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Abstract. Equipping the probability space with a local Dirichlet form with square
field operator Γ and generator A allows to improve Monte Carlo computations of
expectations, densities, and conditional expectations, as soon as we are able to
simulate a random variable X together with Γ[X] and A[X]. We give examples on
the Wiener space, on the Poisson space and on the Monte Carlo space. When X
is real-valued we give an explicit formula yielding the density at the speed of the
law of large numbers.

Keywords : square field operator, Wiener space, Poisson space, density, stochas-
tic differential equation, Dirichlet form, error

1. INTRODUCTION

Dirichlet forms techniques have shown their efficiency in order to obtain ex-
istence of densities under weak hypotheses, especially for stochastic differential
equations with Lipschitz coefficients (cf [6]). We show here their utility for speed-
ing up Monte Carlo methods especially for the computation of such densities.

In the whole article the framework is an error structure (Ω,A, IP, ID, Γ), i.e. a
probability space equipped with a local Dirichlet form with square field operator
(cf [7], [4]). We denote E the associated Dirichlet form given by E [u] = 1

2

∫

Γ[u] dIP
and (A,DA) the generator linked with E by the relation E [u, v] = − < A[u], v >
∀u ∈ DA, ∀v ∈ ID.

We consider a random variable X belonging to the domain DA and such that
we are able to simulate X, Γ[X] and A[X].

Example 1. Wiener space.

Let us consider as first example a stochastic differential equation defined on
the Wiener space equipped with the Onstein-Uhlenbeck structure (cf [12], [4], [5])
:

Xt = x0 +
∫ t

0
σ(Xs, s)dBs +

∫ t

0
r(Xs, s)ds(1)

By the functional calculus for the operators Γ and A (cf [7], [4]), if the coefficients
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are smooth, the triplet (Xt, Γ[Xt], A[Xt]) is a diffusion solution to the equation :







Xt

Γ[Xt]
A[Xt]





 =







x0

0
0





+
∫ t

0







σ(Xs, s) 0 0
0 2σ′

x(Xs, s) 0
−1

2
σ(Xs, s)

1
2
σ′′

x2(Xs, s) σ′
x(Xs, s)













1
Γ[Xs]
A[Xs]





 dBs

+
∫ t

0







r(Xs, s) 0 0
σ2(Xs, s) 2r′x(Xs, s) + σ′2

x (Xs, s) 0
0 1

2
r′′x2(Xs, s) r′x(Xs, s)













1
Γ[Xs]
A[Xs]





 ds

Denoting Yt the column vector (Xt, Γ[Xt], A[Xt]) this equation writes

Yt = Y0 +
∫ t

0
a(Ys, s)dBs +

∫ t

0
b(Ys, s)ds(2)

and solving it by the Euler scheme with mesh 1
n

on [0,T], i.e.

Y n
t = Y0 +

∫ t

0
a(Y n

[ns]
n

,
[ns]

n
)dBs +

∫ t

0
b(Y n

[ns]
n

,
[ns]

n
)ds(3)

yields a process Y n
t = (Xn

t , (Γ[X])n
t , (A[X])n

t )t. Now, it is straightforward to verify
that the second and third components of this process are respectively equal to
Γ[Xn

t ] and A[Xn
t ]. In other words, if for a process Z solution to a stochastic

differential equation, we denote Zn the solution to the discretized s.d.e. by the
Euler scheme of mesh 1

n
sur [0,T], we may write

Γ[Xn] = (Γ[X])n

A[Xn] = (A[X])n.
(4)

Thus, in order to compute the density of XT , if we approximate it by the Euler
scheme Xn

T and use the fact that the densities pT (x0, x) and pn
T (x0, x) of XT and

Xn
T are close together and satisfy under regular hypotheses

sup
x0,x

|pT (x0, x) − pn
T (x0, x)| ≤ K

n

(cf [1], [2], [10], [11, thm 4.1]) we are eventually in a situation where we have to
estimate the density of Xn

T in a framework where we are able to simulate Xn
T ,

Γ[Xn
T ] and A[Xn

T ] thanks to the relations (4).
Remark. Starting from the same equation (1), instead of putting an error on the
Brownian motion, we can simply put an error on the initial value x0. We obtain
that (Xt, Γ[Xt], A[Xt]) is still a diffusion, evidently different from the preceding
one, but relations (4) are still valid, so that we know to simulate Xn

T , Γ[Xn
T ] and

A[Xn
T ].

In fact, the sequel will show that we have interest to consider both an error on
the Brownian motion and an independent error on the initial value because this
increases Γ[X].

