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An extension to the Wiener space of the
arbitrary functions principle

Nicolas Bouleau
ENPC, ParisTech

Abstract

The arbitrary functions principle says that the fractional part of
nX converges stably to an independent random variable uniformly
distributed on the unit interval, as soon as the random variable X pos-
sesses a density or a characteristic function vanishing at infinity. We
prove a similar property for random variables defined on the Wiener
space when the stochastic measure dB; is crumpled on itself. To cite
this article: N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 343, (2006),
329-332.

Résumé

Le principe des fonctions arbitraires dit que la partie fractionnaire de
nX converge stablement vers une variable aléatoire indépendante uni-
formément répartie sur [0, 1] dés que X a une densité ou seulement une
fonction caractéristique tendant vers zéro a l'infini. Nous établissons
une propriété analogue pour des variables aléatoires définies sur I’es-
pace du mouvement brownien par repliement de la mesure stochas-
tique dB;y sur elle-méme. Pour citer cet article : N. Bouleau, C. R.
Acad. Sci. Paris, Ser. I 843, (2006), 329-332.

1 Introduction

Let us denote {z} the fractional part of the real number z and =L, the weak
convergence of random variables. Let (X,Y’) be a pair of random variables



with values in R x R", we refer to the following property or its extensions as
the arbitrary functions principle:

({nX}Y) == (UY) (1)
where U is uniformly distributed on [0, 1] independent of Y.

This property is satisfied when X has a density or more generally a char-
acteristic function vanishing at infinity. (cf [5] Chap. VIII §92 and §93,
2], [4]). Tt yields an approximation property of X by the random variable
X, =X—-{nX}= @ where [x] denotes the entire part of z:

Proposition 1. Let X be a real random variable with density and Y a
random variable with values in R". Let X,, = @
a) For all p € C*(Lip(R) and for all integrable random variable Z,

(n(p(Xa) — 9(X)),Y) =5 (-U(X),Y)

1 /
PEIP(X) ~o(X)?Z] — SEP(X)Z)
where U is uniformly distributed on [0, 1] independent of (X,Y).
b) vy € L1([0,1])

W(n(X, = X)),Y) = @(=U)Y)

under any probability measure P < P.
We extend such results to random variables defined on the Wiener space.

2 Periodic isometries.

Let (B;) be a standard d-dimensional Brownian motion and let m be the
Wiener measure, law of B. Let ¢t — M, be a bounded deterministic mea-
surable map, periodic with unit period, into the space of orthogonal d x d-
matrices such that [ M,ds = 0 (e.g. a rotation in R? of angle 27t). The
transform B; +— fot M,dB; defines an isometric endomorphism in LP(m),1 <
p < 00. Let be M, (s) = M(ns) and T,, = Ty, . The transposed of the matrix
N is denoted N*.



Proposition 2. Let be X € L'(m). Letm be a probability measure absolutely
continuous w.r. to m. Under m we have

(T.(X),B) == (X(w),B).

The weak convergence acts on R xC([0,1]) and X (w) denotes a random vari-
able with the same law as X had under m function of a Brownian motion W
independent of B.

Proof. a) If X = exp{i fol {.dB+1 fol |€]2ds} for some element £ € L2([0, 1], R?),
we have T,,(X) = exp{i fol § M, (s)dB; + 5 fol |£2ds}.

Putting Z]' = f(f EEM,,(s)dBy gives (Z", Z™), = fot §s M, (s) M (s)Esds =
[ |€2(s)ds which is a continuous function. Now by proposition 1, [} €M, (s)ds —
[y &ds fol M,,(s)ds = 0. which implies by Ascoli theorem sup,| [ &M, (s)ds| —
0. The argument of H. Rootzén [6] applies and yields ([, £*M,dB, B) 2
( fo £.dW, B) giving the result in this case by continuity of the exponential
function.

b) When X € L'(m), we approximate X by Xj linear combination of
exponentials of the preceding type and consider the caracteristic functions.
The inequality

|E[6iuTn(X)6if h.dB_E[eiuTn(Xk)eifh.dB]| < |U|E|Tn(X)—Tn(Xk)| _ |u| ||X_Xk||L1

gives the result.
c¢) This extends to the case m < m by the properties of stable conver-
gence. o

