition or if p is the root of T v , T v remains a