Example 2. Poisson space.

Let (IRd,B(IRd), µ, d, γ) be an error structure on IRd whose generator is denoted
(a,Da) and let N be a Poisson point process on IRd with intensity measure µ. The



space of definition of N , (Ω,A, IP), may be equipped with a so-called “white” error
structure (Ω,A, IP, ID, Γ) (cf [4]) with the following properties

∀h ∈ Da
N(h) ∈ ID and Γ[N(h)] = N(γ[h])
N(h) ∈ DA and A[N(h)] = N(a[h]).

Simulating N(ξ) amounts to draw a finite (poissonian) number of independent vari-
ables with law µ, so that we are in a situation where N(h), Γ[N(h)], and A[N(h)]
are simulatable, the same for a regular functional F (N(h1), N(h2), . . . , N(hk)).

Example 3. Monte Carlo space.

Let X be a random variable simulatable on the Monte Carlo space by an
infinite number of calls to the random function. Let us group together the calls
with respect to which the variable X is regular and those with respect to which it
is irregular or discontinuoous (use of the rejection method, etc.) so that X may
be written on the space ([0, 1]IN,B([0, 1]IN), dxIN) × ([0, 1]IN,B([0, 1]IN), dxIN)

X = F (U0, U1, . . . , Um, . . . ; V0, V1, . . . , Vn, . . .)

where the Ui’s are the coordinates of the first factor and the Vj ’s those of the
second one, the function F being regular with respect to the Ui’s.

Let us put on the Ui’s the error structure

([0, 1]IN,B([0, 1]IN), dxIN, ID, Γ) = ([0, 1],B([0, 1]), dx, d, γ)IN

where (d, γ) is the closure of the operator γ[u](x) = x2(1 − x)2u′2(x) for u ∈
C1([0, 1]).

If F is C2 with respect to each Ui sur [0, 1] and if the series

∞
∑

i=0

(
1

2
F ′′

iiU
2
i (1 − Ui)

2 + F ′
iUi(1 − Ui)(1 − 2Ui))

converges in L2, we have, X ∈ DA and

A[X] =
∑∞

i=0(
1
2
F ′′

iiU
2
i (1 − Ui)

2 + F ′
iUi(1 − Ui)(1 − 2Ui))

Γ[X] =
∑∞

i=0 F ′2
i U2

i (1 − Ui)
2.

so that X, Γ[X] et A[X] are simulatable.

2. DIMINISHING THE BIAS.

Let be (Ω,A, IP, ID, Γ) an error structure, (E , ID) the associated Dirichlet form,
and (A,DA) the associated generator.

Let us explain the intuitive way. The symmetric Markov process associated
to the error structure, in short time ε, induces an error on any regular random
variable defined on (Ω,A, IP) whose bias is εA[X] and whose variance is εΓ[X].

Since the probability IP is invariant by the transition semi-group of the Markov
process, the law of the random variable X is nearly the same as that of

X + εA[X] +
√

ε
√

Γ[X] G



where G is an exogenous reduced Gaussian variable independent of A. It follows
first that the random variable X + εA[X] which has the same expectation as X,
possesses a smaller variance than that of X. This is shown by the following result.

For X ∈ (DA)d, we denote var[X] the covariance matrix of X, A[X] the col-
umn vector with components (A[X1], . . . , A[Xd]), Γ[X] the matrix Γ[Xi, Xj] and
√

Γ[X] the positive symmetric matrix square root of Γ[X].

Proposition 1. For X ∈ (DA)d,

trace(var[X + εA[X]]) = trace(var[X]) − 2ε
d
∑

i=1

E [Xi] + ε2‖A[X]‖2.

If A[X] is not zero, this quantity is minimum for ε =
∑

i E [Xi]/‖A[X]‖2 and is
equal to

trace(var[X]) − 2

∑

i E [Xi]

‖A[X]‖2
.

Proof. The result comes directly from the relation E [Xi] = − < A[Xi], Xi >. ⋄

In order to calculate IEX, it is interesting to simulate X + εA[X] instead of X
as soon as ε ∈]0, 2

∑

i E [Xi]/‖A[X]‖2[.

We apply now the same idea to the computation of the density of X that we de-
note f when it exists. Let g(x−m, Σ) be the density of the normal law on IRd with
mean m and covariance matrix Σ supposed to be invertible. Given X, A[X], Γ[X]

the conditional law of the random variable X + εA[X] +
√

ε
√

Γ[X] G where G is

an independent reduced Gaussian variable, has a density g(x−X−εA[X], εΓ[X]).
The goal is to show, under suitable hypotheses assuring Γ[X] to be invertible, that
IEg(x − X − εA[X], εΓ[X]) converges to f(x) faster than in the classical kernel
method.