3 Approximation of the Ornstein-Uhlenbeck
structure.

From now on, we assume for simplicity that (B) is one-dimensional. Let
0 be a periodic real function with unit period such that fol 6(s)ds = 0 and
fol 6?(s)ds = 1. We consider the transform R, of the space LZ(m) defined
by its action on the Wiener chaos:

HX =/ _ . [f(si,...,8)dBs, ...dB,, for f € L2, ([0,1]5C),

sym

R,.(X) = / f(sl, e Sk)ei%(’(”‘(”l)st1 . ei%‘g("sk)stk.
§1<--<Sg



R, is an isometry from LZ(m) into itself. From n(eizlzﬁ:lg(m”) -1) =
Z'Zl;:l f(ns,) fol e%n 2pM50) 4oy it follows that if X belongs to the k-th chaos

In(Ra(X) = X)|IZ2 < K| X122 110115

In other words, denoting A the Ornstein-Uhlenbeck operator, X € D(A)
implies

[n(Rn(X) = X)|lz2 < 2[[AX||2(|6]|
and this leads to

Proposition 3. If X € D(A)

(—in(Rp(X) — X),B) =% (X#(w,w),B)

where W is an Brownian motion independent of B and X# = fol D, X dW,.

Proof. If X belongs to the k-th chaos, expanding the exponential by its
Taylor series gives

A~

n(R,(X) - X) = z/ f(s1,....s1) Y _0(ns,)dB,, ...dB,, + Q,
§1< <8k p=1
with [|Q, 1% < 7 k%1012, ]| X [I*.
Then using that [,
converges stably to [

81< < sp< < S,

<y <y h(si,...,s,)0(nsp)dBs, ...dB,, ...dB,,
h(si,...,s,)dBs, ...dW, ...dB,, one gets

~

ft<32<___<sk f(tf Soy...,8k)dWdBs, . ..dB

Sk

_Zn(Rn(X)_X) :5> i‘fsl<t<'”<sk f(sl’t7'"’Sk)stlth"'stk

+ s e (510 sk, 0)dBy, By, AW,

which equals [ Dy(X)dW, = X*.

The general case in obtained by approximation of X by X}, for the D??2
norm and the same argument as in the proof of proposition 2 by the carac-
teristic functions gives the result. o

By the properties of stable convergence, the weak convergence of prop. 3
also holds under m < m. By similar computations we obtain



Proposition 4. VX € D(A)
n’E[|R,(X) — X|*] — 2€[X]

where & is the Dirichlet form associated with the Ornstein-Uhlenbeck opera-
tor.

Following the same lines, it is possible to show that the theoretical A and
practical A bias operators (cf. [1]) defined on the algebra £L{e/ ¢ ; ¢ € C'}
by

n*E[(R,(X) — X)Y] =< AX,Y >0
TLQE[(X — Rn(X))Rn(Y)] =<< AX, Y >L2(m)

are defined and equal to A.

Comment. The preceding properties are very similar to the results concerning
the weak asymptotic error for the resolution of SDEs by the Euler scheme,
involving also an “extra”-Brownian motion (cf. [3]).

Nevertheless these results do not use the arbitrary functions principle

because a convergence like (n [;(s — ["—;})dBS,B) SN (\/%W + 3B, B) is
hidden by a dominating phenomenon (y/n |; (BS—B@ dB;s, B) RN (%W, B)
due to the fact that when a sequence of variables in the second (or higher
order) chaos converges stably to a Gaussian variable, this one appears to be
independent of the fisrt chaos and therefore of B.

The arbitrary functions principle is slightly different, it is a crumpling of
the random orthogonal measure d B, on itself. This operates even on the first

chaos. Concerning the solution of SDEs by the Euler scheme, it is in force
for SDEs of the form

X} =ab+ [y fYUX2)dB, + [ f2(X), X2)ds
X?=ak+ [y 2(X), X2)ds

where X! is with values in R¥, X2 in R*?, B in R? and f¥ are matrices with
suitable dimensions which are encountered for the description of mechanical
systems under noisy sollicitations when the noise depend only on the position
of the system and the time. In such equations, integration by parts reduces
the stochastic integrals to ordinary integrals and it may be shown that solved
by the ?uler scheme they present a weak asymptotic error in % instead of ﬁ
as usual.
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