Lemma 1. Let X be in (DA)d. We suppose that X possesses a conditional density
η(x, γ, a) given Γ[X] = γ et A[X] = a such that x 7→ η(x, γ, a) be C2 with bounded

derivatives. Then ∀x ∈ IRd

IE[−(A[X])t∇xη(x, Γ[X], A[X]) +
1

2
trace

(

Γ[X].Hessxη
)

(x, Γ[X], A[X])] = 0.

Proof. Let us give the argument in the case d = 1. Let ϕ be C2 with compact
support on IR. By [7], denoting A(1) the generator in the L1 sense, we have

A(1)[ϕ(X)] = ϕ′(X)A[X] +
1

2
ϕ′′(X)Γ[X].

Hence if µ(dγ, da) is the law of the pair (Γ[X], A[X])

IEA(1)[ϕ(X)] = 0 =
∫

µ(dγ, da)
∫

(ϕ′(x)a + ϕ′′(x)γ)η(x, γ, a)dx.

Integrating by parts gives
∫

µ(dγ, da)
∫

ϕ(x)(−aη′
x(x, γ, a) +

1

2
γη′′

x2(x, γ, a))dx = 0



hence
∫

µ(dγ, da)(−aη′
x(x, γ, a) +

1

2
γη′′

x2(x, γ, a)) = 0

as soon as IE|−A[X]η′
x(X, Γ[X], A[X])+ 1

2
Γ[X]η′′

x2(X, Γ[X], A[X])| ∈ L1
loc(dx) what

is satisfied under the assumptions of the statement. ⋄

First we study the bias :

Proposition 2. Let X be as in the above lemma and let the conditional density
η(x, γ, a) be C3 bounded with bounded derivatives.

As ε → 0, the quantity

1

ε2

(

IE[g(x − X − εA[X], εΓ[X])] − f(x)
)

possesses a finite limit equal to

1
2
IE[(A[X])t(Hessxη)(x, Γ[X], A[X])A[X]

−∑d
i,j,k=1A[Xi]Γ[Xj , Xk]η

′′′
xixjxk

(x, Γ[X], A[X])].

Demonstration. The argument begins with the relations

IE[g(x − X − εA[X], εΓ[X])] =
∫

µ(dγ, da)
∫

g(x− y − ε, εγ)η(y, γ, a)dt
=
∫

µ(dγ, da)IEη(x − εa −√
ε
√

γG, γ, a)

where G is a reduced Gaussian variable with values in IRd and then consists of
expanding η(x − εa −√

ε
√

γG, γ, a) by the Taylor formula and taking the expec-
tation. The term of order zero gives f(x), the term in

√
ε vanishes since G is

centered, the term in ε is zero because of lemma 1, the term in ε
√

ε vanishes be-
cause G3 is centered. The hypotheses give the upper bounds allowing to conclude.⋄

About the variance we have :

Proposition 3. Let X be as in proposition 1 and such that (detΓ[X])−
1
2 ∈ L1,

limε→0 εd/2IEg2(x − X − εA[X], εΓ[X]) = limε→0 εd/2varg(x − X − εA[X], εΓ[X])

= IE





η(x,Γ[X],A[X])

(4π)d/2

√

detΓ[X]



 .

Demonstration. We have

IEg2(x − X − εA[X], εΓ[X]) =
∫

µ(dγ, da)
∫

g2(x − y − εa, εγ)η(y, γ, a)dy.

Since

g2(z, εγ) =
1

(2π)d/2(2ε)d/2
√

detγ
g(z,

ε

2
γ)

we obtain the result by dominated convergence and the continuity of η. ⋄



3. COMPARISON OF RATES.

The quantity IEg(x−X−εA[X], εΓ[X]) is computed by the law of large numbers

so that the approximation f̂(x) of f(x) is

f̂(x) =
1

N

N
∑

n=1

g(x− Xn − ε(A[X])n, ε(Γ[X])n) (∗)

where the indices n denote independent drawings.
• If we are using the L2 criterion

‖f̂(x) − f(x)‖2
L2 = varf̂(x) + (bias)2

we are led to choose ε = 1

N
2

d+8
and

‖f̂(x) − f(x)‖L2 =
1

N
4

d+8

O(1)

to be compared with 1

N
2

d+4
= 1

N
4

2d+8
in the case of the classical kernel method (cf

[13] [14]). We see that the new method divides the dimension by two.

• The other criterion

c(f̂(x), f(x)) = sup
ϕ∈P

|IEϕ(f̂(x) − ϕ(f(x))|

where P is the set of polynomials of second degree ϕ(x) = ax2 +bx+c with |a| ≤ 1
and |b| ≤ 1, what gives

c(f̂(x), f(x)) = |IE[f̂ 2(x)] − f 2(x)| + |IEf̂(x) − f(x)|,

may be better adapted to the case of error calculus for the reason that, when the
errors are thought as germs, in short time, of Ito processes, biases have the same
order of magnitude as variances (not as standard deviations). This criterion leads
us to take ε = 1

N
2

d+4
what gives c(f̂(x), f(x)) = 1

N
4

d+4
O(1) to be compared with

1

N
2

d+2
= 1

N
4

2d+4
in the classical case, we see that for this criterion too the proposed

method divides the dimension by two.

4. DIRECT FORMULAE

When X is real valued, explicit formulae may be proved that allow simulations
at the speed of the law of large numbers, provided that in addition to X, Γ[X],
and A[X], we are able to simulate the random variable Γ[X, 1

Γ[X]
], what is possible

under additional regularity assumptions.
For instance in the example 2, we have easily, if X = N(h)

Γ[X,
1

Γ[X]
] =

N(γ[h, γ[h]])

(N(γ[h]))4
.



Proposition 4. a) If X is in DA with Γ[X] ∈ ID and Γ[X] > 0 a.s. then X has
a density f possessing an l.s.c. version f̃ and

f̃(x) = lim
ε↓0

↑ 1

2
IE

(

sign(x − X)(Γ[X,
1

ε + Γ[X]
] +

2A[X]

ε + Γ[X]
)

)

.(5)

b) If in addition 1
Γ[x]

∈ ID, then X has a density f which is absolutely continuous
and

f(x) =
1

2
IE

(

sign(x − X)(Γ[X,
1

Γ[X]
] +

2A[X]

Γ[X]
)

)

.(6)

Demonstration. Let us begin with the case a). Since X ∈ DA and Γ[X] ∈ L2,
for any C2 function ϕ with bounded derivatives (cf [7] chap I), we have ϕ[X] ∈ DA
and

A[ϕ(X)] = ϕ′(X)A[X] +
1

2
ϕ′′(X)Γ[X]

hence ∀ε > 0

ϕ′′(X) =
2A[ϕ(X)] + εϕ′′(X) − 2ϕ′(X)A[X]

ε + Γ[X]
.(7)

Since IE 2A[ϕ(X)]
ε+Γ[X]

= −IEΓ[ϕ(X), 1
ε+Γ[X]

] taking the expectation we obtain

IE[ϕ′′(X)
Γ[X]

ε + Γ[X]
] = −IE[ϕ′(X)(Γ[X,

1

ε + Γ[X]
] +

2A[X]

ε + Γ[X]
)].(8)

Let us put Kε(x) = IE[ Γ[X]
ε+Γ[X]

|X = x] and Hε(x) = IE[(Γ[X, 1
ε+Γ[X]

] + 2A[X]
ε+Γ[X]

)|X =

x]. Relation (5) writes

∫

ϕ′′(x)Kε(x)IPX(dx) = −
∫

ϕ′(x)Hε(x)IPX(dx).(9)

The derivative in the distributions sense of the measure Kε(x)IPX(dx) is the mea-
sure Hε(x)IPX(dx). It follows that the measure Kε(x)IPX(dx) has a density and
since Kε > 0 IPX-a.s. (because Γ[X] > 0 IP-a.s.) the law IPX has a density f .

(We prove here again the implication X ∈ ID, Γ[X] > 0 ⇒ IPX << dx which
is true for any local Dirichlet form with square field operator cf [7])

Hence Hε(x)IPX(dx) = Hε(x)f(x)dx and (9) implies that the measureKε(x)IPX(dx)

has an absolutely continuous density Fε(x) and ∀ε > 0 we have f(x) = Fε(x)
Kε(x)

for
almost every x.

Taking ϕ(y) =
√

λ2 + (y − x)2 in (8), it comes

IE

(

λ2

(λ2 + (X − x)2)
3
2

Γ[X]

ε + Γ[X]

)

= IE





x − X
√

λ2 + (X − x)2
(Γ[X,

1

ε + Γ[X]
] +

2A[X]

ε + Γ[X]
)





When λ → 0, by dominated convergence, for all x, the right-hand side converges
to

IE[sign(x − X)(Γ[X,
1

ε + Γ[X]
] +

2A[X]

ε + Γ[X]
)]

where sign(y) = y/|y| if y =/ 0 and sign(0) = 0.



The left-hand side is equal to

∫ λ2

(λ2 + (y − x)2)
3
2

Kε(y)IPX(dy) =
∫ λ2

(λ2 + (y − x)2)
3
2

Fε(y) dy

since Fε is continuous, this converges when λ → 0 to 2Fε(x), therefore we have
the following equality between continuous functions

Fε(x) =
1

2
IE

[

sign(x − X)(Γ[X,
1

ε + Γ[X]
] +

2A[X]

ε + Γ[X]
)

]

.

Now, as ε ↓ 0, by its definition the function Kε increases to 1 IPX -a.s. since Γ[X] is
supposed to be strictly positive a.s. Hence Kε(x)f(x) increases to f(x) for almost
every x. The equality Fε(x) = Kε(x)f(x) valid for almost every x implies that Fε

is almost everywhere, hence everywhere, increasing and converges to f̃ l.s.c. equal
to f almost everywhere.

In order to prove the point b) we proceed similarly and the hypotheses allow
to replace (8) by the relation

IE[ϕ′′(X)] = −IE[ϕ′(X)(Γ[X,
1

Γ[X]
] +

2A[X]

Γ[X]
)].(10)

Putting H(x) = IE[Γ[X, 1
Γ[X]

] + 2A[X]
Γ[X]

|X = x] we see that the law of X, IPX(dx),

possesses a derivative in the sense of distributions H(x)IPX(dx) which is absolutely
continuous, henceX has an absolutely continuous density f . Taking again ϕ(y) =
√

λ2 + (y − x)2, we obtain

f(x) =
1

2
IE

[

sign(x − X)(Γ[X,
1

Γ[X]
] +

2A[X]

Γ[X]
)

]

.

by the same argument as above. ⋄

The density of X being obtained, we can extend the formulae (5) and (6) in
order to compute conditional expectations.

Proposition 5. Let be G ∈ ID ∩ L∞,
a) under the assumptions of prop. 4 a), we have dx-a.e.

f(x)IE[G|X = x] = lim
ε↓0

1

2
IE

(

sign(x − X)(Γ[X,
G

ε + Γ[X]
] +

2GA[X]

ε + Γ[X]
)

)

.(11)

the right-hand side is l.s.c. if G ≥ 0,
b) under the assumptions of prop. 4 b) and with 1

Γ[x]
∈ ID ∩ L∞, we have dx-a.e.

f(x)IE[G|X = x] =
1

2
IE

(

sign(x − X)(Γ[X,
G

Γ[X]
] +

2GA[X]

Γ[X]
)

)

.(12)

where the right-hand side is continuous.

The proof is similar to that of proposition 4. ⋄



Let us remark eventually that letting ϕ′(X) go to 1 in formulae (8) and (10)
and in the analoguous formulae of proposition 5 we see that ∀G ∈ ID ∩ L∞

IE(Γ[X,
G

ε + Γ[X]
] +

2GA[X]

ε + Γ[X]
) = 0

and also for ε = 0 under the hypotheses of prop. 4 b). Hence it is possible to
introduce, as remarked in [10], an arbitrary control deterministic function c in
order to optimize the variance. For instance formula (12) becomes

f(x)IE[G|X = x] =
1

2
IE

(

(sign(x − X) − c(x))(Γ[X,
G

Γ[X]
] +

2GA[X]

Γ[X]
)

)

.

Comment. In the kernel method (cf [13] [12] [8]), cancelling the first term in the
asymptotic expansion of the bias is an old idea and has been explored by several
authors either by the use of non-positive kernels (cf [9] [13]) either by a Romberg
method what amounts to the preceding case. In the method we propose in sections
2 and 3, the kernel is random and depends on the random variable itself. That
shifts from an order of magnitude. Then the above idea may be applied again.

The nearest work to the section 4 is the study by A. Kohatsu-Higa and R.
Pettersson [10] which uses integration by parts on the Wiener space in the sense of
Malliavin, also the paper of Bouchard, Ekeland and Touzi [3]. The difference in the
points of view comes mainly from the fact that the integration by parts formulae
are not the same, ours are simpler and do not involve Skorokhod integrals.

Let us quote also that the results of sections 2 and 4 may be applied as well to
the Poisson space or the Monte Carlo space with a possible choice of the Dirichlet
form what gives a usefull flexibility in order to take in account the studied specific
model.
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